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Abstract ─ Several methods for estimating the 
local (cell-by-cell) error associated with a method 
of moments solution of the electric field integral 
equation are investigated. Three different residual 
error estimators are used with a variety of 
prototype structures.  The global error estimates 
show reasonable correlation with the actual current 
density errors, and all three local error estimators 
correctly identify the high-error regions. Utility of 
the proposed error estimators is presented through 
a simple h-refinement technique. 
  
Index Terms ─ Adaptive refinement, boundary 
element method, method of moments, residual 
error.  
 

I. INTRODUCTION 
Electromagnetic field problems often involve 

the prediction of fields in the presence of 
complicated structures, and the solution of these 
problems usually rests upon computational 
procedures. Integral equation formulations have 
been widespread, and are discussed in several texts 
[1-3]. The typical numerical solution process 
involves creating a subsectional mesh model for 
the surface of any structures, representing the 
equivalent surface currents on that surface by a 
piecewise-polynomial basis, and imposing 
boundary conditions on the fields to construct a 
large linear system of equations. The solution of 
that system produces the coefficients of those 
polynomial basis functions. That process is known 
as the method of moments or the boundary element 
method. Although the numerical treatment of 
integral equations has steadily advanced for 

decades, adaptive refinement procedures have 
lagged behind other developments. Adaptive 
refinement is an approach where either (a) the 
mesh density, or (b) the polynomial degree 
employed in certain regions of the mesh, is 
automatically modified as required to improve the 
accuracy of the approach, without user 
intervention.  Such modification must be based on 
an estimate of the local error [4-11]. 

In the present study, we consider the 
transverse-electric (TE)-to-z electric field integral 
equation (EFIE) for two-dimensional conducting 
structures. The continuous equation being solved 
can be expressed as 

L J tan
 gtan ,  (1) 

where J , the electric current density, is the 
quantity of interest, and 

   2

(2)
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  
  (2) 

g  Einc(r ) ,   (3) 
 

where Einc  is the given excitation, H0
(2)  is the 

zero-order Hankel function of the second kind, t 
and t  denote parametric variables along the 
contour of the structure, and r  is the position 
vector from t  to t on the contour.   

The numerical solution for the current density 
is obtained in terms of a representation in N basis 
functions 
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JN (t)  JnBn (t)
n1

N

 .   (4) 

The surface of the conducting scatterer is 
represented by flat facets, while the current density 
is represented by an expansion using piecewise-
linear or “triangle” basis functions {Bn(t)}  that 
are tangential to the surface. Each triangle function 
straddles two of the facets in the surface model. A 
weighted-residual approach is employed using 
piecewise-constant or pulse testing functions 
{Tm (t)} , also tangential to the surface and 
partially straddling adjacent cells, to construct a 
system of equations that may be expressed in 
matrix form as 

ZJ = E .    (5) 
The entries of the N by N system matrix and 

the N by 1 excitation vector are given by 
Zmn  Tm  L Bn   dt ,   (6) 

Em  Tm  g  dt .   (7) 

Other details of the numerical solution 
procedure, including approximations that were 
used in the computation of Zmn, are described in 
section 2.4 of [3]. 

Local error estimators are often based on 
residual error computations. Once the coefficients 
in (2) have been determined, the tangential 
residual associated with this numerical result can 
be written as 

Rtan (t)  L JN tan
 gtan .   (8) 

The residual error is known to correlate with 
the actual error e  J  JN  [12], and has formed 
the basis for determining solution error in various 
integral equation formulations [13-14]. However, 
it is relatively expensive to compute, since it 
usually must be evaluated using an approach that 
is independent from that used to construct the 
original linear system. 

In the following, we consider several different 
error estimators related to (8), and compare their 
performance and computational efficiency on a 
number of canonical scattering targets. 
 

II. TANGENTIAL RESIDUAL ERROR 
ESTIMATOR 

The TE EFIE imposes the tangential-field 
boundary condition 

0tan 
totE ,    (9) 

indirectly, by equating the average value of the 
residual in (8) over the domain of the testing 
function to zero. In other words, in the 
construction of the linear system in (5), equation 
(9) is imposed in an average sense by integrating it 
with a piecewise-constant testing function from 
the center of one cell to the center of the adjacent 
cell. In the preceding notation, this is equivalent to 
imposing 

Rtan (t)dt  0 ,   (10) 

over the domain of each pulse testing function. 
The residual in (10) provides a means to 

measure the error in a particular result, and is 
directly computable since it does not depend 
directly on the exact solution. However, if we 
compute the residual error in the same manner as 
was used to construct the linear system in (5), we 
do not obtain useful information since the 
equations are exactly satisfied. However, we could 
re-compute the residual error in a variety of ways 
to obtain an independent measure of the residual 
error. 

Consider the use of weighting functions that 
are centered within each cell with their widths 
made relatively small (1/5 of the cell width in this 
case). In that case, the residual error at the center 
of cell i may be obtained as 

Rt (ti )  Rtan (t)dt
small  domain  at  center  of  cell  i ,   (11) 

where Rtan  is computed from the previously-
obtained numerical values for the current density, 
using essentially the same subroutines as used to 
compute the matrix entries Zmn . 

The normalized tangential residual error in the 
ith cell may be defined as 

TRi
loc 

Rt (ti )
g max

,   (12) 

to provide a local measure of the error.  In (12), 
g max  denotes the maximum magnitude of the 

excitation (3) used in the residual calculation of 
(11). For a global measure of the error, we employ 
the 2-norm error obtained by summing (12) over 
all the cells in the model: 

TR2
glo 

1
N

(TRi
loc )2

i1

N

 .  (13) 
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As a consequence of the definition of the residual 
in (11), these error measures are relatively 
independent of the system of equations that led to 
the specific numerical solution being evaluated. 
 

III. NORMAL RESIDUAL ERROR 
ESTIMATOR 

In the preceding section, a residual error 
estimator was constructed based on enforcing the 
tangential field boundary condition. An additional 
boundary condition should be satisfied by the 
normal component of the total electric field at the 
surface of a perfect conductor, namely 

n̂  Etot 
s


,    (14) 

where s denotes the surface charge density at a 
point on the surface,  denotes the permittivity of 
the exterior medium, and n̂  is an outward-directed 
unit vector perpendicular to the surface. The 
boundary condition of (14) may be expressed in 
the form of an alternative residual 

  ˆ( ) ( )

ˆ{ ( ) }1 ,

N

N

N t n t L J g

d t t J
j dt

   

   (15) 

 

which uses 

s  
S  JN

j
 

1
j

d{t̂ (t) JN }
dt

.  (16) 

For ease of computation and employing the same 
subroutines used to build the matrix in (5), we 
orient the testing functions so that they are now 
normal to the cells, at the cell center, and compute 
the normal residual in the ith cell using 

NRi
loc 

1
g max

N(t)dn
perpendicular  to  cell  i ,    (17) 

where the testing domain is typically on the order 
of the cell size, and g max  denotes the maximum 
magnitude of the excitation used in the residual 
calculation of (15). The global error NR2

glo  is 
obtained in the same manner as equation (13). 

 
IV. ERROR ESTIMATION BASED ON 

AN OVER-DETERMINED SYSTEM OF 
EQUATIONS 

A third way to compute a residual is to set up 
and solve an overdetermined system of equations 

representing (1), by employing more testing 
functions (over smaller domains) than basis 
functions when constructing equation (5) [13-15].  
A least-squares approach can be used to obtain a 
solution that minimizes the error in the residual 
equations. Since the equations will not be exactly 
satisfied, the residual can be computed from the 
equations and used directly as a measure of the 
error in the numerical result [14]. 

We use an implementation where the cells are 
divided in half, each with a tangential testing 
function centrally located, to yield a 2N by N 
system 

Z2N N JN  E2N .   (18) 
Unlike [13], these equations are equally weighted. 
After the current coefficients are determined by a 
least-square solution, the residual function is 
computed as the matrix column vector  

inc
NNNNiOD EJZtR 22)(   . (19) 

The normalized tangential residual error at 
location i may be defined as 

ODRi
loc 

ROD (ti )
E2 N

inc
max

.   (20) 

A global function is obtained by summing over the 
2N locations in accordance with (13). We note that 
one could alternatively mix tangential and normal 
testing functions. 

 
V. SIMULATION RESULTS 

In the following, we compare the performance 
of the preceding three error estimators on several 
geometries. We also estimate the actual error in 
each numerical result by comparison to a 
numerical result obtained with a finer 
discretization of the target.  A local value for the 
normalized error in the i-th cell is obtained as 

NEi
loc 

Jref (ti )  JN (ti )

max Jref (ti )
,  (21) 

with the global estimate obtained following (13). 
Figure 1a shows the geometry of the first 

problem, which is a circular cylinder of 5λ 
circumference illuminated with two line sources 
placed (as shown) a distance of 0.1λ from the 
cylinder surface. For one of the line sources, the 
expression used for the incident E-field is given by 

(2)
1

ˆˆ ˆ2 ( ) .inc y y x xE j H k x y  
 

  
  

 
(22) 
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The region of the cylinder that is nearer to the 
line sources (φ = 180°) is expected to have more 
error in a typical numerical result for current 
density than the regions far away, since the current 
is more rapidly varying there. This is also 
observed, for example, in antennas near their feed 
region (and often motivates a higher discretization 
density in that region). Figure 1b shows the 
performance of the three residual-based error 
estimators for cylinder of figure 1a modeled with 
200 cells.  The reference solution in this case is the 
result obtained with 400 cells, and all three 
estimators predict a similar error pattern as the 
reference. All the estimators correctly identify the 
highest error region near φ = 180°. 

 

 
Fig. 1a. Geometry of the problem. 
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Fig. 1b. Local error for the problem of Figure 1a. 

 
Figure 1c shows a plot of the global error 

produced by the same estimators, as a function of 
the number of unknowns or cells used in the 
computations. The global residual error levels 
decrease at approximately an O(h) rate as the 
cylinder model is refined.  As discussed below, 
this is different from the rate at which the actual 

current density error decreases.  These rates agree 
with those observed in [14–15] for the TE EFIE 
and linear basis functions. 
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Fig. 1c. Global error for the problem of Figure 1a. 

 
Figure 2a shows a keyhole-shaped cylinder, 

consisting of sections of two circular cylinders 
connected by a region with parallel walls.  Figure 
2b compares the performance of the three residual-
based error estimators for a keyhole-shaped 
cylinder of 4.15λ total perimeter, modeled with 
300 cells, for the same double line source 
excitation used in Figure 1. The larger end of the 
target has a radius of 0.32λ, while the smaller end 
has a radius of 0.14λ. The circular segments have 
centers separated by 1.32λ. The reference solution 
is obtained using 600 cells.  There is a relatively 
large error level near the junction where the large 
circle meets the planar region (at 90° and 270°), 
and a larger error where the smaller circle meets 
the planar region (near 10° and 350°). The 
expected higher-error region at φ = 180° is 
correctly identified by the three estimators. Figure 
2c shows a plot of the global error, as the number 
of unknowns used in the computations is varied.  
The global residual error levels decrease at 
approximately an O(h) rate as the cylinder model 
is refined. 
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Fig. 2a. Geometry of the problem. 
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Fig. 2b. Local error for the problem of Figure 2a. 
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Fig. 2c. Global error for the problem of Figure 2a. 

 
Figure 3 shows the local error computed by 

the three estimators for the same keyhole-shaped 
cylinder as shown previously in Figure 2a, but 
with a uniform plane wave excitation instead of 
line sources. The plane wave impinges 
symmetrically upon the larger end of the scatterer. 
It is expected that the error will be uniform except 
near discontinuities in the surface, as is confirmed 
by Figure 3.  Error peaks near 10° and 90° angles 

correspond to curvature discontinuities where the 
circular regions meet the planar region of the 
surface. The higher spike corresponds to the 
sharper corner. Another interesting observation is 
that the error level gradually rolls off with 
increasing distance from the corner cells. The 
global error behavior is similar to that shown in 
Figure 2c and is not repeated here. 
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Fig. 3. Local error for the problem of Figure 2a for 
plane wave illumination. 

 
VI. h-REFINEMENT 

In this section, we demonstrate the utility of 
the tangential residual estimator presented in 
Section II to carry out adaptive h-refinement. This 
approach requires the cell size to be adaptively 
adjusted to control the error. The details of our h-
refinement scheme are as follows. First, an initial 
coarse solution for the current density J is 
computed. That solution is used to compute the 
local error using the tangential residual error 
estimator. Once the local error values have been 
computed, they are sorted in descending order to 
identify the cells with the largest error levels. The 
20% of those cells with the largest error are each 
divided into 3 cells, while each of the next 20% 
are divided into two cells. The remaining cells are 
left at their original size. After re-meshing, the 
problem is solved again to obtain a new solution 
for J, and a new local error estimate is obtained 
from the residual error. If the local error is still 
high or does not meet the user’s criteria, the above 
procedure may be repeated recursively. 

We implemented one iteration of the above 
procedure for a 5λ circumference cylinder 
illuminated with a pair of line sources as shown in 
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Figure 1a. The initial coarse solution was 
calculated for 100 cells and local error was 
computed. Based on the estimated local error 
values, a new mesh was created according to 
above scheme and is shown in Figure 4. The local 
error estimate computed before and after the 
adaptive refinement step is shown in Figure 5. 

The tangential residual estimator identified the 
region of largest error to be that near the line 
source excitation, as expected, and the h-
refinement step results in a large reduction of the 
tangential residual error in the refined region of 
the problem. Figure 6 shows the actual error in J, 
both before and after the adaptive refinement step, 
using (21) with a 600-cell solution for J as a 
reference.  

Figure 6 shows that the error in J is reduced 
by a factor of more than 3 in the refined regions.  
After only one step of adaptive refinement, the 
combination of the tangential residual estimator 
and the h-refinement procedure produces a more 
uniform error level across the problem domain 
than originally obtained with a uniform mesh. 
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Fig. 4. Mesh density after the refinement. 
 

VII. COMMENT ON THE GLOBAL 
ERROR RATES 

In practice, the error in moment method 
results is usually dominated by the ability of the 
basis functions to represent the actual current 
density.  For a piecewise-linear representation of a 
smoother function, this error should decrease at an 
O(h2) rate, where h is the nominal mesh size [3].  
The reference solution error plotted in Figures 1c 
and 2c appears to decrease at approximately that 
rate.  It has been observed in [14-15], and in 
Figures 1c and 2c, that for the TE EFIE operator, 

the residual error decreases at a rate that is one 
order less, an O(h) rate. This is apparently due to 
the TE EFIE operator, which contains one integral 
and two derivatives. We note that for the 
transverse-magnetic (TM) polarization, where the 
operator involves one integration and no 
derivatives, the EFIE residual error appears to 
decrease at a rate that is one degree faster than the 
current error. It appears that each integral 
increases the rate by one order while each 
derivative decreases the rate by one order, relative 
to that of the current density.  It has been observed 
that the residual error associated with the magnetic 
field integral equation (MFIE) decreases at the 
same rate as the current density error [14-15], 
while error in far field quantities may decrease at 
different rates from the current density for all these 
integral operators [14]. 
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Fig. 5: Local error estimate before and after h-
refinement. 
 

The different error rates may limit our ability 
to use residual error estimators to determine the 
absolute global level of current density error in a 
particular result.  Additional research is needed to 
address that issue.  Despite this limitation, the 
residual estimators appear to be able to provide a 
local error distribution suitable for an adaptive 
refinement algorithm. 
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Fig. 6. Error in J before and after h-refinement. 

 
 
VIII. COMPUTATIONAL COST OF 

ESTIMATORS 
The relative computational cost of the 

estimators can be estimated as follows.  The 
baseline cost without error estimation is 

2 3
0 ,C N N     (23) 

where α and β are the constants associated with 
matrix fill and solve times, respectively. The 
tangential and normal estimators add an 
approximate cost of 

2,t nC C N    (24) 
since the residual computation in each case is 
comparable to an additional matrix fill. 

The overdetermined error estimator has an 
approximate cost of 

2 32 5 ,overC N N     (25) 
since the matrix has twice as many entries, and 
since the least-square solution of a 2:1 rectangular 
system is reported to require about 5 times the 
operations of the LU factorization of a square 
system [16]. 

Thus, all three estimators add a cost of αN2 
operations, but the overdetermined estimator 
requires an additional 4N3 operations beyond 
that.   Thus, the overdetermined estimator is more 
expensive than the others, especially for large N. 
 

IX. CONCLUSION 
Three residual-based error estimators were 

considered for providing a local error estimate in 
conjunction with the method of moments solution 
of electromagnetic integral equations. All three 

estimators successfully located higher-error 
regions in test problems. All appear to be suitable 
for use in adaptive refinement schemes.  The 
tangential residual and normal residual estimators 
have comparable cost and generally gave 
comparable results.  The overdetermined estimator 
also gave similar results, but requires additional 
computation compared to the others.  An example 
employing h-refinement was presented for 
illustration. 

It was noted that for the EFIE the residual 
error decreases at a different rate than the current 
density error as a function of the nominal cell size.  
At the present time, this limits the use of simple 
residual error estimators for predicting the 
absolute error associated with a particular result.  
Additional research is warranted to better 
understand the behavior of the various errors and 
determine more cost-effective ways of estimating 
those errors. 
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