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Abstract — A surface integral equation method is used Electromagnetic soft surfaces [3], on which the
to analyze time-harmonic electromagnetic scatteringpower does not propagate along the surface, have
by arbitrarily shaped three-dimensional DB objectsmany micro- and millimeterwave engineering appli-
with sharp wedges. At the DB boundary surface, thecations. For example, they can be used for reducing
electric and magnetic flux densitid2 and B normal  coupling between radiating elements in antenna arrays
to the surface are zero. The DB boundary conditionsor creating rotational symmetric radiation patterns for
are enforced by expanding the unknown equivalenthorn antennas [4]. Anisotropic soft surfaces are gen-
surface current densities with divergence-free loop baerally fabricated by corrugated structures, which are
sis functions. The equations are tested with Galerkin'squite difficult to model by using standard numerical
method. The integral equation method is applied tosoftwares, because they contain a lot of fine details.
investige field behavior at sharp DB wedges and theA relatively easy way to approximate isotropic soft
results are compared with the quasistatic solution insurfaces is to apply a DB boundary condition [5] in
order to determine the accuracy of numerical solutioncalculations.

at the sharp DB wedges. The DB boundary condition requires that the nor-
mal components of the electric and magnetic flux den-
sities vanish at the boundary. Analytical solutions
for objects involving the DB boundaries have been
studied in [5, 6, 7], and the integral-equation-method
| INTRODUCTION !oased numerical solut_ion for the scatter_ing by DB ob-

jects was introduced in [8]. However, in most prac-

d't!n computfatltlonal (Zlectromagn_etmts_, bou?dar?/ Cotn'tial cases, a discretization of geometry leads to sharp
1ions are often used as approximations of real ma ei/vedges and corners which can cause problems for nu-
rial interfaces. The perfect electric conductor (PEC)

" . . . merical calculations. At these sharp wedges and cor-
boundary condition, which requires the vanishing of P g

the t tial ¢ of the electric field at th ners, fields can be singular. This fact gives motiva-
€ tangential component of the electnc held at €y, 4 analyze behavior of fields near DB wedges. It

boundary surface, is probably the ”.‘95‘ Well_—known is possible to solve field behavior near sharp wedges
and commonly used boundary condition. It is often

q ati ¢ ducti ; ; by using quasistatic analysis, because the geometry
used as an approximation of conducting surtaces, 1ofg independent of any scale parameter, and therefore,
example metallic surfaces at low frequencies. Ther

She incident field can be analyzed by using static ap-
are also other boundary conditions that can be use- y y d D

ful tional elect tics. E ally si proach. A quasistatic solution is a well-known result
utin computiona electromagnetics. ESpecially sinCe, . pec ang dielectric wedges [9, 10]. In this paper,
they can be used for modelling exotic material inter-

. we use a similar approach for analyzing field behavior
faces, e.g. PEMC [1]. In [2] the use of such canonical PP yzing

; ; tational elect tics h b near the DB wedge. Also, we compare the quasistatic
zziniizfizlggompu ational electromagnetics have beeg,| iion with the integral-equation-method based nu-

Index Terms-DB boundary condition, field singular-
ity, integral equation method.

1054-4887 © 2011 ACES



368 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011

merical solution, and study the accuracy of the solu-where() is the relative solid angle subtended by the

tion at the DB wedge. surface {2 = 1/2 on smooth surfaces),, and H,,
are the normal components of the fields at the surface,
II. DB BOUNDARY CONDITION J =nxHandM = —n x E are the equiva-

The DB boundary condition, introduced in [5], re- lent electric and magnetic surface current densities,
quires that the normal components of the electric andespectively,E” and H” are the primary fields, and
magnetic flux densitie®, B vanish on the surface: ~ ™ is the outer unit normal vector of the surface. The

surface integral operators are defined as
n-D=0, n-B=0. D)

_ _ _ _ K(F)(r) = VxS(F)(r), (6)
In linear, homogeneous, and isotropic medium, where
permittivity e and permeabilityu are constants, the S(F)(r) = /G(r PVF(r')dS(r), (7)
DB boundary condition (1) can be expressed as 2

n-E=0, n-H=0. (2)  whereG is the free space Green’s function
A look at the Poynting vector illuminates the char- ciklr—r]
acter of a DB boundary. The average propagating G(r,r') = ppp—k (8)
power-density can be calculated from the real part of mlr =l
the complex Poynting vector r is the observation point;’ is the source point, and
1 . k = w,/en is the wavenumber of the background. Let
<S(t) >=R{E x H"}, (3)  us define two surface integral operators as
whereH* denotes the complex conjugate of the mag- Fi=-nxnxJF
netic field H. At the DB boundary, the following can F o F 9)

be written:
. . § Due to the DB boundary conditions (2}, and
nx(ExH')=EMm-H)"—(n-E)H"=0. (4 [, can be removed from (5). Normalizing the fields
Hence, the Poynting vector at the DB boundary haslﬂ the liollowmg V\éaz] (to gteF beltter b?lani:;a between
only the normal component and the tangential com- e unknowns and the matrix elements, [12])
ponent vanishes. A soft surface has been defined [3] B VEE, H— JEH, (10)

as a surface where the power flux along the boundary
is zero. Therefore, the DB boundary is an isotropicsg called T- equations is obtained by taking the tan-

soft surface. gential components
IIl. INTEGRAL EQUATIONS FOR DB H{] [ —ikS,  —3I. - K| [M 1)
BOUNDARY EY| ATk kS [T

Consider an arbitrarily shaped three-dimensional
object with the DB boundary condition in a homoge- Another set of equations, called N- equations, is ob-
neous background medium and an incident time hartained by taking the cross product with the normal
monic field ¢=**). The surface of the object is de- vectorn
noted byS and the electromagnetic parameters of the . -
background medium areandy. Our goal is to solve —E? %It — K ikS; M 12
scattering of the electromagnetic waves by this obsta- ﬁ:;j —ikS, %It KT (12)
cle. We begin with the following representation of the
total time-harmonic electric and magnetic fields [11]  The integral equation formulations for DB objects
_ contaning only T- or N- equations, however, suf-
QE = —VS(Ey) +iwnS(J) — K(M) + EP fer from internal resonances, i.e., the solution is not
OH = -VS(H,) +iweS(M) + K(J) + H?, unique at certain frequencies. Internal resonances can
(5) be eliminated by combining equations (11) and (12) in




MARKKANEN, YLA-OIJALA, SITHVOLA: SURFACE INTEGRAL EQUATION METHOD FOR SCATTERING BY DB OBJECTS WITH SHARP WEDGES 369

a similar fashion as the T- and N- equations are com- V. FIELD BEHAVIOR AT A DB WEDGE

bined in [13] in the case of penetrable objects. This  sjngularities of the fields appear near sharp wedges
gives the following combined field integral equation anq corners with a proper incident field, and these sin-

(CFIE) formulation for DB objects gularities can cause problems for the numerical so-
_F, N, =N M1 lution. For example, in case of a PEC or dielectric

| = e (13)  wedge the fields are singular, and hence, we need to

[ Fy ] [Nr Ne ] [J] use mesh refinement near the wedges and corners in

with order to obtain an accurate solution. In this section,
) . we study singularities of fields in the case of a DB
Ni = 5T = Ky — ik, andF; = H” + E?. (14) wedge.

Consider a three-dimensional sharp wedge with a

IV. NUMERICAL SOLUTION TO THE DB boundary condition. Since the wedge is sharp,

INTEGRAL EQUATIONS we can use quasistatic approximation. Therefore, the

electric field E near the wedge can be expressed in

terms of the electrostatic potentil = —V¢. In the

static and source-current free case we can also express

Integral equations (11-13) are solved numerically
with the method of moments [14]. First, the unknown
equivalent electricJ and magneticM surface cur- R
rent densities are represented as linear combinationttl;1e magnetic field in terms of a scalar potenil=

. . . —Vo,,, but here we only consider the electric field
of known tangential vector basis functiofisindg beclese the analysis is i)cflentical in both cases

N We know that the potential function outside the
J~ ijfk wedge must satisfy the Laplace’s equation
s (15)
M ~ Zmlgl, V2 =0, 17)
=1

because the divergence of the electric field must be

where j;,, and m; are scalar coefficients. By using X ; ) Also. the field { sat
Maxwell’s equations and certain vector identities, we ZEI0 In a source free region. AlSo, the field must sat-
fy the boundary condition at the surface. We can

can find a relation between the normal components of®

the fields and the divergences of the equivalent Surfacgp_pr_oxmate this prqblem with the two-dimensional
currents infinite wedge, see Fig. 1.

Vs-J =iwen - E
Vs - M =iwun - H.
As we can see, on the surface of a DB object the sur-  axis of

face divergences of the currents vanishcfif 0) "ég}"rﬁ'ﬁﬁ.éw ......................................

due to the DB boundary conditions (2). Therefore,

we have to expand both the electric and magnetic

equivalent surface current with a set of basis func-

tions which span a solenoidal vector space. We have

used the RWG loop basis functions [15] to expand theFig. 1. Two-dimensional infinite wedge. Surface of

equivalent currents, and the equations are tested witthe wedge is ap = ¢y andy = —y.

Galerkin’s scheme using the RWG loop functions as

testing functions. In the polar coordinate system the Laplace’s equa-
A numerical solution requires calculation of sin- tion (17) can be expressed as

gular integrals because the Green'’s function becomes

singular when the distance between the source point

and the observation point goes to zero. These inte-, 10 ( 09(p,¢) 1 9%¢(p,¢)

grals are evaluated by using the singular subtraction” ¢p:p) = 00p < 7) 2 002

(16)

=0,
dp
technique [16]. (18)
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wherep is the radial coordinate angd is the angular
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coordinate. This equation can be solved by the sepa-

ration of variables

=" Pu(p)®ulyp), (19)
which leads to two separate differential equations
82(I)n((p) 2
o2 + v, Pn(p) =0 (20)
0 Pn (P) 2 _

General solutions for the equations (20) and (21) are

D,,(¢) = Ay sin(vpyp) + By, cos(vpp)

(22)
Pn(p) = Cpp" + Dpp™"m

where A4,,, B, C,, andD,, are the unknown coeffi-
cients. The coefficienD,, must be zero, because a
negative exponerng—*" leads to an infinite energy at
the origin.

AntisymmetricE SymmetricE

Fig. 2. Antisymmetric and symmetric excitations with
respect to the wedge.

If the incident field is symmetric with respect to the
plane of symmetryy, = 0 (see Fig. 2), the potential
function can be expressed as

o(p, ) = (23)

Z B, p" cos(vp(m — ),

if o9 < ¢ < 27 — g. By taking the gradient of the
potential function, we obtain the electric field

E(p,¢) = =Vo(p, ¢)
=—u, Y Bnp" vy cos(un(m — @)

2 (24)
—Uy, Z Bnp""ty, sin(v, (r — @)).

By using the DB boundary conditioa, - E = 0 at
© = g, we find that

Bnp””_lun sin(vy, (m — ¢g)) = 0, (25)
which is satisfied if
T
Vp = n, n=1,2,.. (26)
™= %0

Next, we consider the antisymmetric case where the
incident field is normal to the plane of symmetry £
0). Now the potential function is

Z App"mvpsin(vp (m — @),  (27)

if po < ¢ < 2w — g, and the electric field can be
expressed as

E(p,¢) = =Vo(p, ¢)
= —u, Z Anpl/"_ll/n Silfl(l/n(7T - ‘P))

(28)
+u, i App” Ly, cos(v, (m — ).
In the case of the DB boundary condition
Z App”uy, cos(vn(m — o)) = 0, (29)
which is satified if
Vp = Mn, n=13,5,.. (30)

Parameter,, defines the order of singularity of field,
since the field strength is related to a tepth—1. It

is easy to see that the field has a singularity if the
smallest value of the parametey, < 1. Figure 3
shows the value of the parametgras a function of
angleypy. We can see that the DB wedge has a singu-
larity if the excitation field is antisymmetric, and the
angleyy < 90 degrees.

It is important to note that a solution in the case of
an arbitrarily polarized field can be found as a linear
combination of symmetric and antisymmetric excita-
tions. This analysis is valid also ¥ is replaced by
H because of the symmetry of the DB boundary con-
dition.
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. wedge, the tangential electric field and the normal
— symmetric excitation / component of the magnetic field are zero. With the
- - - antisymmetric excitation | symmetric electric field incident, the normal compo-
| nent of the electric field is singular but the tangential
component is non-singular. Also, the antisymmetric
magnetic field incident creates a singularity to the tan-
gential component of the magnetic field at the wedge.
Now, we know how fields behave near DB wedges,
and we can study the accuracy of the surface-integral-
eqguation-method based solution near DB wedges.
Consider a small cube with DB boundary condition.
% 2 60 % 20 150 180 This cube with edge length is illuminated by a lin-
angle (deg) early polarized planewave with wavelength= 10 a.
We can choose the alignment of the cube so that the
behavior of fields at the wedge corresponds to the 2-D
case with either symmetric or antisymmetric excita-

tions.

Fig. 3. Parameter;, asa function of anglepy with
either symmetric or antisymmetric excitations. The
field is singular if the parametex < 1.

VI. NUMERICAL RESULTS

Let us first investigate the behavior of the equiva-
lent surface currents near a®d®edge, which is char-
acterized by either DB or PEC boundary conditions.
We can solve the problem for the DB boundary in the
static case by using equations (26) and (30) and re
quiring ¢o = 7 /4. In Table 1, we see singularity fac-
tors (p*»~1) in case of 90 DB and PEC wedges with
symmetric and antisymmetric excitations. The PEC
case can be solved in a similar way as the DB case
but we have to apply the PEC boundary conditions
u,- E=0andu, - H = 0.

Table 1: Singularities of 90DB and PEC wedges

Excitation Field | DB | PEC
SymmetricE* E-u, | p3 0 _ _ _
SymmetricH’ H u, p% p% Fig. 4. Rgal part of the equivalent electric surface_cu_r-
N _1 rent density at the surface of DB cube. The cube is il-

Symmetr_lcEi E-u, 0 1ps luminated by a planewave which is propagating along

SymmetricH . H -u, 01 0 z-axis and the electric field is polarized alopgaxis
AntisymmetricE’ | E-u, | p73 | 0 and the magnetic field along-axis. The equivalent
AntisymmetricH" | H -u, | p~3 | p°3 currentJ has a singularity at the top edge, because
AntisymmetricE’ | E - Uy, 0 ,o% the incident magnetic field is antisymmetric with re-
AntisymmetricH® | H - u, | 0 0 spect to the wedge on top.

We can see that the tangential components of both Figure 4 shows the real part of the equivalent elec-
fields are singular in the case of the DB wedge withtric surface current density on the surface of the DB
antisymmetric excitation, but with symmetric excita- cube. We can see that the equivalent electric surface
tion fields are not singular. Also, we can see that thecurrent J = n x H) is singular at the wedge on top,
normal components of fields vanish at the wedge dudecause in this case we have an antisymmetric inci-
to the DB boundary condition. In case of the PEC dent magnetic field with respect to the wedge on top.
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« 10_3 % 10°° A =100 a
181 * DB T-formulation | 1.32¢
16} o DB N-formulation | 4 13f
141 + DB C-formulation | | '
2 1 Quasistatic p_1/3 1.28¢
Z 1oL ]
o] o PEC T-formulation Nf 1.261
S 10 § 0 % T—form.
S O
g gl x 1.24f i —— T—form. refinement
3 o
(] _
6l 120} . o N-form.
—o&— N-form. refinement
4r 12¢ +- C~form.
2r 118 C-form. refinemenm‘
0 i i i i i i P i 3
0 0.1 0.2_ 0.3 0.4 0.5 10 10
distance number of unknowns

Fig. 5. Amplitude of the equivalent electric surface Fig. 6. Calculated backscattered radar cross section of
current density as a function of distance from the acube with edge length and wavelengthh = 100 a
sharp 90 degree DB and PEC wedges. Solutions aras a function of number of unknowns. T-, N- and
obtained by using different formulations of surface in- C- formulations have been applied. The cube is dis-
tegral equation method and quasistatic analysis. cretized by using triangular meshes with or without
mesh refinement on the edges. Solid lines correspond

] ] ) _ to the cases with mesh refinements and dotted lines
In Figure 5, the amplitude of the equivalent electric without mesh refinements.

surface current density is shown as a function of dis-
tance from the wedge. The calculations are done by
using T-, N-, and C- formulations and the results are

compared with the quasistatic solution. solution in case of a DB cube. The setup is the same
As can be seen, all three formulations give almostas in Figure 4. In Figure 6, the backscattered radar
identical results for the equivalent current densitiescross section (RCS) as a function of the number of
near 90 DB wedge, and the numerical results have aunknowns is shown. The edge length of the cube is
good agreement with the quasistatic solution. How-and the wavelength i = 100 a. In Figure 7 we can
ever, there are some variations in the amplitude ofsee the convergence of RCS with wavelenyth 2 a.
currents between formulations especially if the dis-We have used T-, N-, and C-formulations for calcula-
tance to the sharp wedge is short. Figure 5 also showsons, and the surface of the cube is discretized by tri-
the behavior of the equivalent surface current at theangular mesh with mesh refinement on the edges, or
PEC wedge. The PEC case is calculated by using thevithout mesh refinement on the edges.
conventional tangential electric field integral equation  |n this example wavelengths are 100 and 2 times the
(EFIE) formulation with RWG basis and testing func- edge length of the cube, and hence, both frequencies
tions [17]. are not at internal resonant frequencies. This means
As the quasistatic analysis predicts, at the DB andthat the solutions of T-, N-, and C- formulations are
PEC wedge tangential fields have the same order ofinique. We can see that the T- formulation gives the
singularity and the numerical results agree with it. It most accurate results for backscatted RCS. The con-
is important to note that the normal component of thevergence of N- formulation is quite slow. The accu-
electric field is singular in case of the PEC wedge, ifracy of C- formulation is between T- and N- formula-
the incident electric field is symmetric with respect to tions which makes sense because C- formulation is a
the wedge. We know that there is a relation betweercombination of T- and N- formulations. This agrees
the normal component of field and the divergence ofwith the earlier results in the PEC case [18] where
the equivalent surface current (16), but this singular-T-formulation agrees with EFIE, N-formulation with
ity does not affect the result in Figure 5 because theMFIE, and C-formulation with CFIE, respectively.
incident electric field is not symmetric at the wedge. Figures 6 and 7 also show that the solutions converge
Let us next study the convergence of the numericalfaster if mesh refinements on wedges are used.
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