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Surface Integral Equation Method for Scattering by DB Objects
with Sharp Wedges

Johannes Markkanen, Pasi Ylä-Oijala, and Ari Sihvola

Department of Radio Science and Engineering
Aalto University School of Electrical Engineering

PO Box 13000, FI-00076 AALTO, Finland
johannes.markkanen@aalto.fi, pasi.yla-oijala@aalto.fi, ari.sihvola@aalto.fi

Abstract –A surface integral equation method is used
to analyze time-harmonic electromagnetic scattering
by arbitrarily shaped three-dimensional DB objects
with sharp wedges. At the DB boundary surface, the
electric and magnetic flux densitiesD andB normal
to the surface are zero. The DB boundary conditions
are enforced by expanding the unknown equivalent
surface current densities with divergence-free loop ba-
sis functions. The equations are tested with Galerkin’s
method. The integral equation method is applied to
investige field behavior at sharp DB wedges and the
results are compared with the quasistatic solution in
order to determine the accuracy of numerical solution
at the sharp DB wedges.

Index Terms –DB boundary condition, field singular-
ity, integral equation method.

I. INTRODUCTION
In computational electromagnetics, boundary con-

ditions are often used as approximations of real mate-
rial interfaces. The perfect electric conductor (PEC)
boundary condition, which requires the vanishing of
the tangential component of the electric field at the
boundary surface, is probably the most well-known
and commonly used boundary condition. It is often
used as an approximation of conducting surfaces, for
example metallic surfaces at low frequencies. There
are also other boundary conditions that can be use-
ful in computional electromagnetics. Especially since
they can be used for modelling exotic material inter-
faces, e.g. PEMC [1]. In [2] the use of such canonical
surfaces in computational electromagnetics have been
summarized.

Electromagnetic soft surfaces [3], on which the
power does not propagate along the surface, have
many micro- and millimeterwave engineering appli-
cations. For example, they can be used for reducing
coupling between radiating elements in antenna arrays
or creating rotational symmetric radiation patterns for
horn antennas [4]. Anisotropic soft surfaces are gen-
erally fabricated by corrugated structures, which are
quite difficult to model by using standard numerical
softwares, because they contain a lot of fine details.
A relatively easy way to approximate isotropic soft
surfaces is to apply a DB boundary condition [5] in
calculations.

The DB boundary condition requires that the nor-
mal components of the electric and magnetic flux den-
sities vanish at the boundary. Analytical solutions
for objects involving the DB boundaries have been
studied in [5, 6, 7], and the integral-equation-method
based numerical solution for the scattering by DB ob-
jects was introduced in [8]. However, in most prac-
tial cases, a discretization of geometry leads to sharp
wedges and corners which can cause problems for nu-
merical calculations. At these sharp wedges and cor-
ners, fields can be singular. This fact gives motiva-
tion to analyze behavior of fields near DB wedges. It
is possible to solve field behavior near sharp wedges
by using quasistatic analysis, because the geometry
is independent of any scale parameter, and therefore,
the incident field can be analyzed by using static ap-
proach. A quasistatic solution is a well-known result
for PEC and dielectric wedges [9, 10]. In this paper,
we use a similar approach for analyzing field behavior
near the DB wedge. Also, we compare the quasistatic
solution with the integral-equation-method based nu-
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merical solution, and study the accuracy of the solu-
tion at the DB wedge.

II. DB BOUNDARY CONDITION
The DB boundary condition, introduced in [5], re-

quires that the normal components of the electric and
magnetic flux densitiesD,B vanish on the surface:

n ·D = 0, n ·B = 0. (1)

In linear, homogeneous, and isotropic medium, where
permittivity ǫ and permeabilityµ are constants, the
DB boundary condition (1) can be expressed as

n ·E = 0, n ·H = 0. (2)

A look at the Poynting vector illuminates the char-
acter of a DB boundary. The average propagating
power-density can be calculated from the real part of
the complex Poynting vector

< S(t) >=
1

2
ℜ{E ×H∗}, (3)

whereH∗ denotes the complex conjugate of the mag-
netic fieldH . At the DB boundary, the following can
be written:

n× (E×H∗) = E(n ·H)∗− (n ·E)H∗ = 0. (4)

Hence, the Poynting vector at the DB boundary has
only the normal component and the tangential com-
ponent vanishes. A soft surface has been defined [3]
as a surface where the power flux along the boundary
is zero. Therefore, the DB boundary is an isotropic
soft surface.

III. INTEGRAL EQUATIONS FOR DB
BOUNDARY

Consider an arbitrarily shaped three-dimensional
object with the DB boundary condition in a homoge-
neous background medium and an incident time har-
monic field (e−iωt). The surface of the object is de-
noted byS and the electromagnetic parameters of the
background medium areε andµ. Our goal is to solve
scattering of the electromagnetic waves by this obsta-
cle. We begin with the following representation of the
total time-harmonic electric and magnetic fields [11]

ΩE = −∇S(En) + iωµS(J)−K(M ) +Ep

ΩH = −∇S(Hn) + iωεS(M ) +K(J) +Hp,
(5)

whereΩ is the relative solid angle subtended by the
surface (Ω = 1/2 on smooth surfaces),En andHn

are the normal components of the fields at the surface,
J = n × H andM = −n × E are the equiva-
lent electric and magnetic surface current densities,
respectively,Ep andHp are the primary fields, and
n is the outer unit normal vector of the surface. The
surface integral operators are defined as

K(F )(r) = ∇× S(F )(r), (6)

S(F )(r) =

∫

S

G(r, r′)F (r′)dS(r), (7)

whereG is the free space Green’s function

G(r, r′) =
eik|r−r

′|

4π|r − r′| , (8)

r is the observation point,r′ is the source point, and
k = ω

√
εµ is the wavenumber of the background. Let

us define two surface integral operators as

Ft = −n× n×F
Fr = n×F .

(9)

Due to the DB boundary conditions (2),En and
Hn can be removed from (5). Normalizing the fields
in the following way (to get better balance between
the unknowns and the matrix elements, [12])

Ẽ =
√
εE, H̃ =

√
µH , (10)

so called T- equations is obtained by taking the tan-
gential components

[

H̃
p

t

Ẽ
p

t

]

=

[

−ikSt −1

2
Ir −Kt

1

2
Ir +Kt −ikSt

][

M̃

J̃

]

. (11)

Another set of equations, called N- equations, is ob-
tained by taking the cross product with the normal
vectorn

[

−Ẽp
r

H̃p
r

]

=

[

1

2
It −Kr ikSr

−ikSr
1

2
It −Kr

][

M̃

J̃

]

. (12)

The integral equation formulations for DB objects
contaning only T- or N- equations, however, suf-
fer from internal resonances, i.e., the solution is not
unique at certain frequencies. Internal resonances can
be eliminated by combining equations (11) and (12) in
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a similar fashion as the T- and N- equations are com-
bined in [13] in the case of penetrable objects. This
gives the following combined field integral equation
(CFIE) formulation for DB objects

[

−F̃ r

F̃ t

]

=

[

Nt −Nr

Nr Nt

][

M̃

J̃

]

, (13)

with

Nt =
1

2
It −Kr − ikSt andF̃ t = H̃p

r + Ẽ
p
t . (14)

IV. NUMERICAL SOLUTION TO THE
INTEGRAL EQUATIONS

Integral equations (11–13) are solved numerically
with the method of moments [14]. First, the unknown
equivalent electricJ and magneticM surface cur-
rent densities are represented as linear combinations
of known tangential vector basis functionsf andg

J ≈
N
∑

k=1

jkfk

M ≈
M
∑

l=1

mlgl,

(15)

where jk and ml are scalar coefficients. By using
Maxwell’s equations and certain vector identities, we
can find a relation between the normal components of
the fields and the divergences of the equivalent surface
currents

∇s · J = iωεn ·E
∇s ·M = iωµn ·H.

(16)

As we can see, on the surface of a DB object the sur-
face divergences of the currents vanish (ifω 6= 0)
due to the DB boundary conditions (2). Therefore,
we have to expand both the electric and magnetic
equivalent surface current with a set of basis func-
tions which span a solenoidal vector space. We have
used the RWG loop basis functions [15] to expand the
equivalent currents, and the equations are tested with
Galerkin’s scheme using the RWG loop functions as
testing functions.

A numerical solution requires calculation of sin-
gular integrals because the Green’s function becomes
singular when the distance between the source point
and the observation point goes to zero. These inte-
grals are evaluated by using the singular subtraction
technique [16].

V. FIELD BEHAVIOR AT A DB WEDGE
Singularities of the fields appear near sharp wedges

and corners with a proper incident field, and these sin-
gularities can cause problems for the numerical so-
lution. For example, in case of a PEC or dielectric
wedge the fields are singular, and hence, we need to
use mesh refinement near the wedges and corners in
order to obtain an accurate solution. In this section,
we study singularities of fields in the case of a DB
wedge.

Consider a three-dimensional sharp wedge with a
DB boundary condition. Since the wedge is sharp,
we can use quasistatic approximation. Therefore, the
electric fieldE near the wedge can be expressed in
terms of the electrostatic potentialE = −∇φ. In the
static and source-current free case we can also express
the magnetic field in terms of a scalar potentialH =
−∇φm, but here we only consider the electric field
because the analysis is identical in both cases.

We know that the potential function outside the
wedge must satisfy the Laplace’s equation

∇2φ = 0, (17)

because the divergence of the electric field must be
zero in a source free region. Also, the field must sat-
isfy the boundary condition at the surface. We can
approximate this problem with the two-dimensional
infinite wedge, see Fig. 1.

ϕ
ϕ0

−ϕ0

ρ
axis of

symmetry

Fig. 1. Two-dimensional infinite wedge. Surface of
the wedge is atϕ = ϕ0 andϕ = −ϕ0.

In the polar coordinate system the Laplace’s equa-
tion (17) can be expressed as

∇2φ(ρ, ϕ) =
1

ρ

∂

∂ρ

(

ρ
∂φ(ρ, ϕ)

∂ρ

)

+
1

ρ2
∂2φ(ρ, ϕ)

∂ϕ2
= 0,

(18)
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whereρ is the radial coordinate andϕ is the angular
coordinate. This equation can be solved by the sepa-
ration of variables

φ(ρ, ϕ) =
∑

n

Pn(ρ)Φn(ϕ), (19)

which leads to two separate differential equations

∂2Φn(ϕ)

∂ϕ2
+ ν2nΦn(ϕ) = 0 (20)

ρ
∂

∂ρ

(

ρ
Pn(ρ)

∂ρ

)

− ν2nPn(ρ) = 0. (21)

General solutions for the equations (20) and (21) are

Φn(ϕ) = An sin(νnϕ) +Bn cos(νnϕ)

Pn(ρ) = Cnρ
νn +Dnρ

−νn ,
(22)

whereAn, Bn, Cn, andDn are the unknown coeffi-
cients. The coefficientDn must be zero, because a
negative exponentρ−νn leads to an infinite energy at
the origin.

AntisymmetricE SymmetricE

Fig. 2. Antisymmetric and symmetric excitations with
respect to the wedge.

If the incident field is symmetric with respect to the
plane of symmetryϕ = 0 (see Fig. 2), the potential
function can be expressed as

φ(ρ, ϕ) =
∑

n

Bnρ
νn cos(νn(π − ϕ)), (23)

if ϕ0 ≤ ϕ ≤ 2π − ϕ0. By taking the gradient of the
potential function, we obtain the electric field

E(ρ, ϕ) = −∇φ(ρ, ϕ)

= −uρ

∑

n

Bnρ
νn−1νn cos(νn(π − ϕ))

−uϕ

∑

n

Bnρ
νn−1νn sin(νn(π − ϕ)).

(24)

By using the DB boundary conditionuϕ · E = 0 at
ϕ = ϕ0, we find that

∑

n

Bnρ
νn−1νn sin(νn(π − ϕ0)) = 0, (25)

which is satisfied if

νn =
π

π − ϕ0

n, n = 1, 2, ... (26)

Next, we consider the antisymmetric case where the
incident field is normal to the plane of symmetry (ϕ =
0). Now the potential function is

φ(ρ, ϕ) =
∑

n

Anρ
νnνn sin(νn(π − ϕ)), (27)

if ϕ0 ≤ ϕ ≤ 2π − ϕ0, and the electric field can be
expressed as

E(ρ, ϕ) = −∇φ(ρ, ϕ)

= −uρ

∑

n

Anρ
νn−1νn sin(νn(π − ϕ))

+uϕ

∑

n

Anρ
νn−1νn cos(νn(π − ϕ)).

(28)

In the case of the DB boundary condition

∑

n

Anρ
νn−1νn cos(νn(π − ϕ0)) = 0, (29)

which is satified if

νn =
π

2(π − ϕ0)
n, n = 1, 3, 5, ... (30)

Parameterνn defines the order of singularity of field,
since the field strength is related to a termρνn−1. It
is easy to see that the field has a singularity if the
smallest value of the parameterνn < 1. Figure 3
shows the value of the parameterν1 as a function of
angleϕ0. We can see that the DB wedge has a singu-
larity if the excitation field is antisymmetric, and the
angleϕ0 < 90 degrees.

It is important to note that a solution in the case of
an arbitrarily polarized field can be found as a linear
combination of symmetric and antisymmetric excita-
tions. This analysis is valid also ifE is replaced by
H because of the symmetry of the DB boundary con-
dition.
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0 30 60 90 120 150 180
0

1

2

3

4

5

angle (deg)

ν 1

 

 

symmetric excitation

antisymmetric excitation

Fig. 3. Parameterν1 asa function of angleϕ0 with
either symmetric or antisymmetric excitations. The
field is singular if the parameterν1 < 1.

VI. NUMERICAL RESULTS
Let us first investigate the behavior of the equiva-

lent surface currents near a 90◦ wedge, which is char-
acterized by either DB or PEC boundary conditions.
We can solve the problem for the DB boundary in the
static case by using equations (26) and (30) and re-
quiringϕ0 = π/4. In Table 1, we see singularity fac-
tors (ρνn−1) in case of 90◦ DB and PEC wedges with
symmetric and antisymmetric excitations. The PEC
case can be solved in a similar way as the DB case,
but we have to apply the PEC boundary conditions
uρ ·E = 0 anduϕ ·H = 0.

Table 1: Singularities of 90◦ DB and PEC wedges
Excitation Field DB PEC

SymmetricEi E · uρ ρ
1

3 0

SymmetricH i H · uρ ρ
1

3 ρ
1

3

SymmetricEi E · uϕ 0 ρ−
1

3

SymmetricH i H · uϕ 0 0

AntisymmetricEi E · uρ ρ−
1

3 0

AntisymmetricHi H · uρ ρ−
1

3 ρ−
1

3

AntisymmetricEi E · uϕ 0 ρ
1

3

AntisymmetricHi H · uϕ 0 0

We can see that the tangential components of both
fields are singular in the case of the DB wedge with
antisymmetric excitation, but with symmetric excita-
tion fields are not singular. Also, we can see that the
normal components of fields vanish at the wedge due
to the DB boundary condition. In case of the PEC

wedge, the tangential electric field and the normal
component of the magnetic field are zero. With the
symmetric electric field incident, the normal compo-
nent of the electric field is singular but the tangential
component is non-singular. Also, the antisymmetric
magnetic field incident creates a singularity to the tan-
gential component of the magnetic field at the wedge.

Now, we know how fields behave near DB wedges,
and we can study the accuracy of the surface-integral-
equation-method based solution near DB wedges.
Consider a small cube with DB boundary condition.
This cube with edge lengtha is illuminated by a lin-
early polarized planewave with wavelengthλ = 10 a.
We can choose the alignment of the cube so that the
behavior of fields at the wedge corresponds to the 2-D
case with either symmetric or antisymmetric excita-
tions.

Fig. 4. Real part of the equivalent electric surface cur-
rent density at the surface of DB cube. The cube is il-
luminated by a planewave which is propagating along
z-axis and the electric field is polarized alongy-axis
and the magnetic field alongx-axis. The equivalent
currentJ has a singularity at the top edge, because
the incident magnetic field is antisymmetric with re-
spect to the wedge on top.

Figure 4 shows the real part of the equivalent elec-
tric surface current densityJ on the surface of the DB
cube. We can see that the equivalent electric surface
current (J = n×H) is singular at the wedge on top,
because in this case we have an antisymmetric inci-
dent magnetic field with respect to the wedge on top.
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Fig. 5. Amplitude of the equivalent electric surface
current density as a function of distance from the
sharp 90 degree DB and PEC wedges. Solutions are
obtained by using different formulations of surface in-
tegral equation method and quasistatic analysis.

In Figure 5, the amplitude of the equivalent electric
surface current density is shown as a function of dis-
tance from the wedge. The calculations are done by
using T-, N-, and C- formulations and the results are
compared with the quasistatic solution.

As can be seen, all three formulations give almost
identical results for the equivalent current densities
near 90◦ DB wedge, and the numerical results have a
good agreement with the quasistatic solution. How-
ever, there are some variations in the amplitude of
currents between formulations especially if the dis-
tance to the sharp wedge is short. Figure 5 also shows
the behavior of the equivalent surface current at the
PEC wedge. The PEC case is calculated by using the
conventional tangential electric field integral equation
(EFIE) formulation with RWG basis and testing func-
tions [17].

As the quasistatic analysis predicts, at the DB and
PEC wedge tangential fields have the same order of
singularity and the numerical results agree with it. It
is important to note that the normal component of the
electric field is singular in case of the PEC wedge, if
the incident electric field is symmetric with respect to
the wedge. We know that there is a relation between
the normal component of field and the divergence of
the equivalent surface current (16), but this singular-
ity does not affect the result in Figure 5 because the
incident electric field is not symmetric at the wedge.

Let us next study the convergence of the numerical
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Fig. 6. Calculated backscattered radar cross section of
a cube with edge lengtha and wavelengthλ = 100 a
as a function of number of unknowns. T-, N- and
C- formulations have been applied. The cube is dis-
cretized by using triangular meshes with or without
mesh refinement on the edges. Solid lines correspond
to the cases with mesh refinements and dotted lines
without mesh refinements.

solution in case of a DB cube. The setup is the same
as in Figure 4. In Figure 6, the backscattered radar
cross section (RCS) as a function of the number of
unknowns is shown. The edge length of the cube isa
and the wavelength isλ = 100 a. In Figure 7 we can
see the convergence of RCS with wavelengthλ = 2 a.
We have used T-, N-, and C-formulations for calcula-
tions, and the surface of the cube is discretized by tri-
angular mesh with mesh refinement on the edges, or
without mesh refinement on the edges.

In this example wavelengths are 100 and 2 times the
edge length of the cube, and hence, both frequencies
are not at internal resonant frequencies. This means
that the solutions of T-, N-, and C- formulations are
unique. We can see that the T- formulation gives the
most accurate results for backscatted RCS. The con-
vergence of N- formulation is quite slow. The accu-
racy of C- formulation is between T- and N- formula-
tions which makes sense because C- formulation is a
combination of T- and N- formulations. This agrees
with the earlier results in the PEC case [18] where
T-formulation agrees with EFIE, N-formulation with
MFIE, and C-formulation with CFIE, respectively.
Figures 6 and 7 also show that the solutions converge
faster if mesh refinements on wedges are used.
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Fig. 7. Calculated backscattered radar cross section of
a DB cube with wavelengthλ = 2 a. Otherwise the
setup is the same as in Figure 6.

VII. CONCLUSIONS
In this paper, the accuracy of a surface-integral-

equation based solution for DB objects has been stud-
ied. A quasistatic solution for the field near DB
wedges has been derived and the results have been
compared with numerical calculations. The numer-
ical examples demonstrate that the surface-integral-
equation-method based solution is quite accurate near
DB wedges even if the field is singular at the wedge.
We have also showed that the tangential magnetic
field at the PEC wedge has the same order of singular-
ity as that of the DB wedge. The normal component
of the electric field can be singular at the PEC wedge,
but there is not such singularity at the DB wedge, be-
cause normal components of fields vanish at the DB
boundary. However, the effect of this singularity to
the equivalent surface current in the case of the PEC
wedge is much weaker than the effect of the singu-
larity in the tangential field. Therefore, we need to
use similar mesh refinements at the DB wedges as the
PEC wedges in order to obtain an accurate solution.
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Abstract ─ A new technique to improve the 
performance, in terms of bandwidth, gain and 
polarization purity, of conventional circular 
waveguide antennas using an electromagnetic 
band gap (EBG) structure is presented. The 
proposed antenna is composed by a circular 
waveguide and two layers with squared holes 
located over the waveguide aperture. The 
dimensions of the antenna have been obtained by 
means of an optimization process that uses a 
rigorous analysis tool. According to the results, a 
notable enhancement in polarization purity and 
gain is demonstrated when incorporating the 
second grid. The EBG antenna has the peak gain 
14.36 dBi and the cross polarization level is lower 
than 40 dB within a wide bandwidth of 17%. A 
prototype has been fabricated and measured 
operating at 9.1GHz.  
  
Index Terms ─ Antenna measurements, antenna 
radiation patterns, method of moments (MoM), 
waveguide antennas. 
 

I. INTRODUCTION 
It is well known that electromagnetic band 

gap (EBG) materials are designed to impede the 
propagation of electromagnetic waves at certain 
frequency bands that are determined by the 
periodicities of the materials and their dielectric 
constants. Recently, various applications of EBG 
materials, such as microwave filters, antennas, 
amplifiers, microstrip devices, ground plane 
structures, and base station antennas have been 
reported in the literature [1-4].  For example, EBG 
material has been shown to enhance the directivity 

of a patch antenna from 8 dB to 20 dB [1]. 
Palikaras et al. [2] described a method to design 
directive antennas by incorporating cylindrical 
EBG structures. On the other hand, [3] presents a 
resonator antenna that increases its gain and 
bandwidth with an EBG structure over the device. 
It has also been demonstrated [4] that the EBG 
materials are able to provide good results while 
reducing the size of some kind of filters. 

The work presented in [5] summarizes the 
benefits of using EBG materials to improve the 
performance of microwave and optical 
applications. Some experimental results are 
discussed to check the properties of these 
materials. 

According to [6], an increase in directivity 
can be obtained by adding a partially reflecting 
sheet in front of the antenna because of the 
multiple reflections between the sheet and the 
screen. The resonance distance between both 
elements must be such that the rays projected 
through the sheet have equal phases in the normal 
direction. Our contribution is focused on that 
investigation line. However, a deeper study is 
done here: we analyze the inclusion of a second 
grid over the antenna aperture and its influence 
over the cross polarization level. Numerical results 
demonstrate an improvement in gain, bandwidth 
and polarization purity when comparing several 
antenna configurations varying the distances 
between both grids.  

The aim of this paper is to design a compact 
EBG antenna that provides a gain greater than 
14.0 dBi, polarization purity greater than 40 dB, 
and a bandwidth greater than 10% while 
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maintaining a very small size. To fulfill these 
requirements, the dimensions of the antenna were 
optimized by using a powerful electromagnetic 
solver. After obtaining the optimum dimensions, a 
prototype made of aluminum was built and 
measured. 
 

II. GEOMETRICAL MODEL 
The proposed antenna configuration is 

depicted in Fig. 1 where the dimensions are in 
meters. The antenna model is defined by a long 
metallic cylinder with a 13.9 mm radius, a short 
metallic cylinder with a 16.9 mm radius, and 12.5 
mm length, an 80 x 80 mm ground plane and the 
EBG structure (also 80 x 80 mm). According to 
Fig. 1.b, an electric dipole located at λ/4 from the 
bottom of the circular waveguide has been used to 
model the feeding of the waveguide in the 
simulations. The dipole is oriented in the x axis 
parallel to the bottom of the waveguide. 

 

      
 
Fig. 1.  Schematic representation of the proposed 
antenna, 3-D (left) and side view (right). 
 

Each grid is composed of a metallic sheet 
with nine square holes. Figure 2 shows the 
dimensions (in meters). 

 

   
 
Fig. 2.  Physical dimensions (in meters) of the 
EBG structure. 

 

The distance between the ground plane and 
the first metallic grid was established to prevent 
cavity resonances at the operating frequency 
whereas the distance between the two metallic 
grids was set to obtain the classical EBG mode 
that permits an efficient antenna performance.  

A parametric analysis was conducted to find 
the dimensions shown in Fig. 2. The first step in 
the design process was choosing the unit cell 
shape of the periodic structure. Some candidates 
were studied, such as rectangles, triangles, circles, 
rhombs, and crosses. After an exhaustive study, 
the square hole was chosen because of its 
simplicity and its good response. The next point 
was the optimization of the structure dimensions a 
central frequency of 9.1 GHz. Several geometrical 
parameters (the distance between adjacent holes, 
the size of the holes, the number of holes, etc.) 
were optimized. After the analysis of the position 
of the periodic structures, we conclude that the 
upper grid must be located 17.5 mm from the 
ground plane and the lower grid must be situated 
3.5 mm from the ground plane. Those are the 
optimum physical dimensions to achieve the 
desirable radiation characteristics of high gain and 
low cross polarization level. The remaining 
geometrical parameters related to the waveguide 
were fixed. 

The design was implemented using Monurbs 
[7], a versatile electromagnetic solver based on the 
moment method that uses parametric surfaces for 
representing the geometrical model and the current 
of the structures under analysis. Monurbs has been 
validated with real measurements in many 
applications. The optimization process was carried 
out using a new module of the tool that allows us 
to set the requirements and the geometrical 
parameters to vary. The simulation process 
finishes when the optimization module finds the 
optimum parameter values that provide the desired 
radiation pattern. As mentioned before, in this case 
the cost function was defined to obtain high 
polarization purity and high gain over a wide 
bandwidth. The values of the geometrical 
parameters must be assigned within a certain range 
defined by the user. The minimum and maximum 
values for the size of the squared holes were 8mm 
and 14mm, respectively. Regarding the resonance 
distances between the grids, the height of the 
lower grid from the ground plane was optimized 
within the range from 3mm to 7.5mm and the 

λ/4 

Electric 
dipole 
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height of the upper grid from the ground plane was 
optimized within the range from 9 and 18mm.  
  

III. RESULTS 
To validate the simulation results, a prototype 

of the designed EBG antenna was built based on 
the optimized antenna geometry. The prototype 
was measured in an anechoic chamber. Figure 3 
depicts a photograph of the built antenna.  

 

 
 

Fig. 3.  Prototype of the EBG antenna. 
 

The antenna was made of aluminum and 
weighed nearly 400 g. The pair of metallic grids 
was kept fixed by four plastic screws. The screws 
crossed the ground plane and kept the three 
different parts together. The antenna was fed to 
radiate linear polarization.  

Figures 4 through 7 show comparisons 
between the measurements and the simulated 
values for the three main radiation cuts at 9.1 
GHz.  

The proposed antenna provides the maximum 
radiation in the axial direction. Good agreement 
between real measurements and computations was 
shown. The slight discrepancies between 
measurements and simulation values may be due 
to unwanted effects as well as non-idealities 
introduced by the four screws and the 
manufacturing errors. Also, the cross polarization 
level in the E and H plane cuts is below -40dB. 

 
 

 
 

Fig. 4.  Comparison of the simulated and measured 
radiation patterns. E-plane cut at 9.1GHz. 
 

 
 

Fig. 5.  Comparison of the simulated and measured 
radiation patterns. H-plane cut at 9.1 GHz. 
 

 
 

Fig. 6.  Comparison of the simulated and measured 
radiation patterns. Diagonal-plane cut at 9.1GHz. 
Etheta component. 
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Fig. 7.  Comparison of the simulated and measured 
radiation patterns. Diagonal-plane cut at 9.1GHz. 
Ephi component. 
 

To verify the behavior of the EBG structure, 
several simulations were made to compare the 
results when the height of the cases were studied 
fixing the upper grid position at 17.5mm and 
changing the lower grid position at h1=4.3mm, 
h2=5.1mm, h3=5.9mm, h4=6.7mm, and 
h5=7.5mm. A decrease in gain was proven when 
the height of the lower grid increases, that is to 
say, when both grids are closer. This comparison 
ensures that the effect of including the second 
EBG structure is an enhancement in the gain lower 
grid changes or when there is only one grid. 

The gain variation versus frequency is plotted 
in Fig. 8. Notice that a significant enhancement in 
gain is produced when including the second grid. 
It can be observed that the peak gain is located at 8 
GHz when there is only one grid situated at 
17.5mm from the ground plane.  The maximum 
gain for the best configuration with two grids is 
14.36 dBi at 9.0 GHz and the enhanced bandwidth 
(where gain did not decrease more than 3 dB 
below the maximum value) extends from 8.2 to 
9.7 GHz, which means about a bandwidth of 17%.  

On the other hand, a second comparison is 
shown in Figs. 9-10 to analyze the effect of 
moving the lower. Five different cases were 
studied fixing the upper grid position at 17.5mm 
and changing the lower grid position at 
h1=4.3mm, h2=5.1mm, h3=5.9mm, h4=6.7mm, 
and h5=7.5mm. A decrease in gain was proven 

when the height of the lower grid increases, that is 
to say, when both grids are closer. 

This comparison ensures that the effect of 
including the second EBG structure is an 
enhancement in the gain at the central frequency.  

 

 
 

Fig. 8.  Gain versus frequency. Comparison 
between results obtained considering only one grid 
(red line) and two grids located at optimum 
distances (blue line). The gain for several values 
of the height of the lower grid for the case of two 
grids is also shown for a frequency of 9.0 GHz. 
 

 
 

Fig. 9.  Comparison between the simulated E-
plane cuts at 9.0 GHz for several values of the 
height of the lower grid. The results for the 
optimum configuration are depicted in thick lines. 
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Fig. 10.  Comparison between the simulated H-
plane cuts at 9.0 GHz for several values of the 
height of the lower grid. The results for the 
optimum configuration are depicted in thick lines. 
 

Table 1 summarizes the results of gain and 
cross polarization level at 9.0 GHz considering 
several EBG structures. The best configuration is 
obtained when the second grid is located at 3.5mm 
from the ground plane. The gain for that case is 
14.36dBi and the cross polarization level is 
53.38dB. It is worth to highlight that the other 
configurations provide worse results.  

Figs. 9 and 10 present the radiation patterns 
obtained for the six situations. The optimum 
configuration is shown in black color. The benefit 
of including the two EBG structures over the 
polarization purity can be observed in both E and 
H plane cuts. 

 
Table 1: Gain and cross polarization level 
comparison when varying the height of the lower 
grid at 9GHz 

Height of 
upper 
grid 

Height of 
lower grid 

Gain 
(dBi) 

CP-XP 
(dB) 
θ=0º, φ=0º 

17.5mm 3.5mm 14.36 53.38 
17.5mm h1 = 4 .3mm 13.19 35.12 
17.5mm h2 = 5.1mm 12.35 42.94 
17.5mm h3 = 5.9mm 10.61 34.8 
17.5mm 
17.5mm

h4 = 6.7mm 
h5 = 7.5mm 

9.96 
9.35 

35.81 
34.9 

 
 

 

We compare the radiation pattern of the 
antenna with and without the grids in Figs. 11 and 
12. A significant enhancement in polarization 
purity can be appreciated. The improvement of the 
horn gain employing the EBG structure relative to 
the simple horn is shown in Figs. 13-15 for the 
three main cuts. Finally, return losses have been 
also computed and measured considering the 
antenna with and without grids. Figures 16-17 
depict the results. 

 

 
 

Fig. 11.  Comparison between the simulated 
radiation patterns with and without grids. E-plane 
cut at 9.0 GHz. 
 

 
 

Fig. 12.  Comparison between the simulated 
radiation patterns with and without grids. H-plane 
cut at 9.0 GHz.  
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Fig. 13.  Comparison for the antenna gain in the E-
plane cut with and without grids. 

 

 
 

Fig. 14.  Comparison for the antenna gain in the 
diagonal-plane cut with and without grids. 

 

 
 

Fig. 15. Comparison for the antenna gain in the H-
plane cut with and without grids. 

 
 

Fig. 16.  Comparison of the return losses for the 
antenna without EBG. 
 

 

 
 

Fig. 17. Comparison of the return losses for the 
antenna with EBG. 

 
IV. CONCLUSIONS 

A novel compact EBG antenna operating at 
9.1GHz has been presented. This new EBG 
antenna is an excellent candidate for several 
applications due to its good polarization purity. 
One of these applications is the design of compact 
antennas of medium or moderate gain and good 
polarization purity. Although a common horn 
antenna with an aperture surface equal to the 
proposed EGB antenna presents better 
performances in terms of directivity and 
polarization purity, the horn requires a length two 
or three times greater due to the large taper section 
it needs to fit the waveguide cross section to its 
final aperture surface. A second application is the 
design of arrays using the proposed antenna as a 
unit cell, as it is shown in Fig. 18. It is expected 
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that the array will have good radiation 
characteristics for feeding multibeam reflector 
antennas which require a relative high gain for 
each array element. In this particular case, the 
usage of an array of horn antennas with similar 
gain is very difficult because of the collision 
between horns due to their large aperture size.  
 

 
 
Fig. 18. Geometrical model of an array of antennas 
composed by five small waveguide antennas and 
an EBG structure that acts as a lens. 
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Abstract ─ An alternative multiresolution (MR) 
basis is presented for the method-of-moments 
(MoM) solution of the electric-field integral 
equation (EFIE) for the analysis of low-frequency 
problems. The proposed MR basis functions can 
be treated as an extension of the traditional loop-
tree basis function to hierarchical functions. 
Similar to the loop-tree basis, the MR basis 
functions are linear combinations of standard Rao-
Wilton-Glisson (RWG) functions. Therefore, the 
MR algorithm can be easily applied to MoM codes 
with RWG basis. Since the MR basis is immune 
from the so-called low-frequency breakdown, the 
MR basis is especially suitable for the analysis of 
low-frequency problems. Compared with the 
previous MR basis, the present MR basis is easier 
to construct and comprehend, and the basis-
changing matrix is sparser. Physical interpretation 
and comparison are given for the previous and 
present MR bases. Numerical results demonstrate 
that the both the previous and present MR bases 
are efficient for 3D electromagnetic scattering 
problems at low frequencies. 
  
Index Terms ─ EFIE, electromagnetic scattering, 
low frequency, method of moments (MoM), 
multiresolution techniques. 
 

I. INTRODUCTION 
The method of moments (MoM) is one of the 

most powerful numerical methods applicable to a 
wide variety of practical electromagnetic radiation 
and scattering problems [1, 2]. The electric field 
integral equation (EFIE) is always preferred in 
MoM. However, the EFIE suffers the so called 

low-frequency breakdown problem which occurs 
when the harmonic field wavelength is 
substantially larger than the characteristic size of 
the MoM grid. An effective solution to this 
problem is to separate the solenoidal part of the 
current [3-11]. The loop-star basis and loop-tree 
basis are proposed in early 1980s [3, 4]. Both of 
them introduce divergence-free loop functions 
which can effectively separate the solenoidal part 
of the current. The detailed discussion and 
application of the loop-star basis and loop-tree 
basis can be found in [5-9], and a comparison of 
the frequency dependent iterative solver 
convergence for RWG, loop-tree, and loop-star 
basis functions is given in [10]. 

In recent years, the multiresolution (MR) basis 
has been proposed and acted as an efficient 
physics-based preconditioner [12-27]. Compared 
with the loop-star/tree basis, the MR basis has a 
much faster MoM convergence rate when an 
iterative solver is applied. The reasons why the 
MR basis can positively act on the spectrum of a 
MoM matrix has been investigated and discussed 
in [20, 21]. The MR basis was first mentioned by 
G. Vecchi in [7], where he pointed out that a MR 
basis can be efficiently constructed to replace the 
loop-star basis. Consequently, a MR basis was 
proposed in [12]. Then, a modified MR basis was 
proposed in [13] to simplify the generation 
procedure. However, the MR bases in [12, 13] has 
a limit in modeling the curved structures, since the 
shape of the hierarchical meshes is restricted by 
the coarse mesh. To remedy this drawback of MR 
basis, a curvilinear MR basis is proposed in [15]. 
More recently, a new MR algorithm was proposed 
in [16-19] to overcome the shortcoming of the MR 
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basis defined over triangular patches. In the new 
MR algorithm, the concepts of the generalized 
mesh and generalized RWG (gRWG) basis were 
introduced. The generalized mesh is generated by 
a grouping algorithm. The gRWG basis is the 
generalization of the standard RWG basis and it is 
defined on the generalized meshes. The new MR 
basis functions are constructed as linear 
combinations of gRWG basis functions and can 
finally be represented by linear combinations of 
the RWG basis functions. 

Inspired by the novel idea of generalized mesh 
and generalized RWG basis, an alternative MR 
basis is proposed in this paper which is also 
defined on the generalized meshes. Contrary to the 
MR algorithm in [16-19] which relies on 
mathematical operations, the MR basis proposed 
in this paper is generated via geometric operations. 
Compared with the previous MR basis, the 
proposed MR basis can be constructed in a much 
easier fashion and provide more direct physical 
meanings. Also, the basis-changing matrix of the 
RWG basis functions to the MR basis functions is 
sparser and can be generated faster. Furthermore, 
physical interpretations are provided for both MR 
bases and the number of MR basis functions of 
each level is clearly given which explains why the 
MR bases span the same space as the RWG basis. 
Numerical examples demonstrate that the MR 
bases have a much faster convergence rate for 
iterative solvers than the traditional loop-tree basis 
as explained in [20, 21].  

This paper is organized as follows. Section II 
introduces the hierarchical generalized meshes and 
the gRWG basis. Section III gives a detailed 
description of the MR basis generation. Section IV 
provides physical interpretations for the MR bases. 
A discussion on the computational complexity of 
the MR basis is given in Section V. Section VI 
presents numerical results to validate and 
demonstrate the performance of the MR basis. 
Finally, the work is concluded in Section VII. 
 
II. GENERALIZED MESH AND GRWG 

BASIS 
Before discussing the new MR basis, the 

essential concepts of the generalized mesh and 
gRWG basis are briefly described as preliminary 
knowledge. Since the detailed generation 
algorithm of the generalized mesh and gRWG 
basis has already been given in [17, 18], only a 

brief description is provided in this section. 
 

A. Hierarchical generalized meshes 
Generation of the hierarchical generalized 

meshes starts from an input triangular mesh which 
is called level-0 mesh and denoted by M0. Using a 
grouping algorithm, the nearby cells of the level-0 
mesh are grouped into level-1cells. The union of the 
level-1 cells is called level-1 mesh, M1. Applying 
the same grouping algorithm to the level-1 cells 
will generate the level-2 mesh (M2) and so on and a 
set of hierarchical generalized meshes {Ml, l = 1, 
…, L} will be obtained. The last level L is usually 
decided by the maximum size of the generated cells 
that should be smaller than the wavelength, with a 
typical range of λ/8 − λ/4. To demonstrate the 
grouping algorithm, the hierarchical generalized 
meshes of a circular plate are shown in Fig. 1. 

 
 
Fig. 1. An example of hierarchical generalized 
meshes on a circular plate. (a) level-0 mesh, (b) 
level-1 mesh, (c) level-2 mesh, (d) level-3 mesh. 

 
B. Generalized RWG basis 

Similar to the definition of the RWG basis, a 
gRWG basis function is defined on a pair of 
adjacent cells of its corresponding level. Denoting a 
level-l gRWG basis function as )(rRl

i


, its 
divergence is given as  

, ,

, ,( )

0 otherwise,

l l l
i i i

l l l l
s i i i i

A r C
R r A r C

 

 

 

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
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where l
iA ,  and l

iA ,  are the areas of the two 

adjacent cells ( l
iC , , l

iC , ), and l
i  is the length of 

the level-l generalize edge shared by the two cells 
and is a polygonal line in general. 

 
C. Inter-mesh reconstruction relationship 

The inter-mesh reconstruction relationship can 
be derived through the charge matrix. In the inter-
mesh reconstruction relationship, a level-l gRWG 
function )(rRl

i
  can be expressed as the linear 

combination of the level-(l-1) gRWG functions 
)(1 rRl

n


  (n = 1,…, 1l
iN ) which are completely 

defined in the domain l
i

l
i CC ,,    of )(rRl

i
 , i.e. 







1

1

1
, )()(

l
iN

n

l
n

l
in

l
i rRRrR  .                     (2) 

where l
inR ,  is the reconstruction coefficient. 

Applying the surface divergence to both sides of 
(2), we have 

1

1
,

1
( ) ( ),

l
iN

l l l
s i n i s n

n
R r R R r







    
                (3) 

Projecting (3) on the cells 1l
mC  (m = 1, …, 1

,
l
icN ) in 

the domain of )(rRl
i
 , a linear system can be 

obtained as 
,l l l

i i iQ R q                                       (4) 

where l
iQ    is the 11

,
  l

i
l

ic NN  charge matrix 
whose element is given by  

1
1

,
( ) l

m

l l
i s n Cm n

Q R r 
     
   
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m

l l
i s n Cm

q R r      
  . 

As will be discussed in the next section, the 
maximum number of the linear independent 
functions )(1 rRl

n


  (n = 1,…, 1l
iN ) is 11

, l
icN  

according to Euler’s theorem. Therefore, the rank 
of the matrix l

iQ    is 11
, l
icN  and a full row rank 

matrix l
iQ  
  can be obtained by deleting an 

arbitrary row of l
iQ   . When 11

, l
icN < 1l

iN , the 
matrix equation (4) has infinitely many solutions 
and the least squares solution can be taken as the 
reconstruction coefficients l

iR   , i.e. 

,l l l
i i iR Q q


        
                          (5) 

where l
iQ


  
  is the Moore-Penrose pseudoinverse 

of l
iQ  
 . 

 
III. MR BASIS GENERATION 

For a general 3-D surface (without torus), the 
Euler’s theorem states that [9, 19] 

2,V F E N                          (6) 
where V, E, F, NГ denote the number of vertices, 
edges, faces, and separated boundary contours, 
respectively. Since the number of vertices and 
edges on the boundary contours is equal, we have 

int int 2,V F E N                       (7) 
where Vint, Eint is the number of internal vertices 
and edges, respectively. 

For a domain (e.g. a cell or a pair of cells of 
level-l) composed of 1

,
l
icN  cells of level-(l-1), we 

have 
1)1( 1

,int
1  


 l

ic
l
i NNVN .           (8) 

1l
iN  is the number of the gRWG functions in the 

domain, since the gRWG functions are defined on 
the interior edges. If connecting all the cells in a 
tree (see e.g. Fig. 2) and avoid forming any loop 
on the tree, then the maximum number of edges on 
the tree will be 11

, l
icN . Obviously, the gRWG 

functions corresponding to the edges on the tree 
are linear independent. Therefore, the maximum 
number of the linear independent gRWG functions 
in the domain is equal to 11

, l
icN . 

If the surface is discretized with triangles, the 
number of solenoidal functions NS and the number 
of nonsolenoidal functions NX of loop-star basis 
are given by [7, 9] 

1int  NVN S                               (9) 
1 FN X .                               (10) 

Their sum is equal to the number of the RWG 
functions, i.e. 

,S XN N N                                (11) 
where N is the number of the RWG functions. 

Similar to the loop-star/tree basis, the MR 
basis can also be split into the solenoidal and 
nonsolenoidal parts. It will be shown in the next 
section that the solenoidal and nonsolenoidal 
functions of the MR basis span the same space as 
for the loop-tree/star basis, and the numbers of the 
solenoidal and nonsolenoidal functions of the MR 
basis can also be given by equations (9)-(11). 
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A. Solenoidal basis 
It has already been shown in [17] that the use 

of a hierarchical decomposition of the 
nonsolenoidal part together with a non hierarchical 
loop basis suffices to obtain well conditioned 
MoM matrices and, hence, quickly convergent 
solvers for low-frequency and very dense 
discretizations. The difference between the low-
frequency and very dense discretization is 
addressed in [11]. Therefore, for simplicity, the 
loop basis generated on level-0 mesh is chosen as 
the solenoidal part of the MR basis. The detailed 
discussion of the loop basis can be found in [7, 9], 
whereas the topic of generating the loop basis 
functions on the more complex surfaces (e.g. wire-
surface structure) can be found in [28]. 

After generating the loop basis, the solenoidal 
basis of the MR basis can be written as 

  0 ,T
L Lf T R      
 

                      (12) 

where 1, 2, ,, , ,
S

T

L L L N Lf f f f      
   

  is the solenoidal 

MR basis,  LT  is the basis-changing matrix, and 
0 0 0 0

1 2, , ,
T

NR R R R      
   

  is the RWG basis of level-
0 mesh. 

 
B. Nonsolenoidal basis 

The nonsolenoidal basis is defined on the 
hierarchical generalized meshes. The 
nonsolenoidal basis functions of the highest level 
(level-L) are different from the nonsolenoidal basis 
functions of other levels (level-l, l = 1, …, L-1). 
Therefore, the nonsolenoidal basis functions of 
level-L are generated separately from the function 
of the other levels. 

 
1). Nonsolenoidal Functions of Level-L 

The generation of the nonsolenoidal functions 
of level-L is similar to that of the tree basis 
functions in the loop-tree basis. The only 
difference is that the cells of level-L are replaced 
by triangles. An easy procedure of constructing the 
nonsolenoidal functions of level-L is to connect 
the cells of level-L mesh in a tree, and each gRWG 
basis function on the branch of the tree is taken as 
a nonsolenoidal function. To demonstrate this 
procedure, the nonsolenoidal functions defined on 
the level-2 mesh (Fig. 1) are plotted. In this 
example, it is assumed that the level-2 mesh is of 
the highest level. As shown in Fig. 2 (a), each 
black line connecting a pair of cells represents a 

generated nonsolenoidal function. It is worth 
mentioning that the number of the nonsolenoidal 
functions of level-L equals the number of the cells 
of level-L minus one. 

 

 
Fig. 2. The nonsolenoidal functions, which are 
depicted with black lines, on a circular plate. (a) 
Level-2 functions, (b) level-1 functions. 

 
2). Nonsolenoidal Functions of Level- l (l = 1, 

…, L-1) 
Let the nonsolenoidal functions of level-l 

belong to the cell 1l
kC  of level-(l+1) denoted with 

 1,,1, 1,  
l
C

l
ik i

k
Nif 


, in which l

Ci
k

N 1  is the 

number of the cells of level-l belonging to the cell 
1l

kC , the nonsolenoidal functions of level-l can be 
expressed as the union of the nonsolenoidal 
functions that belong to all the cells of level-(l+1), 
i.e. 

   
1

1

1
, ,

1

, 1, , , 1, , 1 ,
l
c

i
k

N
l l l l l
j X c c k i C

k

f j N N f i N








    
 

   

(13) 
where l

cN  and 1l
cN  are the numbers of the cells of 

level-l and level-(l+1) respectively, and 1 l
c

l
c NN  

is the number of the nonsolenoidal functions of 
level-l. A simple way of generating the level-l 
nonsolenoidal functions in the cell 1l

kC  is to 
connect all the level-l cells which are completely 
included in the cell 1l

kC  in a tree and taking the 
gRWG basis functions on the branches of the tree 
as nonsolenoidal functions. An example of level-1 
nonsolenoidal functions is shown in Fig. 2 (b). As 
can be observed from Fig. 2 (b), the level-2 cells 
are bounded with yellow lines and the level-1 
nonsolenoidal functions are clustered in each 
level-2 cell shown with black lines. 

The nonsolenoidal functions (13) can be 
written as linear combinations of the gRWG basis 
functions of level-l, i.e. 

(a) (b) 
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' ,
Tl l l

X Xf T R         
 

                     (14) 

where 11, 2, ,
, , , l l

c c

Tl l l l
X X X N N X

f f f f 
      

   
 , '

Tl
XT    is 

the basis-changing matrix, and TlR   


 

1 2, , , l
l l l

N
R R R  
  

  is the gRWG basis of level-l. 
Applying the inter-mesh reconstruction 
relationship (2) recurrently, the nonsolenoidal 
functions of level-l can then be written as linear 
combinations of the RWG basis functions of level-
0 mesh, i.e., 

0Tl l
X Xf T R         
 

.                   (15) 
Then, the nonsolenoidal functions of all levels can 
be written as 

  0 ,T
X Xf T R      
 

                    (16) 

where 0 1, , ,
T T T TL

X X X Xf f f f                 

   
  and 

  0 1, , ,
T T TT L

X X X XT T T T              
 .  

Finally, the MR basis functions can be 
expressed in terms of the RWG basis functions as 
follows 

  0 ,T
MRf T R      
 

                    (17) 

where      ,L XT T T    . 
 
IV. PHYSICAL INTERPRETATION OF 

MR BASES 
Although the generation algorithm of the MR 

basis proposed in [18, 19] is clearly given, the 
physical meaning behind it is not clearly pointed 
out. Readers may also be confused about why the 
number of the MR basis functions equals the 
number of the RWG basis functions. Therefore, 
physic interpretations are tried to give in this 
section for both the present MR basis and the 
previous MR basis for better understanding of the 
MR bases. 

 

A. The present MR basis 
From the discussion given in Section III-B, the 

total number of the nonsolenoidal functions can be 
calculated as 

0 1

1 1 2( ) ( ) ( 1)
1

L
X X X X

L
c c c c

N N N N
F N N N N

F

   

      

 


 .         (18) 

Therefore, the numbers of the nonsolenoidal 
functions of the MR basis also satisfy (10). Similar 

to the loop-tree/star basis, it can be easily proven 
that all the solenoidal and nonsolenoidal functions 
of the present MR basis are linear independent 
from each other. Therefore, the MR basis spans 
the same space as for the loop-star/tree basis. 

 
B. The previous MR basis 

The previous MR basis functions proposed in 
[18, 19] are constructed via SVD on charge 
matrices. After applying SVD on a charge matrix, 
the right singular vectors associated to non-zero 
and null singular values are assigned as the 
coefficients of the corresponding gRWG function 
to generate the solenoidal and nonsolenoidal MR 
functions, respectively. However, the reason is not 
explained. In the following, a physical explanation 
to the above mathematical operations is given. 
Assuming a charge matrix generated by projecting 
n level-l gRWG functions onto m level-l cells, 
then its SVD result can be written as 

         
 
 

1 2

1 2 1 2 1

1 2

, , ,

, , , ( , , , )

, , ,

T
n

m m

T
n

Q R R R U V

U U U diag

V V V

   

          

  



 



,  (19) 

where 0121  m  , since the rank of 
[Q] is m-1. The expression (19) can be rewritten as 

   1 2 1 2

1 1 2 2 1 1

, , , , , ,
[ , , , ,0 , ,0 ]

n n

m m m n

R R R V V V
U U U U U    

   

 

 
 

.      (20) 

It can be inferred from (20) that the gRWG 
functions multiplies the first m-1 columns of [V] 
generates m-1 linear independent functions which 
have surface charge and can be taken as the 
nonsolenoidal functions. Therefore, the number of 
the nonsolenoidal functions generated with the 
algorithm in [17, 18] can also be given by (18). 
Namely, the numbers of the MR nonsolenoidal 
functions in the present paper and in [17, 18] are 
equal. It can also be inferred from (20) that the 
gRWG functions multiplies the other n-m columns 
of [V] generates n-m linear independent functions 
which have no surface charge and can be taken as 
the solenoidal functions. 

It can be inferred from the discussion at the 
beginning of section III that the number of the 
level-l solenoidal functions in a level-(l+1) cell 
(except the level-L cell of closed surfaces which 
has no boundary) equals the number of the interior 
vertexes shared by the level-l edges inside the 
level-(l+1) cell. Furthermore, the number of the 
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level-l solenoidal functions added by generating 
solenoidal functions across a pair of level-(l+1) 
cells equals the number of the interior vertexes 
which connecting the level-l edges that coincide 
with the common edge of the two level-(l+1) cells. 
Therefore, the total number of the MR basis 
functions generated in [18, 19] can be finally 
described by (21). It can be proven by theorem 1 
that the number of the MR basis functions equals 
the number of the RWG basis functions of the 
input mesh. 

 

Theorem 1 The number of the RWG basis 
functions of the input mesh can be written as the 
sum of the following elements: 

,
0 1 1

,
l
eNL L

l l
e v n

l l n
N N N

  

 
    

 
                       (21) 

where l
eN  (l=L) is the number of the level-L 

interior edges and 





1

1
,

l
cN

m

l
me

l
e NN  (0≤l<L-1)  is 

the total number of the level-l interior edges inside 
all level-(l+1) cells, in which l

meN ,  is the number 
of the level-l edges inside the m-th level-(l+1) cell 
and 1l

cN  is the number of level-(l+1) cells, and 
l

nvN ,  is the number of the interior vertexes on the 
n-th level-l interior edges. 
 

Proof: The expression (21) can be interpreted by 
the changes of the interior edges of each level in 
the procedure of generating the hierarchical 
meshes. In the first step of the mesh generating 
procedure, the level-1 mesh is generated from the 
input mesh (level-0) and parts of the level-0 
interior edges are grouped into the level-1 interior 
edges. Since the number of the level-0 interior 
edges grouped into one level-1 interior edge 
equals the number of the level-0 interior vertexes 
on the level-1 interior edge plus one, the total 
number of the grouped level-0 interior edges 
equals the total number of level-0 interior vertexes 
on the level-1 interior edges plus the number of 
the level-1 interior edges. Namely, the number of 
the level-0 interior edges can be decomposed as 
the sum of the total number of the level-0 interior 
edges inside all level-1 cells (i.e. the number of the 
left level-0 interior edges), the total number of 
level-0 interior vertexes on the level-1 interior 
edges, and the number of the level-1 interior 

edges. Similarly, the number of the level-l (1≤
l<L-1) interior edges can be decomposed as the 
sum of the total number of the level-l interior 
edges inside all level-(l+1) cells, the total number 
of level-l interior vertexes on the level-(l+1) 
interior edges, and the number of the level-(l+1) 
interior edges. As a consequence, the number of 
the level-0 interior edges can be finally written as 
(21). Since each RWG basis function of the input 
mesh is corresponding to a level-0 interior edge, 
theorem 1 is proven. 

It can be inferred from the above discussion 
that the number of the solenoidal and 
nonsolenoidal functions of the previous MR basis 
functions can also be given by equations (9)-(11). 
The level-L functions of the previous MR basis 
should be constructed independently if the cells 
are not finally grouped into one big cell. The level-
L functions of the previous MR basis could be 
generated by applying SVD on the charge matrix 
generated by projecting the level-L gRWG 
functions on the level-L cells or simply taking the 
level-L gRWG basis functions as the level-L MR 
basis functions. It can also be inferred from 
Theorem 1 that the solenoidal part of the present 
MR basis can be constructed as a hierarchical 
basis in which each solenoidal function is 
generated as a linear combination of the gRWG 
functions of the same level which constitute a loop 
around an interior vertex. 

 
V. COMPUTATIONAL COMPLEXITY 

Since the computational complexity of the 
loop basis is known as O(N) [28], only the 
computational complexity of the nonsolenoidal 
MR basis is needed to be analyzed. The 
computational complexity of the nonsolenoidal 
MR basis can be estimated by estimating the 
number of on-zero elements of the basis-changing 
matrix [T]. 

The number of non-zero elements of the basis-
changing matrix [T] as the functions of the number 
of levels of a structure discretized with 19090 
unknowns is investigated and shown in Fig. 3. It 
can be observed from Fig. 3 that the number of 
non-zero elements of matrix [T] increase linearly 
with the number of the levels of the MR basis. 
Therefore, the computational complexity of the 
nonsolenoidal MR basis is of O(NL), where L is 
the number of levels. If we keep grouping the cells 
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of each level upwards until the cells are finally 
grouped into one single cell in the highest level 
mesh, the number of levels L will be equal to 
LogN and the computational complexity will be of 
O(NLogN). The number of non-zero elements and 
the generation time of matrix [T] as functions of 
the number of the unknowns for the previous MR 
basis and present MR basis when the cells are 
finally grouped into a single cell are investigated 
and shown in Fig. 4 (a) and (b), respectively. It 
can be observed from the figure that the 
computational complexity of both the previous and 
present MR basis is of O(NLogN) and the 
computational complexity of the present MR basis 
has a smaller constant. 
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Fig. 3. The number of non-zero elements of the 
basis-changing matrix [T] versus the number of 
levels of a structure discretized with 19090 
unknowns. 
 

VI. NUMERICAL RESULTS 
In this section, the MR basis is applied for the 

analysis of the EM scattering problems at low 
frequencies. In the following examples, the 
restarted GMRES(30) algorithm is used as an 
iterative method. All simulations were performed 
on a PC computer with Intel(R) Core(TM)2 1.86 
GHz CPU and 2 GB RAM using single precision. 
Zero vector is taken as initial approximate solution 
and the iteration process is terminated when the 
relative backward error is reduced by 10-4. And all 
the results with different bases were obtained after 
applying a diagonal preconditioning to the MoM 
matrix. 
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Fig. 4. (a) The number of non-zero elements of the 
basis-changing matrix [T], (b) the time for 
generation of matrix [T], versus the number of 
unknowns. 

 
A. Offset bend rectangular cavity 

The first example is a metallic offset bend 
rectangular cavity with 8.7 cm by 10 cm square 
cross section and offset angles 30°. As shown in 
Fig. 5, the offset bend rectangular cavity is 
discretized with 4317 unknowns. The mesh of the 
offset bend rectangular cavity could generate six 
levels hierarchical meshes and five levels MR 
basis at most. The EM scattering of the offset bend 
rectangular cavity is calculated with the EFIE 
using the RWG, loop-tree, the previous MR, and 
present MR bases. The 2-norm condition numbers 
and the convergence behavior of GMRES(30) for 
the offset bend rectangular cavity using the above 
bases over a frequency range of 0.1-200 MHz is 
shown in Fig. 5 and Fig. 6, respectively. The 
corresponding total time for applying the MR 
bases is depicted in Fig. 7. 

With reference to the figures, the RWG basis 
performs worse than both the loop-tree basis and 
the MR bases in the low frequency range. It can be 
also found that the MR bases perform much better 
than the loop-tree basis in the low frequency 
range. The more levels of the present MR basis, 
the better it performs in the low frequency range. 
Comparing the previous MR basis with the present 
MR basis, it can be found that the present MR 
basis performs similar to the previous MR basis at 
low frequencies. However, the previous MR basis 
performs more stable as the frequency increases. 
The corresponding total time which includes the 
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time of the generation of the basis-changing 
matrix, the time of the generation of the diagonal 
preconditioning matrix, and the solution time of 
the GMRES(30) is depicted in Fig. 6. The result 
using the RWG basis is not given in Fig. 6 since 
the GMRES(30) solver cannot converge by using 
the RWG basis at some frequencies. It also clearly 
indicates that the MR bases have better 
performance than the loop-tree basis at the low-
frequency range. 
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Fig. 5. The 2-norm condition number as a function 
of frequency for the offset bend rectangular cavity 
using the RWG, loop-tree, and MR bases. 
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Fig. 6. The convergence behavior of GMRES(30) 
as a function of frequency for the offset bend 
rectangular cavity using the RWG, loop-tree, and 
MR bases. 
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Fig. 7. The total time as a function of frequency 
for the offset bend rectangular cavity using the 
loop-tree and MR bases. 
 

The impact of the discretization density to the 
performance of different bases is investigated. The 
2-norm condition number of the MoM matrices 
using the RWG basis, loop-tree basis, and the 
present and previous MR bases for the offset bend 
rectangular cavity discretized with a different 
number of unknowns is shown in Fig. 8. It can be 
found from Fig. 8 that the MR bases perform more 
stable than the RWG basis and loop-tree basis as 
the discretization density increases and this result 
agrees with the results in [11]. 
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Fig. 8. The 2-norm condition number as a function 
of discretization density for the offset bend 
rectangular cavity using the RWG, loop-tree, and 
MR bases. 
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B. Tank model 
As shown in Fig. 9, the second example is a 

tank model discretized with 8706 unknowns. The 
length, width, and height of the tank model are 
10.3 m, 3.3 m, and 2.3 m, respectively. To 
describe the shape of the tank model efficiently, 
the parts varying rapidly in geometry are 
discretized with relatively small triangular patches 
and the other parts are with large patches. 

The convergence curves of the GMRES(30) 
are compared in Fig. 9 at the low frequency 1.0 
MHz using the RWG, loop-tree, and the MR 
bases. It can also be found from Fig. 9 that the 
convergence of the GMRES(30) using the MR 
bases which have higher levels is much faster than 
the others. The convergence behavior of 
GMRES(30) and the corresponding total time for 
applying the MR bases over a frequency range of 
0.1-6 MHz is shown in Fig. 10 and Fig. 11, 
respectively. From Fig. 10 and Fig. 11, it can 
found that both the MR basis performs similar at 
lower frequencies and the previous MR performs 
more stable as the frequency increases. 

 
VII. CONCLUSION 

An alternative MR basis has been proposed for 
analyzing low-frequency problems using the 
MoM. Contrary to the previous MR basis which is 
generated based on mathematical operations, the 
present MR basis is generated based on 
geometrical operations. The present MR basis is 
an extension of the loop-tree basis to hierarchical 
basis, and the loop-tree can be treated as a special 
one-level MR basis. Therefore, the present MR 
basis is easier to construct and comprehend. Also, 
the computational complexity of the present MR 
basis is lower than that of the previous MR basis 
and the basis-changing matrix of the RWG basis to 
the present MR basis is sparser. As similar to the 
loop-tree basis, the present MR basis functions are 
combinations of RWG basis functions. Thus, the 
present MR basis can be easily applied to existing 
MoM codes. It has been demonstrated by the 
numerical results that the MR bases can be used to 
solve low-frequency EM scattering problems 
efficiently. Compared with the traditional loop-
tree basis, the MR bases converge much faster at 
low frequencies for iterative solvers. Although the 
present MR basis performs similar to the previous 
MR basis at lower frequencies, it should be 
pointed out that the present MR basis suffers the 

same drawback as the loop-tree basis, i.e. it will be 
unstable as the frequency goes higher. Therefore, 
the previous MR basis is recommended at higher 
frequencies since it performs more stable as the 
frequency increases. 
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Fig. 9. The convergence history of the GMRES(30) 
for the tank model at 1.0 MHz using the RWG, 
loop-tree, and MR bases. 
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Fig. 10. The convergence behavior of GMRES(30) 
as a function of frequency for the tank model 
using the MR bases. 
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Abstract ─ The development of realistic spatially 
and temporally clustered channel models is a 
prerequisite to the creation of successful 
architectures of the future MIMO wireless 
communication systems. IEEE 802.11n channel 
models are designed for indoor wireless local area 
networks for bandwidths of up to 100 MHz, at 
frequencies of 2 and 5 GHz. The channel models 
comprise a set of 6 realistic profiles, labeled A to 
F, which cover the scenarios of flat fading, 
residential, residential/small office, typical office, 
large office, and large space. Each channel 
scenario is represented by distinct path loss model, 
multipath delay profile, number of clusters and 
taps with predefined values for angular and power 
parameters. These realistic models have been 
applied widely for MIMO systems utilizing only 
uniform linear array (ULA). In this paper, 
modifications to the standard IEEE 802.11n 
channel model are applied to include uniform 
circular array (UCA) geometries. Characteristics 
of spatial fading corrections and the eigenvales 
distribution of subchannels for UCA-MIMO 
systems are investigated. The effect of the azimuth 
orientation and line of sight component existence 
on the system capacity for both ULA and UCA 
arrays are studied. Also, the water filling power 
allocation scheme is investigated under different 
realistic conditions. Furthermore, the link 
performance of Vertical Bell Laboratories Layered 
Space Time (VBLAST) that employs UCA at the 
receiver front is presented by utilizing the 
developed channel model. 
 
 
 

I. INTRODUCTION 
Multiple input multiple output (MIMO) 

technology offers a spatial diversity that can be 
utilized to achieve significant capacity gain as well 
as improve system performance [1]. Most of the 
studies for the design and performance evaluation 
of MIMO wireless communication systems use 
simplified statistical channel models that are 
idealized abstractions of temporal and spatial 
correlations [2-3]. The main limitation of these 
channel models is that realistic channel conditions 
are not included as they provide simple and 
intuitive relations to physical directions and 
propagation environments. Various measurements 
show that realistic MIMO channels provide 
different capacity values [4-5]. Therefore, 
developing accurate and realistic correlated 
channels is essential and of crucial importance to 
predict an accurate performance of MIMO 
systems. Some realistic models are proposed as 
standardized channel models were unified and 
agreed on by many scientific parties worldwide to 
be used in the development of modern MIMO 
systems. The most commonly used standard 
spatial channel models for system level 
simulations are the 3GPP/3GPP2 SCM (spatial 
channel model) [6] for outdoor cellular wide area 
scenarios and the Technical Group of IEEE 802.11 
TGn channel model [7] for indoor WLAN short 
range scenarios. The two models assume that 
transmitter and receiver MIMO antennas are 
restricted to uniform linear arrays (ULAs). 
However, recently there has been increased 
interest in using uniform circular arrays (UCAs) 
[8-14], which is perhaps the next most common 
array geometries for future generation WLANs 

394 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011

1054-4887 © 2011 ACES



due to their enhanced azimuth coverage. 
Therefore, in this paper, we extend our work in 
[14] and develop a more realistic spatially and 
temporally clustered channel model to be applied 
in the simulation of UCA-MIMO systems for 
WLANs. The proposed model accounts for six 
different actual propagation scenarios that are 
applied in IEEE802.11 TGn channel model. 
Numerical simulation examples are performed for 
different case studies to investigate system 
capacity and BER performance of the pre-set 
realistic scenarios. The rest of the paper is 
organized as follows. Section 2 describes the 
developed channel model and the modifications 
proposed to the existing IEEE802.11n standard 
model to include UCA configurations. Section 3 
provides the temporal properties of the clustered 
MIMO channel models. In section 4 numerical 
results are discussed and a thorough discussion 
about the applicability of the developed model is 
presented. Finally, conclusions are given in section 
5. 

                                                                  
Fig. 1. MIMO communication system employing 
(Mt  Mr) ULA / UCA configurations. 
 
 

II. MODIFIED SPATIAL CHANNEL 
MODELS 

 
Considering an uplink of IEEE802.11n MIMO 

WLAN communication system operating in an 
indoor environment, where the transmitter is a 
wireless station (STA) and the receiver is an 

access point (AP). Figure 1 shows (Mt  Mr) 
MIMO WLAN system with Mt -element transmit-
antenna array at STA and Mr -element receive-
antenna array at AP end.  We consider the arrays 
at STA and AP to be either ULA with inter-
element spacing Dt and Dr or UCA of radius Rt and 
Rr , respectively. The figure also shows a graphical 
representation of the clustered channel model 
where the angle that each i-th element location 
makes with the horizontal axis is denoted as 
φ୧	and	௜ for transmitter and the receiver. The 
central angle of departure (AoD) and the central 
angle of arrival (AoA) are 	θୢ and θ୰, respectively. 
Additionally, it is assumed that the channel is 
composed of several moving scatterers which are 
local to STA. Thus, the received signal is the sum 
of multiple plane waves with random phases. 
Under this assumption, the channel consists of 
multiple sample taps, which are associated with 
different clusters. The discrete-time impulse 
response of MIMO channel matrix can be written 
as in [7]: 
(ݐ)۶  = ∑ ۶௟௅ିଵ௟ୀଵ δ(t(ݐ) − τ௟) ,                       (1) 
  
where t denotes the discrete time index, L is the 
number of effectively nonzero channel taps 
(corresponding to the channel clusters), Hl(t) is the 
MtMr channel matrix for the l-th tap, δ(t − τ୪) is 
the Kronecker delta function for τl delay at l-th 
tap.  For simplicity, notation t will be omitted in 
the following equations. The l-th matrix tap Hl at 
one instance of time can be written as the sum of a 
constant line of sight (LOS) matrix and a variable 
Rayleigh non line of sight (NLOS) matrix 
 

 ۶௟ 					= 			ඥp௟	 ൜ට ୏೗୏೗ାଵ	൤e୨ଶ஠ቀೡ౥ ቁ௧ୡ୭ୱቀಘరቁ. ൨܁ 	+																					ට ଵ୏೗ାଵ	൫ܔ܉ܑܜ܉ܘܛ܀. ۰൯ൠ ,                      (2) 

 
where the first term represents ۶௟௅ைௌ  and the 
second accounts for   ۶௟ே௅ைௌ, p௟ is the total power 
of l-th channel tap that is the sum of the fixed LOS 
power and the variable NLOS power of the l-th tap 
defined in the power delay profiles, Kl is the 
Rician K-factor of l-th tap that represents the 
relative strength of the LOS component, S is the 
steering matrix,	܀௦௣௔௧௜௔௟ is spatial fading 
correlation shaping matrix, B is a vector that is 
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obtained by passing Hiid independent complex 
Gaussian random samples with zero mean and unit 
variance through a filter that is shaped based on 
the Doppler model where the transmitter and 
receiver are stationary and the surrounding objects 
and people are moving, the exponential term is 
used to account for the phase change introduced in 
the LOS path due to the movement of scattering 
objects with velocity ݒ୭that is assumed to be fixed 
at 1.2 kmph. The model is adopted to include 
UCA configurations at both STA and AP ends by 
defining the steering vector used in (2) as 

S= ൮ e୨ଶ஠ቀೃ೟ ቁ ୱ୧୬()ୡ୭ୱ(஘ୢି஦భ):e୨ଶ஠ቀೃ೟ ቁ ୱ୧୬()ୡ୭ୱ(஘ୢି஦౉౪)൲
୘	.  

																									൮ e୨ଶ஠ቀೃೝ ቁ ୱ୧୬()ୡ୭ୱ൫஘୰ିభ൯:e୨ଶ஠ቀೃೝ ቁ ୱ୧୬()ୡ୭ୱ൫஘୰ି౉౨൯൲  ,      (3) 

 
where λ is the signal wavelength,  is the elevation 
angle. For simplicity, only azimuth angles are 
considered in the propagation geometry (i.e., 
 = 90୭), however the results can be generalized 
to three dimensions by changing the value of . 
Note that, the extra distance that the signal has to 
travel from adjacent antenna elements at the 
transmitter end is ܴ௧cos(θ − φ୧)  that results in a 
phase difference of	(2π ோ೟


)cos(θ − φ୧). A similar 

phase shift term is included at the receiver. It 
should be noted that the AoA and AoD for the 
LOS path of the channel are assumed to be fixed at 
45 degrees. According to [8] and [14], the 
correlation between m-th and n-th element in 
 ܴ(݉, ݊) = ׬ ݁௝(φౣିφ౤)గିగ ఏܲ(ߠ)	݀(4) ,ߠ 
 
where P஘(θ) is the power azimuth spectrum (PAS) 
distribution that has a truncated Laplacian shape, ߠ 
is either θୢ or θ୰	the central random variable for 
AoD or AoA, where R(m,n)  is the complex 
correlation coefficients between the m-th and n-th 
antennas. Thus, the complex spatial correlation 
matrix Rrx at the receiver end with UCA 
configuration is obtained by numerically 
performing the integral in (4) as in [8] 
 ܴ݁{ܴ௥௫(݉, ݊)) =  ௢(ܼ௖)ܬ

		+2∑ ௔మ(ଵି௘షೌഏ)௔మାସ௞మஶ௞ୀଵ ଶ௞(ܼ௖)ܬ ௥ߠ)2݇]ݏ݋ܿ +  (5) ,[(ߙ
 
,݉)௥௫ܴ}݉ܫ  ݊)) = ଶ௔(ଵି௘షೌഏ) ∑ ௔(ଵି௘షೌഏ)௔మା(ଶ௞ାଵ)మ∞௞ୀ଴ .				  
ଶ௞ାଵ(ܼ௖)ܬ	             2݇)]݊݅ݏ + ௥ߠ)(1 +  (6)        ,	[(ߙ
 
where a is a decay factor which is related to the 
angle spread, when a increases the angle spread 
decreases, α is the relative angle between the m-th 
and n-th antenna elements, Zc is related to the 
antenna spacing and is  defined as follows 
 ܼ௖ = ඨ ߨ2) ቀோೝఒ ቁ ݏ݋ܿ]} ߮௠ − ݏ݋ܿ ߮௡]ଶ																	+[߮݊݅ݏ௠ −  ௡]ଶ}  .          (7)߮݊݅ݏ

 
A similar expression can be obtained for Rtx 
coefficients as in (5) and (6) by replacing	θ୰, ܴ௥, φ୫,φ୬ with  θୢ, ܴ୲, ୫, ୬respectively. 
 

III. TEMPORAL PROPERTIES OF 
CHANNEL MODEL 

In the temporal domain, the properties of the 
proposed MIMO channel models for systems 
employing UCA configurations are assumed to be 
similar to the clustered model that was first 
introduced by Saleh and Valenzuela in [2]. The 
model is based on assuming that the received 
signal comprises of multiple decayed rays 
(clusters) that were reflected from different groups 
of scatterers. The received signal is assumed to be 
a summation of different exponential functions in 
time. For the given assumptions, the impulse 
response of the channel can be expressed as:  
 h(t) = ∑ ∑ a௞௟δ(t − T௟ − τ௞௟)∞୩ୀ଴∞௟ୀ଴ ,        (8)    
 
where Tl is the arrival time of the first ray of l-th 
cluster. kl is the arrival time of the k–th ray within 
the l-th cluster. a௞௟ is the amplitude of each 
arriving ray, which is a Rayleigh distributed 
random variable with mean square value equal to 
  a௞௟ଶതതതതത = aଶ( ௟ܶ, τ௞௟)തതതതതതതതതതതതത= aଶ(0,0)തതതതതതതതത	eି୘ౢ 	⁄ eିதೖ೗ ஓ⁄ , 
 

(9) 

where aଶ(0,0)	is the average power of the first ray 
of the first cluster and depends on the distance 
between the transmitter and receiver,  is the 
cluster power decay time constant and  is the ray 
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power decay time constant within a cluster. For 
the developed model, the clusters and taps 
exponential decays are not used, instead values for 
the power delay profiles that will be used 
throughout the paper are defined as in [7] for 
standard IEEE 802.11n channel models as shown 
in Table 1. 
 
Table 1: IEEE802.11n TGn channel models [7] 

Mo
del Environment K (dB) 

LOS/NLOS 
Delay 
(rms) Clusters 

A Flat fading 0/-∞ 0 1 
B Residential 0/-∞ 15 2 

C Residential/ 
small office 0/-∞ 30 2 

D Typical 
Office 3/-∞ 50 3 

E Large Office 6/-∞ 100 4 

F Large Space, 
In-/out-door 6/-∞ 150 6 

 
The system capacity is defined as the maximum 
possible transmission rate such that the probability 
of error is arbitrarily small. By applying the 
singular value decomposition (SVD) theorem, the 
ergodic capacity ( ) in the case of the uniform 
power scheme is given by 
 C = E ቄW∑ logଶ ቂ1 + ୔౟౟

మ ቃ୰୧ୀଵ ቅ ,                   (10) 
 
where E{. } Is the expectation operator, ݎ is the 
rank of the MtMr channel matrix ۶, where  is 
the bandwidth of each sub-channel, Pi is the 
received signal power in the i-th sub-channel that 
is equal to P/ Mt , P is the total power, λi is the 
eigenvalue of the sub-channels,	ଶ௡ is the noise 
power. In this case, the power is equally divided 
among the transmit antennas. However, when 
applying the water-filling (WF) power scheme that 
is the optimal energy allocation algorithm [1]. The 
power values Pi are assigned on the basis that the 
better the sub-channel gets, the more power is 
injected into it and the ergodic capacity in this 
case will be  
 C = E ቄW∑ logଶ ቂ1 + ౟

మ (− మ
౟ )ାቃ୰୧ୀଵ ቅ ,       (11) 

 
where a+ denotes max(a, 0), i= 1, 2, . . . , r and μ is 
determined so that	∑ ௜ܲ௥௜ୀଵ = ܲ.  
 

IV. NUMERICAL RESULTS AND 
ANALYSIS 

In this section, we study and compare the 
channel capacity and system performance of 
UCA-MIMO WLAN systems using the 
numerically developed realistic channel model. 
Unless specified, the MIMO system (4×4) are 
considered, both ends utilize the UCA 
configuration with radius 0.5 or 0.75 wavelength 
spacing. 10000 channel realizations and NLOS 
scenario with SNR=10 dB are considered. If ULA 
configuration is being used then the inter-elements 
spacing is considered to be 0.5λ. The six standard 
TGn channel model profiles (A-F) defined in [7] 
are used here to realize realistic scenarios 
throughout the following simulation study cases. 
Figure 2 shows probability density function (pdf) 
of the AoA for model ‘F’ and shows how the 
power is distributed among the taps and the 
clusters. The model has 5 overlapping clusters 
with 18 taps. All taps pdf are considered as 
truncated laplacian functions [7]. 
  

 
Fig. 2.  pdf of the AoA for the taps in model ‘F’. 
 

Figure 3 illustrates the channel spatial 
correlation Rs (21, 11) between the links h11 and 
h21 for all taps of model ‘F’ versus the UCA radius 
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in the receiver. It is obvious that the spatial 
correlation decreases as UCA antenna radius 
increases. In addition, one can see that the spatial 
correlation differs for various taps depending on 
AoA and the angular spread (AS) of each tap. 
Figure 4 plots the cumulative distribution function 
(cdf) of the eigenvalues of channel models ‘A’, 
‘B’, and ‘F’ for 4×4 MIMO UCA based system. It 
is known that the steeper slope the cdf curve has 
the less amplitude of the fluctuation in the signal, 
i.e., the fades due to the multipath are less deep, 
and therefore a higher degree of diversity is 
obtained. 

 

 
Fig. 3. Rs(21,11) for different taps of model ‘F’ 
versus UCA radius in the receiver. 

 
Figure 4 illustrates the impact of each sub-

channel, identified in, upon the total capacity 
available for different channel models. As can be 
seen, the largest eigenvalue characteristic (1) is 
nearly the same for most of the channel models. 
However, the difference increases between models 
‘A’, ‘B’ and ‘F’ is more distinguished for 2nd, 3rd, 
and 4th eigenvalues, respectively. According to 
(10), the higher summation of eigenvalues the 
higher capacity, thus as shown in the Fig. model 
‘F’ has the highest summation of eignvalues that 
leads to the highest capacity. This result was 
expected due to the high number of clusters and 
multi-paths components that are included in model 
‘F’ compared to other models.  

The capacity dependence on the azimuth 
rotating of the receiver configuration (orientation 
of AP) with respect to different channel models is 
studied. The rotation is measured by the 
orientation angle (θ୰) shown in Fig.1 with respect 
to a reference angle 1 that is used as a reference 

for the prescribed AoAs defined by the TGn 
models. Two cases are considered: case (1): 4×4 
UCA×UCA based system radii Rt, Rr=0.75 and 
case (2): 4×4 ULA×ULA Based system with inter-
element distance dt=0.5. To have fair comparison 
these dimensions are assumed to have identical 
largest array dimension equal to 1.5 for both 
cases. The results are demonstrated in Fig. 5. The 
presented results reveal that the ergodic capacity 
in general is more affected by the orientation angle 
in the ULA unlike in the UCA. This effect gives a 
privilege to the use of the UCA receiver. Also, as 
can be observed that the mean capacity for 
different models (A, B, C, and F) and 
configurations (ULA and UCA) is compared to the 
mean 4x4 (i.i.d) MIMO capacity. The independent 
and identically distributed (i.i.d) case is considered 
for uncorrelated channel case where channel 
matrix elements is modeled as i.i.d. zero-mean 
unit-variance complex Gaussian random variables. 
Capacity for this case is found to be =10.823 
b/s/Hz. As expected for Model ‘A’ ULA 
configuration, since the Model A has only one tap 
one cluster at AoA=45o, then by rotating the ULA 
by 45o the signal will impinge the array from the 
endfire direction. In this case the correlation will 
be highest and the capacity will be minimum. In 
contrary, if the ULA is rotated by 135o we get the 
maximum capacity because in this case signal 
arrives at the broadside of the array.  Also it can be 
observed that the capacity of model F is almost 
constant and it has the highest values for both 
configurations. Model B for ULA has the lowest 
throughput values. UCA case the mean capacity is 
approximately between  a minimum of 77%  of the 
mean 4x4 i.i.d. MIMO capacity (for  model C at 
angle 135o) and a maximum of  96% of the mean 
4x4 i.i.d. MIMO capacity (for model F at angle 
67.5o). However, the  ULA case, the mean 
capacity is approximately between  a minimum of 
62%  of the mean 4x4 i.i.d. MIMO capacity (for  
model B at angle 157.5o) and a maximum of  95% 
of the mean 4x4 i.i.d. MIMO capacity (for model 
F at angle 90). Here, it can be concluded that, the 
variations range of ergodic capacity for UCA-
MIMO configuration over various orientations and 
different channel conditions is higher than that for 
ULA-MIMO configuration under the same 
orientations and channel conditions. 

 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Rr/

S
pa

tia
l C

or
re

la
tio

n

Model F

 

 

Taps (1,2,3,4)
Taps (5,6,7,8)
Taps (9,10,11,12)
Taps (13,14)
Tap (15)
Tap (16)
Taps (17,18)

398 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011



 
Fig. 4.  Channel singular values CDFs of models 
A, B, and F for 4×4 MIMO UCA based system. 
 

 
Fig. 5. Ergodic capacity versus azimuth orientation 
angle at receiver side cases 1 and 2, NLOS 
conditions. 
 
 Figure 6 presents the ergodic capacity versus 
UCA radius for channel models ‘A’, ‘B’, and ‘F. 
For each model, the capacity is investigated at Mr 
= 2, 4, and 8. The capacity of model ‘F’ has the 
highest value for all cases because of the 18 taps 
and 6 clusters arriving to the UCA array from 
different AoAs. One tap, one cluster model ‘A’ 
found to be the lower bound for all cases. As can 
be seen, for ‘A’, ‘B’, and ‘F’ models, the values of 
mean capacity are, respectively, 5.4, 5.75, and 5.9 
(for Mr = 2) and 12.14, 12.95, and 15.13 (for Mr= 
8). These results show that as Mr increases, the 
capacity values are more affected by the model 
selection. This indicates that, the environment 
profiles should be carefully modeled and selected 
whenever capacity investigations are performed in 
particular for higher order MIMO.  
 

Fig. 6. Ergodic capacity versus radius of channel 
models ‘A’, ‘B’, and ‘F’ for Mt=4, Mr=2, 4, 8 and 
SNR=10 dB. 

 
Next, LOS conditions for UCA based MIMO 

systems are examined by assuming that the LOS 
component will be included if the separation 
between the transmitter mobile unit and the 
receiver AP are within breakpoint distance. The 
LOS is configured by adding a standard K-factor 
reported in [7] to the first tap while all the other 
taps K-factor remain at -∞ dB as in IEEE802.11n 
model. The LOS component of the first tap is 
added on top of the NLOS component so that the 
total energy of the first tap for the LOS channels 
becomes higher than the value defined in the 
power delay profiles (PDP). Figure 7 shows the 
capacity CDFs for a 4x4 UCA based MIMO under 
A, B, and F channel scenarios for both LOS and 
NLOS cases. As noticed from the figure, the LOS 
component degrades the capacity of the system 
working in all channel scenarios. It is found that in 
NLOS conditions, capacity improves by 20% 
compared to the case where the LOS component 
included. The improvement is less pronounced for 
model F than other models due to its many 
multipath taps thus the effect of the 1st LOS tap 
will be less significant. 

 Capacity results for the UCA based MIMO 
systems that apply the water-filling (WF) scheme 
under different channel conditions are shown in 
Figs. 8 and 9. In the WF scheme, the power 
allocated to each sub-channel is optimized to 
maximize the system capacity. Figure 8 shows 
ergodic capacities versus SNR for channel models 
‘A’, ‘B’, ‘C’, and ‘F’ for 4x4 UCA based MIMO 
system. Identical with the results of i.i.d 
uncorrelated channel model [1], the capacity 
delivered by the WF power allocation scheme is 
superior to the one achieved with uniform power 
specifically for low SNRs. As shown, the capacity 
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increase by applying the WF scheme is found to 
be in ‘A’ and ‘C’ models more than that for ‘B’ 
and ‘F’ models. Figure 9 shows the capacity 
versus the number of elements of the UCA (Mr) at 
the receiver for 4Mr MIMO system both uniform 
and WF schemes values when varying the channel 
models. As seen, when the number of receiver 
elements is greater than 3 the capacity becomes 
more dependent on the environment profiles. It is 
noticed that in general as the number of received 
antennas increases the capacity increases for the 
uniform scheme. However, for models ‘A’ and ‘C’ 
the WF algorithm gets its best performance at Mr = 
4 and in general when the numbers of antennas at 
the transmitter and at the receiver are equal, i.e. 
the channel matrix is full rank. 
 

 
Fig. 7. Cumulative distribution functions (CDFs) 
of capacity for models 4x4 UCA based MIMO in 
‘A’, ‘B’, and ‘F’ channel models with and LOS 
and NLOS conditions. 
 

 
Fig. 8.  Ergodic capacity versus SNR of channel 
models ‘A’, ‘B’, ‘C’, and ‘F’ for 4x4 UCA-
MIMO. 
 

 
Fig. 9. Ergodic capacities of channels ‘A’, ‘B’, 
‘C’, and ‘F’ versus the number of received 
antennas, for 4xMr UCA based system with 
uniform and water-filling power schemes. 
 

 
Fig. 10. BER performance of VBLAST MIMO 
system for three models ‘A’, ‘C’ and ‘F’ compared 
to uncorrelated channel model with BPSK and 
various 4x4 UCA radii. 
 

Finally, the diversity gain measured by bit error 
rate (BER) performance is examined for WLAN 
802.11n system utilizing minimum mean squares 
estimation- VBLAST (MMSE-VBLAST) system 
[15] with UCA configurations. Two radii R=0.5 
and 0.75 are considered at the AP receiver. 
Figure 10 illustrates a comparison of BER 
performance curves under different TGn models. 
Corresponding BER of an i.i.d. channel 
(uncorrelated fading channel) is also included for 
comparison. As can be seen that the link has its 
best performance for Model ‘F’ conditions, in this 
case it is the nearest performance curve to the 
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uncorrelated fading channel ‘i.i.d’ curve. Model 
‘F’ performance curve is followed by model ‘B’ 
then model ‘A’ with the lowest performance.  
Also, as expected that the link performance 
improves as the radius of the UCA at the AP end 
increases from 0.5 to 0.75. In general, the 
results show that the BER performance of uniform 
circular diversity array depends on the main AoA. 
 

V. CONCLUSION 
In this paper, a modification to IEEE 802.11n 

channel model has been proposed to consider the 
application of using the UCA configurations in 
MIMO WLAN systems. Realistic spatio-temporal 
channel model has been developed and includes 
spatial fading correlation for six different 
environment profiles. Each profile is distinguished 
by its predefined parameters such as number of 
clusters, number of taps within each cluster, power 
delay profile of the taps, and angle of incidence of 
each tap. The impact of the selection of realistic 
channel profile on the eignvalue of each sub-
channel and the total system capacity values has 
been studied. The capacity dependence on the used 
ULA or UCA geometries and their orientations at 
both ends of the MIMO system has been studied 
and compared. It has been found that, the variation 
range of ergodic capacity for UCA-MIMO 
configuration over various orientations and 
different channel conditions is higher than that for 
ULA-MIMO configuration under the same 
orientations and channel conditions. The influence 
of the LOS component on the link performance 
was presented for UCA based systems and it is 
shown that LOS component existence is not 
preferable for MIMO systems. The improvement 
is less pronounced for large space model F 
environments. Both uniform and none uniform 
WF power allocation schemes have been 
simulated for UCA based systems and it can be 
said that the WF relocation power scheme is best 
applied for MIMO UCA based systems working in 
residential models A and C environments. 
Moreover, VBLAST system BER performance has 
been investigated under different channel 
scenarios and the results show that its best 
conditions for having the best UCA-MIMO system 
performance are model F conditions. Finally, the 
realistic channel model that is introduced in this 
paper could be effectively utilized to provide an 

accurate capacity and system performance analysis 
for the next generation WLANs. 
 

REFERENCES 
[1] M. Jankiraman, “Space-Time Codes and 

MIMO Systems”, Artech House 
Publishers, Boston, London. 

[2] A. Saleh and R. Valenzuela, “A Statistical 
Model for Indoor Multipath Propagation,” 
IEEE J. Sel. Areas Comm., vol. 5, no. 2, 
pp.128–137, Feb. 1987. 

[3] Q. Spencer, M. Rice, B. Jeffs, and M. 
Jensen, “A Statistical Model for Angle of 
Arrival in Indoor Multipath Propagation,” 
Proc. IEEE Veh. Technol. Conf., vol. 3, 
pp. 1415–1419, May 1997. 

[4] L. Schumacher, K. I. Pedersen, and P. E. 
Mogensen, "From Antenna Spacings to 
Theoretical Capacities - Guidelines for 
simulating MIMO systems," Proc. PIMRC 
Conf., vol. 2, pp. 587-592, Sep. 2002. 

[5] J. P. Kermoal, L. Schmacher, P. 
Mogensen, and K. I. Pederson, 
“Experimental Investigation of 
Correlation Properties of MIMO Radio 
Channels for Indoor Picocell Scenarios”, 
in proc. IEEE Vehicular Technology 
conference, Boston, USA, vol. 1, pp. 14-
21, Sept. 2000. 

[6] 3GPP, “Spatial Channel Model for MIMO 
Simulations,” TR25.996 V6.1.0, Sep. 
2003.  

[7] IEEE P802.11 Wireless LANs, "TGn 
Channel Models," IEEE 802.11-03/940r4, 
2004-05-10. 

[8] J. Tsai, R. M. Buehrer, and B. D. 
Woerner, “Spatial Fading Correlation 
Function of Circular Antenna Arrays with 
Laplacian Energy Distribution,” IEEE 
Comms. Letters, vol. 6, no. 5, pp.178-180, 
May 2002. 

[9] L. Xin and Z.-P. Nie, “Spatial Fading 
Correlation of Circular Antenna Arrays 
with Laplacian PAS in MIMO Channels,” 
International Symposium of IEEE 
Antennas and Propagation Society, vol. 4, 
pp. 3697–3700, 2004. 

[10] A. Forenza, D. J. Love, and R. W. Heath, 
"Simplified Spatial Correlation Models for 
Clustered MIMO Channels with Different 
Array Configurations," IEEE Transactions 

401MANGOUD, MAHDI: REALISTIC SPATIO-TEMPORAL CHANNEL MODEL FOR BROADBAND MIMO WLAN SYSTEMS



on Vehicular Technology, vol. 56, no. 4, 
pp. 1924-1934, July 2007. 

[11] Dantona, V., Schwarz, R.T., Knopp, A., 
Lankl, B., "Uniform Circular Arrays: The 
Key to Optimum Channel Capacity in 
Mobile MIMO Satellite Links," 5th 
Advanced satellite multimedia systems 
conference, pp. 421-428, 13-15 Sept. 
2010. 

[12] Suzuki, H., Hayman, D.B., 
Pathikulangara, J., Collings, I.B., Zhuo 
Chen, and Kendall, R., "Design Criteria of 
Uniform Circular Array for Multi-User 
MIMO in Rural Areas," IEEE Wireless 
Communications and Networking 
Conference, pp. 1-6, April 18-21 2010. 

[13] Bu Hong Wang and Hon Tat Hui, 
"Investigation on the FFT-Based Antenna 
Selection for Compact Uniform Circular 
Arrays in Correlated MIMO Channels," 
IEEE Transactions on Signal Processing, 
vol. 59, no. 2, pp. 739-746, Feb. 2011. 

[14] M. A. Mangoud "Capacity Investigations 
of MIMO Systems in Correlated Rician 
Fading Channel Using Statistical Multi-
Clustered Modeling," Applied 
Computational Electromagnetics Society 
(ACES) Journal, vol. 25, no. 2, 2010.  

[15]  D. Chizhik, et. al., “Effect of Antenna 
Separation on the Capacity of BLAST in 
Correlated Channels,” IEEE Comm. Lett., 
vol. 4, pp. 337–339, Nov. 2000. 

402 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011



Local Residual Error Estimators for the Method of Moments 
Solution of Electromagnetic Integral Equations 

 
 

Usman Saeed and Andrew F. Peterson 
 

School of Electrical and Computer Engineering 
Georgia Institute of Technology 
Atlanta, GA, 30332-0250, USA 

Email: usaeed@gatech.edu, peterson@ece.gatech.edu 
 
  

Abstract ─ Several methods for estimating the 
local (cell-by-cell) error associated with a method 
of moments solution of the electric field integral 
equation are investigated. Three different residual 
error estimators are used with a variety of 
prototype structures.  The global error estimates 
show reasonable correlation with the actual current 
density errors, and all three local error estimators 
correctly identify the high-error regions. Utility of 
the proposed error estimators is presented through 
a simple h-refinement technique. 
  
Index Terms ─ Adaptive refinement, boundary 
element method, method of moments, residual 
error.  
 

I. INTRODUCTION 
Electromagnetic field problems often involve 

the prediction of fields in the presence of 
complicated structures, and the solution of these 
problems usually rests upon computational 
procedures. Integral equation formulations have 
been widespread, and are discussed in several texts 
[1-3]. The typical numerical solution process 
involves creating a subsectional mesh model for 
the surface of any structures, representing the 
equivalent surface currents on that surface by a 
piecewise-polynomial basis, and imposing 
boundary conditions on the fields to construct a 
large linear system of equations. The solution of 
that system produces the coefficients of those 
polynomial basis functions. That process is known 
as the method of moments or the boundary element 
method. Although the numerical treatment of 
integral equations has steadily advanced for 

decades, adaptive refinement procedures have 
lagged behind other developments. Adaptive 
refinement is an approach where either (a) the 
mesh density, or (b) the polynomial degree 
employed in certain regions of the mesh, is 
automatically modified as required to improve the 
accuracy of the approach, without user 
intervention.  Such modification must be based on 
an estimate of the local error [4-11]. 

In the present study, we consider the 
transverse-electric (TE)-to-z electric field integral 
equation (EFIE) for two-dimensional conducting 
structures. The continuous equation being solved 
can be expressed as 

L J tan
 gtan ,  (1) 

where J , the electric current density, is the 
quantity of interest, and 

   2

(2)
0

1

1( ) ( ) ,
4

L J k
j

J t H k r r dt
j


 

  
  (2) 

g  Einc(r ) ,   (3) 
 

where Einc  is the given excitation, H0
(2)  is the 

zero-order Hankel function of the second kind, t 
and t  denote parametric variables along the 
contour of the structure, and r  is the position 
vector from t  to t on the contour.   

The numerical solution for the current density 
is obtained in terms of a representation in N basis 
functions 
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JN (t)  JnBn (t)
n1

N

 .   (4) 

The surface of the conducting scatterer is 
represented by flat facets, while the current density 
is represented by an expansion using piecewise-
linear or “triangle” basis functions {Bn(t)}  that 
are tangential to the surface. Each triangle function 
straddles two of the facets in the surface model. A 
weighted-residual approach is employed using 
piecewise-constant or pulse testing functions 
{Tm (t)} , also tangential to the surface and 
partially straddling adjacent cells, to construct a 
system of equations that may be expressed in 
matrix form as 

ZJ = E .    (5) 
The entries of the N by N system matrix and 

the N by 1 excitation vector are given by 
Zmn  Tm  L Bn   dt ,   (6) 

Em  Tm  g  dt .   (7) 

Other details of the numerical solution 
procedure, including approximations that were 
used in the computation of Zmn, are described in 
section 2.4 of [3]. 

Local error estimators are often based on 
residual error computations. Once the coefficients 
in (2) have been determined, the tangential 
residual associated with this numerical result can 
be written as 

Rtan (t)  L JN tan
 gtan .   (8) 

The residual error is known to correlate with 
the actual error e  J  JN  [12], and has formed 
the basis for determining solution error in various 
integral equation formulations [13-14]. However, 
it is relatively expensive to compute, since it 
usually must be evaluated using an approach that 
is independent from that used to construct the 
original linear system. 

In the following, we consider several different 
error estimators related to (8), and compare their 
performance and computational efficiency on a 
number of canonical scattering targets. 
 

II. TANGENTIAL RESIDUAL ERROR 
ESTIMATOR 

The TE EFIE imposes the tangential-field 
boundary condition 

0tan 
totE ,    (9) 

indirectly, by equating the average value of the 
residual in (8) over the domain of the testing 
function to zero. In other words, in the 
construction of the linear system in (5), equation 
(9) is imposed in an average sense by integrating it 
with a piecewise-constant testing function from 
the center of one cell to the center of the adjacent 
cell. In the preceding notation, this is equivalent to 
imposing 

Rtan (t)dt  0 ,   (10) 

over the domain of each pulse testing function. 
The residual in (10) provides a means to 

measure the error in a particular result, and is 
directly computable since it does not depend 
directly on the exact solution. However, if we 
compute the residual error in the same manner as 
was used to construct the linear system in (5), we 
do not obtain useful information since the 
equations are exactly satisfied. However, we could 
re-compute the residual error in a variety of ways 
to obtain an independent measure of the residual 
error. 

Consider the use of weighting functions that 
are centered within each cell with their widths 
made relatively small (1/5 of the cell width in this 
case). In that case, the residual error at the center 
of cell i may be obtained as 

Rt (ti )  Rtan (t)dt
small  domain  at  center  of  cell  i ,   (11) 

where Rtan  is computed from the previously-
obtained numerical values for the current density, 
using essentially the same subroutines as used to 
compute the matrix entries Zmn . 

The normalized tangential residual error in the 
ith cell may be defined as 

TRi
loc 

Rt (ti )
g max

,   (12) 

to provide a local measure of the error.  In (12), 
g max  denotes the maximum magnitude of the 

excitation (3) used in the residual calculation of 
(11). For a global measure of the error, we employ 
the 2-norm error obtained by summing (12) over 
all the cells in the model: 

TR2
glo 

1
N

(TRi
loc )2

i1

N

 .  (13) 
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As a consequence of the definition of the residual 
in (11), these error measures are relatively 
independent of the system of equations that led to 
the specific numerical solution being evaluated. 
 

III. NORMAL RESIDUAL ERROR 
ESTIMATOR 

In the preceding section, a residual error 
estimator was constructed based on enforcing the 
tangential field boundary condition. An additional 
boundary condition should be satisfied by the 
normal component of the total electric field at the 
surface of a perfect conductor, namely 

n̂  Etot 
s


,    (14) 

where s denotes the surface charge density at a 
point on the surface,  denotes the permittivity of 
the exterior medium, and n̂  is an outward-directed 
unit vector perpendicular to the surface. The 
boundary condition of (14) may be expressed in 
the form of an alternative residual 

  ˆ( ) ( )

ˆ{ ( ) }1 ,

N

N

N t n t L J g

d t t J
j dt

   

   (15) 

 

which uses 

s  
S  JN

j
 

1
j

d{t̂ (t) JN }
dt

.  (16) 

For ease of computation and employing the same 
subroutines used to build the matrix in (5), we 
orient the testing functions so that they are now 
normal to the cells, at the cell center, and compute 
the normal residual in the ith cell using 

NRi
loc 

1
g max

N(t)dn
perpendicular  to  cell  i ,    (17) 

where the testing domain is typically on the order 
of the cell size, and g max  denotes the maximum 
magnitude of the excitation used in the residual 
calculation of (15). The global error NR2

glo  is 
obtained in the same manner as equation (13). 

 
IV. ERROR ESTIMATION BASED ON 

AN OVER-DETERMINED SYSTEM OF 
EQUATIONS 

A third way to compute a residual is to set up 
and solve an overdetermined system of equations 

representing (1), by employing more testing 
functions (over smaller domains) than basis 
functions when constructing equation (5) [13-15].  
A least-squares approach can be used to obtain a 
solution that minimizes the error in the residual 
equations. Since the equations will not be exactly 
satisfied, the residual can be computed from the 
equations and used directly as a measure of the 
error in the numerical result [14]. 

We use an implementation where the cells are 
divided in half, each with a tangential testing 
function centrally located, to yield a 2N by N 
system 

Z2N N JN  E2N .   (18) 
Unlike [13], these equations are equally weighted. 
After the current coefficients are determined by a 
least-square solution, the residual function is 
computed as the matrix column vector  

inc
NNNNiOD EJZtR 22)(   . (19) 

The normalized tangential residual error at 
location i may be defined as 

ODRi
loc 

ROD (ti )
E2 N

inc
max

.   (20) 

A global function is obtained by summing over the 
2N locations in accordance with (13). We note that 
one could alternatively mix tangential and normal 
testing functions. 

 
V. SIMULATION RESULTS 

In the following, we compare the performance 
of the preceding three error estimators on several 
geometries. We also estimate the actual error in 
each numerical result by comparison to a 
numerical result obtained with a finer 
discretization of the target.  A local value for the 
normalized error in the i-th cell is obtained as 

NEi
loc 

Jref (ti )  JN (ti )

max Jref (ti )
,  (21) 

with the global estimate obtained following (13). 
Figure 1a shows the geometry of the first 

problem, which is a circular cylinder of 5λ 
circumference illuminated with two line sources 
placed (as shown) a distance of 0.1λ from the 
cylinder surface. For one of the line sources, the 
expression used for the incident E-field is given by 

(2)
1

ˆˆ ˆ2 ( ) .inc y y x xE j H k x y  
 

  
  

 
(22) 
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The region of the cylinder that is nearer to the 
line sources (φ = 180°) is expected to have more 
error in a typical numerical result for current 
density than the regions far away, since the current 
is more rapidly varying there. This is also 
observed, for example, in antennas near their feed 
region (and often motivates a higher discretization 
density in that region). Figure 1b shows the 
performance of the three residual-based error 
estimators for cylinder of figure 1a modeled with 
200 cells.  The reference solution in this case is the 
result obtained with 400 cells, and all three 
estimators predict a similar error pattern as the 
reference. All the estimators correctly identify the 
highest error region near φ = 180°. 

 

 
Fig. 1a. Geometry of the problem. 
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Fig. 1b. Local error for the problem of Figure 1a. 

 
Figure 1c shows a plot of the global error 

produced by the same estimators, as a function of 
the number of unknowns or cells used in the 
computations. The global residual error levels 
decrease at approximately an O(h) rate as the 
cylinder model is refined.  As discussed below, 
this is different from the rate at which the actual 

current density error decreases.  These rates agree 
with those observed in [14–15] for the TE EFIE 
and linear basis functions. 
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Fig. 1c. Global error for the problem of Figure 1a. 

 
Figure 2a shows a keyhole-shaped cylinder, 

consisting of sections of two circular cylinders 
connected by a region with parallel walls.  Figure 
2b compares the performance of the three residual-
based error estimators for a keyhole-shaped 
cylinder of 4.15λ total perimeter, modeled with 
300 cells, for the same double line source 
excitation used in Figure 1. The larger end of the 
target has a radius of 0.32λ, while the smaller end 
has a radius of 0.14λ. The circular segments have 
centers separated by 1.32λ. The reference solution 
is obtained using 600 cells.  There is a relatively 
large error level near the junction where the large 
circle meets the planar region (at 90° and 270°), 
and a larger error where the smaller circle meets 
the planar region (near 10° and 350°). The 
expected higher-error region at φ = 180° is 
correctly identified by the three estimators. Figure 
2c shows a plot of the global error, as the number 
of unknowns used in the computations is varied.  
The global residual error levels decrease at 
approximately an O(h) rate as the cylinder model 
is refined. 
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Fig. 2a. Geometry of the problem. 
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Fig. 2b. Local error for the problem of Figure 2a. 
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Fig. 2c. Global error for the problem of Figure 2a. 

 
Figure 3 shows the local error computed by 

the three estimators for the same keyhole-shaped 
cylinder as shown previously in Figure 2a, but 
with a uniform plane wave excitation instead of 
line sources. The plane wave impinges 
symmetrically upon the larger end of the scatterer. 
It is expected that the error will be uniform except 
near discontinuities in the surface, as is confirmed 
by Figure 3.  Error peaks near 10° and 90° angles 

correspond to curvature discontinuities where the 
circular regions meet the planar region of the 
surface. The higher spike corresponds to the 
sharper corner. Another interesting observation is 
that the error level gradually rolls off with 
increasing distance from the corner cells. The 
global error behavior is similar to that shown in 
Figure 2c and is not repeated here. 
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Fig. 3. Local error for the problem of Figure 2a for 
plane wave illumination. 

 
VI. h-REFINEMENT 

In this section, we demonstrate the utility of 
the tangential residual estimator presented in 
Section II to carry out adaptive h-refinement. This 
approach requires the cell size to be adaptively 
adjusted to control the error. The details of our h-
refinement scheme are as follows. First, an initial 
coarse solution for the current density J is 
computed. That solution is used to compute the 
local error using the tangential residual error 
estimator. Once the local error values have been 
computed, they are sorted in descending order to 
identify the cells with the largest error levels. The 
20% of those cells with the largest error are each 
divided into 3 cells, while each of the next 20% 
are divided into two cells. The remaining cells are 
left at their original size. After re-meshing, the 
problem is solved again to obtain a new solution 
for J, and a new local error estimate is obtained 
from the residual error. If the local error is still 
high or does not meet the user’s criteria, the above 
procedure may be repeated recursively. 

We implemented one iteration of the above 
procedure for a 5λ circumference cylinder 
illuminated with a pair of line sources as shown in 
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Figure 1a. The initial coarse solution was 
calculated for 100 cells and local error was 
computed. Based on the estimated local error 
values, a new mesh was created according to 
above scheme and is shown in Figure 4. The local 
error estimate computed before and after the 
adaptive refinement step is shown in Figure 5. 

The tangential residual estimator identified the 
region of largest error to be that near the line 
source excitation, as expected, and the h-
refinement step results in a large reduction of the 
tangential residual error in the refined region of 
the problem. Figure 6 shows the actual error in J, 
both before and after the adaptive refinement step, 
using (21) with a 600-cell solution for J as a 
reference.  

Figure 6 shows that the error in J is reduced 
by a factor of more than 3 in the refined regions.  
After only one step of adaptive refinement, the 
combination of the tangential residual estimator 
and the h-refinement procedure produces a more 
uniform error level across the problem domain 
than originally obtained with a uniform mesh. 
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Fig. 4. Mesh density after the refinement. 
 

VII. COMMENT ON THE GLOBAL 
ERROR RATES 

In practice, the error in moment method 
results is usually dominated by the ability of the 
basis functions to represent the actual current 
density.  For a piecewise-linear representation of a 
smoother function, this error should decrease at an 
O(h2) rate, where h is the nominal mesh size [3].  
The reference solution error plotted in Figures 1c 
and 2c appears to decrease at approximately that 
rate.  It has been observed in [14-15], and in 
Figures 1c and 2c, that for the TE EFIE operator, 

the residual error decreases at a rate that is one 
order less, an O(h) rate. This is apparently due to 
the TE EFIE operator, which contains one integral 
and two derivatives. We note that for the 
transverse-magnetic (TM) polarization, where the 
operator involves one integration and no 
derivatives, the EFIE residual error appears to 
decrease at a rate that is one degree faster than the 
current error. It appears that each integral 
increases the rate by one order while each 
derivative decreases the rate by one order, relative 
to that of the current density.  It has been observed 
that the residual error associated with the magnetic 
field integral equation (MFIE) decreases at the 
same rate as the current density error [14-15], 
while error in far field quantities may decrease at 
different rates from the current density for all these 
integral operators [14]. 
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Fig. 5: Local error estimate before and after h-
refinement. 
 

The different error rates may limit our ability 
to use residual error estimators to determine the 
absolute global level of current density error in a 
particular result.  Additional research is needed to 
address that issue.  Despite this limitation, the 
residual estimators appear to be able to provide a 
local error distribution suitable for an adaptive 
refinement algorithm. 
 

408 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011



0 50 100 150 200 250 300 350 400
10

-4

10
-3

10
-2

10-1

Angle in Degrees

Er
ro

r i
n 

J

 

 
Error in J Before Adaptive Refinement
Error in J After Adaptive Refinement

 
Fig. 6. Error in J before and after h-refinement. 

 
 
VIII. COMPUTATIONAL COST OF 

ESTIMATORS 
The relative computational cost of the 

estimators can be estimated as follows.  The 
baseline cost without error estimation is 

2 3
0 ,C N N     (23) 

where α and β are the constants associated with 
matrix fill and solve times, respectively. The 
tangential and normal estimators add an 
approximate cost of 

2,t nC C N    (24) 
since the residual computation in each case is 
comparable to an additional matrix fill. 

The overdetermined error estimator has an 
approximate cost of 

2 32 5 ,overC N N     (25) 
since the matrix has twice as many entries, and 
since the least-square solution of a 2:1 rectangular 
system is reported to require about 5 times the 
operations of the LU factorization of a square 
system [16]. 

Thus, all three estimators add a cost of αN2 
operations, but the overdetermined estimator 
requires an additional 4N3 operations beyond 
that.   Thus, the overdetermined estimator is more 
expensive than the others, especially for large N. 
 

IX. CONCLUSION 
Three residual-based error estimators were 

considered for providing a local error estimate in 
conjunction with the method of moments solution 
of electromagnetic integral equations. All three 

estimators successfully located higher-error 
regions in test problems. All appear to be suitable 
for use in adaptive refinement schemes.  The 
tangential residual and normal residual estimators 
have comparable cost and generally gave 
comparable results.  The overdetermined estimator 
also gave similar results, but requires additional 
computation compared to the others.  An example 
employing h-refinement was presented for 
illustration. 

It was noted that for the EFIE the residual 
error decreases at a different rate than the current 
density error as a function of the nominal cell size.  
At the present time, this limits the use of simple 
residual error estimators for predicting the 
absolute error associated with a particular result.  
Additional research is warranted to better 
understand the behavior of the various errors and 
determine more cost-effective ways of estimating 
those errors. 
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Abstract ─ For efficiently solving large dense 
complex linear systems that arise in the electric 
field integral equation (EFIE) formulation of 
electromagnetic scattering problems, a new 
adaptive preconditioning technique using fuzzy 
controller (FC) is introduced and used in the 
context of the generalized minimal residual 
iterative method (GMRES) accelerated with the 
multilevel fast multipole method (MLFMM). The 
key idea is to control the choice of the 
preconditioner to be used in an iterative solver by 
using fuzzy controller. This approach allows the 
expert knowledge to be taken into account on the 
controller design and utilizes feedback to tune the 
cores of the fuzzy set. Numerical results show that 
the best preconditioner can be selected while 
maintaining low cost for adaptive procedures. 
 
Index Terms ─ Adaptive preconditioning 
technique, electric field integral equation, fuzzy 
controller, multilevel fast multipole method.  
 

I. INTRODUCTION 
In electromagnetic wave scattering 

calculations, a classic problem is to compute the 
induced currents on the surface of an object 
illuminated by a given incident plane wave. Such 
calculations, relying on Maxwell’s equations, are 
crucial to the simulations of many industrial 
processes ranging from electromagnetic 
compatibility, antenna design, calculation of radar 
cross section (RCS), and so on. All of these 
simulations are very demanding in terms of 

computer resources, and require fast and efficient 
numerical methods, and approximate solution of 
Maxwell’s equations. Using the equivalence 
principle, Maxwell’s equations can be recast in the 
form of integral equations that relate the electric 
and magnetic fields to the equivalent electric and 
magnetic currents on the surface of the object. 

The integral formulation considered in this 
paper is electric integral equation (EFIE) [1]. It is 
widely used for electromagnetic wave scattering 
problems as it can handle the most general 
geometries without any assumption. However, the 
matrix associated with the resulting linear systems 
is large and dense for electrically large targets in 
electromagnetic scattering. It is basically 
impractical to solve EFIE matrix equations using 
direct methods because they have a memory 
requirement of O(N2) and computational 
complexity of O(N3), where N refers to the number 
of unknowns. This difficulty can be circumvented 
by using Krylov iterative methods, and the 
required matrix-vector product operation can be 
efficiently evaluated by multilevel fast multipole 
mehthod (MLFMM) [2]. The use of MLFMM 
accelerated Krylov methods reduce the memory 
requirement to O(N) and the computational 
complexity to O(NlogN). 

It is well-known that EFIE provides a first-
kind integral equation which is ill-conditioned and 
gives rise to linear systems that are challenging to 
solve by Krylov methods. Therefore, a variety of 
preconditioning techniques have been used to 
improve the conditioning of the system before the 
iterative solution. Simple preconditioners like the 
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diagonal or diagonal blocks of the coefficient 
matrix can be effective only when the matrix has 
some degree of diagonal dominance [3]. The 
symmetric successive over-relaxation (SSOR) 
preconditioner shows good performance in the 
conjugate gradient (CG) iterative method [4], but 
becomes poor for nonsysmmetric systems. 
Incomplete LU (ILU) decomposed preconditioners 
have been successfully used on nonsysmmetric 
dense systems in [5], but the factors of the ILU 
preconditioner may become very ill-conditioned. 
Approximate inverse methods are generally less 
prone to instabilities on indefinite systems [6], and 
several preconditioners of this type have been 
proposed in electromagnetism. It has been shown 
in [7] that this technique outperforms more 
classical approaches like incomplete 
factorizations. 

In this paper, we consider the performance of 
different predonditioners used in different 
problems. The choice of preconditioning methods 
suitable for one problem may not be the best for 
another one [13, 14]. Arbitrary selection in some 
cases lead to numerical problems like loss of 
convergence due to those initial choices. As an 
attempt for a possible remedy, a good choice of 
the preconditioner is made adaptively by a fuzzy 
controller after several iterations while 
maintaining low requirement for computer 
resource [8]. As a result, the idea of this work is to 
develop a general framework to dynamically 
change the parameters by taking into account the 
modeler knowledge. And the choices related to 
those preconditioning methods are considered as a 
control problem. 

This paper is organized as follows. Section II 
gives a brief introduction to the EFIE formulation 
and MLFMM. Section III describes the 
construction and implementation of the fuzzy 
controller in more details. Numerical experiments 
with a few electromagnetic scattering problems are 
presented to show the efficiency of the adaptive 
preconditioner by FC in Section IV. Section V 
gives some conclusions. 
 

II. EFIE Formulation and MLFMM 
The EFIE formulation of electromagnetic 

wave scattering problems using planar Rao-
Wilton-Glisson (RWG) basis functions for surface 
modeling is presented in [1]. The resulting linear 

systems from EFIE formulation after Galerkin’s 
testing are briefly outlined as follows: 

1
,        m 1,2,...,

N

mn n m
n

Z a V N


   (1) 

where 

2'

1( ) ( )[ ( , ') ( ')] 'mn m ns s
Z jk G dsds

k
   f r I r r f r   

1 ( ) ( ) .i
m ms

V ds


  f r E r  

Here, G(r, r′) refers to the Green’s function in free 
space and {αn} is the column vector containing the 
unknown coefficients of the surface current 
expansion with RWG basis functions. Also, as 
usual, r and r′denote the observation and source 
point locations. Ei(r) is the incident excitation 
plane wave, and η and k denote the free space 
impendence and wave number, respectively. Once 
the matrix equation (1) is solved by numerical 
matrix equation solvers, the expansion coefficients 
{αn} can be used to calculate the scattered field 
and RCS. In the following, we use A  to denote 
the coefficient matrix in equation (1), x = {αn}, 
and b = {Vm} for simplicity. Then, the EFIE 
matrix equation (1) can be symbolically rewritten 
as: 

Ax = b.                             (2) 
 

To solve the above matrix equation by an 
iterative method, the matrix-vector products are 
needed at each iteration. Physically, a matrix-
vector product corresponds to one cycle of 
iteractions between the basis functions. The basic 
idea of the fast multipole method (FMM) is to 
convert the interaction of element-to-element to 
the interaction of group-to-group. Here a group 
includes the elements residing in a spatial box. 
The mathematical foundation of the FMM is the 
addition theorem for the scalar Green’s function in 
free space. Using the FMM, the matrix-vector 
product Ax can be written as: 

 

Ax = ANx + AFx.                  (3) 
 

Here, AN is the near part of A and AF is the far 
part of A. 

In the FMM, the calculation of matrix 
elements in AN remains the same as in the MoM 
procedure. However, those elements in AF are not 
explicitly computed and stored. Hence, they are 
not numerically available in the FMM. It has been 
shown that the operation complexity of FMM to 
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perform Ax is 0(N1.5). If the FMM is implemented 
in multilevel, the total cost can be reduced further 
to 0(NlogN) [2]. 
 

III. ADAPTIVE PRECONDITIONER 
USING FUZZY CONTROLLER 

In this section, we show how fuzzy logic 
provides a methodology for representing and 
implementing the expert knowledge about how to 
control the process. In particular, we apply this 
methodology to control the process of 
preconditioner of an iterative solver. We first 
underline the main components and characteristic 
mechanisms of a FC. Afterwards, we present how 
to control the choice of the preconditioner using 
FC. 

First of all, the “early steps” is defined as the 
first several steps of the iterative solver. If the 
convergence rate of the iterative solver can be 
evaluated approximately by the early steps. Using 
this information, we could decide which 
preconditioner is the most suitable one to 
accelerate solution of the linear system. The key 
problem is how to evaluate the convergence rate 
from the early steps. In this paper, the residual of 
the iterative solver and the difference of the 
residual between two steps are used to evaluate 
this information. 

Generally, a preconditioner corresponding to 
the smallest residual at the first step can be 
considered as the best preconditioner. However, 
the largest difference of the residual between first 
two steps can be considered as the best 
precondioner. High order difference can also be 
used to describe the property of a preconditioner. 
Therefore, a fuzzy controller is used and shown in 
Figure 1. The process block is the object to be 
controlled. u(t) is the process input and y(t) is the 
process output. r(t) represents the desired target 
for the output of the process. The controller block 
is for changing the value of u(t) based on the 
controller input y(t) and the target r(t). The error as 
well as the rate of change-in-error defined as 

 

e(t) = r(t) – y(t),                     (4) 

     t t t
t

t t
 


 

e e
e ,            (5) 

 

where ∆t is the time between two consecutive 
data captured by the controller. In particular, 
∆t is set equal to one in an iterative solver. 

 
Fig. 1. Block diagram of a feedback fuzzy control. 
 

As a controller for the choice of the 
preconditioner when solving equation (2), the 
feedback fuzzy control system takes advantage of 
residual at each iterative step. u(t) is the 
preconditioner selected by controller, y(t) is the 
approximate solution and r(t) represents the right-
hand-side of the equation (2). As a result, ( )te  is 
the residual defined by 

e(t) = b – Ax(t).                       (6) 
Therefore,   /t t e  is the rate of change-in-
residual which means the difference of residual 
between two iterative steps. 

This fuzzy-logic-based approach allows expert 
knowledge to be taken into account on the 
controller design. A preconditioning method is 
selected by controller with the principle that the 
best preconditioner performs highest convergence 
rate for a given problem. After several iterations, 
the approximate convergence rate can be defined 
by using the high order difference of residual 
which shown as 

2 21/ /
2

t t       rate e e e      (7) 

Obviously, if the order equal to the total number of 
iterations, the rate can describe the convergence 
exactly. Due to the finite computer resource, we 
often use two or three iterative steps to compute 
the approximate rate. The formulations can be 
defined by 

/ t   rate e e ,                        (8) 
2 21/ /

2
t t      rate e e e .            (9) 

As a result, we choose the preconditoner with the 
largest convergence rate as a suitable 
preconditioning method. 

Assume that three preconditioning methods 
are available ranging from Jacobi, SSOR, and SAI 
(sparse approximate inverse). The main steps of 
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this preconditioning method are described as 
follows: 

Step 1: Construct the preconditioners by those 
three methods separately. 

Step 2: Do several iterations by Krylov 
iterative methods and note the residual and 
change-in-residual at each step. In this paper, the 
number of iterations is set to be 3. 

Step 3: Apply the FC to choose the best 
preconditioner. 

Step 4: Use the best preconditonier to 
complete the iteration. 

 
IV. NUMERICAL RESULTS 

In this section, we show some numerical 
results that illustrate the effectiveness of the 
proposed adaptive preconditioning method for the 
solution of large dense linear systems arising from 
the discretization of the EFIE formulation in 
electromagnetic scattering problems. In our 
experiments, the restarted version of GMRES(m) 
[9] algorithm is used as an iterative method, where 
m is the dimension size of Krylov subspace for 
GMRES. Additional details and comments on the 
implementation are given below: 

(1) Zero vector is taken as initial approximate 
solution for all examples. 

(2) The maximum number of iterations is 
limited to be 2000. 

(3) The iteration process is terminated when 
the normwise backward error is reduced by 310  
for all examples. 

We investigate the performance of the 
adaptive preconditioner using a fuzzy controller on 
four examples, which is shown in Figs. 2-5. They 
consist of an almond with 1815 unknowns at 
3GHz, a double ogive with 2574 unknowns at 
5GHz, a cube with 3366 unknowns at 350MHz, 
and a sphere with 3972 at 200MHz. The first two 
geometries come from [10], the side length of the 
cube is 1m and the radius of the sphere is also 1m. 
The numerical results of bistatic RCS for 
horizontal polarization are also displayed in Figs. 
2-5 for these four geometries. All experiments are 
performed on a Pentium 4 with 2.66 GHz CPU 
and 960MB RAM in single precision. 
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Fig. 2. Bistatic RCS for horizontal polarization at 
3GHz for NASA Almond. 
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Fig. 3. Bistatic RCS for horizontal polarization at 
5GHz for double-ogive. 
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Fig. 4. Bistatic RCS for horizontal polarization at 
350MHz for PEC cube. 
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Fig. 5. Bistatic RCS for horizontal polarization at 
200MHz for PEC sphere. 
 

Figures 6-9 show convergence history of 
GMRES(m) algorithms with different 
preconditioners for all examples. It can be 
observed that the adaptive preconditioned GMRES 
has almost the same convergence history as that of 
the optimal preconditioner. 

Since a good preconditioner depends not only 
on its effect on convergence but also on its 
construction and implementation time. Tables 1-4 
list the construction time and total solution time of 
GMRES algorithms with different preconditioners 
on all examples. According to these results, we 
can easily find that the proposed adaptive 
preconditioning method using FC requires more 
construction time than other preconditioners. As a 
control method for the choice of preconditioners, 
the adaptive preconditioner has to prepare all of 
the preconditioners for choice. Therefore, large 
time costs during the process of construction of all 
the preconditioners. However, the new method 
shows its efficiency on convergence in these 
examples. Furthermore, the initial time of an 
adaptive preconditioner is negligible when 
compared with the total CPU time cost in 
monostatic RCS computation. Therefore, this 
proposed method is suitable for analysis of 
monostatic scattering. 
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Fig. 6. Convergence history of GMRES algorithms 
with different preconditioners on the almond 
example. 
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Fig. 7. Convergence history of GMRES algorithms 
with different preconditioners on the double-ogive 
example. 
 

1.E-3

1.E-2

1.E-1

1.E+0

0 50 100 150 200 250 300
Matrix Vector Product

R
es

id
ua

l N
or

m

Jaccobi
SSOR
SAI
FC

Fig. 8. Convergence history of GMRES algorithms 
with different preconditioners on the cube example. 
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Fig. 9. Convergence history of GMRES algorithms 
with different preconditioners on the sphere 
example. 
 
Table 1: Comparison of the cost and performance 
of different preconditioners on the almond 
example (Time: Second) 

Almond Construc- 
time 

Number 
of 

Iterations 

Sol-
time 

Total 
-time 

Jacobi / 552 31.73 31.73 
SSOR / 449 28.25 28.25 
SAI 18.42 23 1.61  20.03 

FC-AP 25.45 27 1.77  27.32 
 
Table 2: Comparison of the cost and performance 
of different preconditioners on the double-ogive 
example (Time: Second) 

Double 
ogive 

Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total- 
time 

Jacobi / 229 22.94 22.94 
SSOR / 187 20.56 20.56 
SAI 11.61 26 2.86 14.47 

FC-AP 16.77 30 3.19 19.96 
 
Table 3: Comparison of the cost and performance 
of different preconditioners on the cube example 
(Time: Second) 

Cube Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total 
-time 

Jacobi / 308 33.38 33.38 
SSOR / 249 29.91 29.91 
SAI 23.02 31 3.17 26.19 

FC-AP 33.45 35 3.48 36.93 
 

Table 4: Comparison of the cost and performance 
of different preconditioners on the sphere example 
(Time: Second) 

Sphere Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total-
time 

Jacobi / 195 31.44 31.44 
SSOR / 241 42.02 42.02 
SAI 17.33 31 5.48 22.81 

FC-AP 24.72 35 5.98 30.70 
 

V. CONCLUSIONS AND COMMENTS 
In this paper, a fuzzy controller is presented 

and used for building robust adaptive 
preconditioning method for efficiently solving 
large dense linear systems that arise in EFIE 
formulation of electromagnetic scattering 
problems. The main idea is to make a choice of 
preconditioners which performs the highest 
convergence rate. Numerical experiments on 
several examples are preformed and comparison 
with general preconditioners are made, which 
shows the new method is more efficient. 
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Abstract ─ In this paper, a multilevel Green’s 
function interpolation method (MLGFIM) 
combined with multilevel fast multipole method 
(MLFMM) is presented for solving the 
electromagnetic scattering from the objects with 
fine structures. In the conventional MLFMM, the 
size of the finest cube must be larger than a 
definite value, which is typically 0.2 λ; it often 
generates a large number of unknowns in each 
finest cube especially for objects with fine 
structures. Accordingly, it requires a lot of 
memory to store the near-field impedance matrix 
in MLFMM. In order to decrease the memory 
requirement of the near-field matrix in the 
MLFMM, the MLGFIM is introduced to calculate 
the near-field interactions. The number of 
unknowns in each cube can be less than a required 
number regardless of the size of the cube in the 
MLGFIM. To further reduce the computational 
complexity, many recompressed techniques, such 
as the adaptive cross approximation (ACA), QR 
factorization, and singular value decomposition 
(SVD), are applied to compress the low rank 
Green’s function matrix for speeding up the 
matrix-vector multiplication. Numerical results are 
given to demonstrate the accuracy and efficiency 
of the proposed method. 
  
Index Terms - Multilevel fast multipole method 
(MLFMM), multilevel Green’s function 
interpolation method(MLGFIM), QR 
factorization. 
 

I. INTRODUCTION 
The method of moment (MoM) [1-2] has 

found wide-spread application in a variety of 
electromagnetic radiation and scattering problems, 
When the number of unknowns is small, the 
resultant matrix equations in MoM can be solved 
directly with computational complexity of O(N3), 
where N is the number of unknowns. For moderate 
scale problems, the matrix equations are often 
solved by iterative solvers, such as the conjugate 
gradient method (CG), and the biconjugate 
gradient method (BiCG), with O(N2) operation for 
each matrix-vector product (MVP). The memory 
requirement is O(N2) for both the direct and the 
iterative solvers. The complexity of the direct or 
iterative solvers mentioned above blocks their 
application to the analysis of scattering from 
electrically large objects, the MoM can only be 
used for small scale problems. In recent years, the 
fast multipole method (FMM) [3-5] has been 
developed to accelerate the MVP with complexity 
of O(N1.5). With the multilevel fast multipole 
algorithm (MLFMM) [6-10], the complexity is 
further reduced to O(NlogN); this represents an 
impressive improvement as compared with 
conventional O(N3) or O(N2) techniques. By using 
the MLFMM, a common PC can solve problems 
which only can be solved by supercomputer in the 
past. 

The MLFMM can be applied to almost all 
electromagnetic problems, such as microwave 
circuits, antennas, scattering targets, etc. However, 
it is still very challenging to apply the method to 
objects with fine structures. Accurate 
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discretization produces a large number of 
unknowns in each of the finest cubes. 
Accordingly, the near-field interaction matrices 
grow rapidly with the surface discretization 
density. The time used to calculate the near-field 
impedance matrix is also very long. Therefore, for 
the objects with fine structures, the MLFMM still 
challenged by the CPU time and memory 
requirement. It is necessary to further improve the 
efficiency of the MLFMM. 

In order to overcome the bottleneck of 
conventional MLFMM in the near-field for the 
objects with fine structure, a multilevel Green’s 
function interpolation method (MLGFIM) [11-16] 
combined with the MLFMM (MLGFIM-
MLFMM) is proposed in this paper. The 
MLGFIM enables a highly compact representation 
and efficient numerical computation of the dense 
matrices when the source and observation cubes 
are well separated. The complexity of storage 
requirements and the MVP of the MLGFIM is 
approximately 1( )O C N  as shown in [16] while the 
complexity is 2( log( ))O C N N  for the MLFMM as 
shown in [6]. By comparing the numerical results 
of [6] and [16], the coefficient of 1C  is much 
larger than 2C . This is because when applying the 
MLGFIM into a full wave electromagnetic 
problem, the number of interpolation points must 
be enlarged to keep the accuracy of the Green’s 
function when the cube size increases. A large 
number of interpolation points drastically reduce 
the efficiency of the MLGFIM. However, the 
MLGFIM has its own merit. Compared with 
MLFMM, the octree in MLGFIM can be split until 
the number of unknowns in each cube is less than 
a required number regardless of the cube size. The 
octree structure is the same as in the low-
frequency fast multipole method (LF-FMM) [17]. 
In this paper, the MLGFIM is used to calculate 
part of the near-field interaction for reducing the 
memory requirement of the near-field while the 
MLFMM is used to calculate the far-field 
interaction. In contrast to the conventional 
MLFMM, the augmented MLFMM make the 
near-field memory requirement reduce greatly, this 
idea makes the objects with fine structure 
problems solvable by MLGFIM-MLFMM. 

The remainder of this paper is organized as 
follows. Section II gives a brief introduction to the 
electric field integral equation (EFIE) and the 

Lagrange interpolation in MLGFIM. The ACA 
technique, QR factorization, and SVD 
factorization is employed to compress the low 
rank Green’s function matrix to accelerate the 
MVP. Section III presents the numerical results 
that demonstrate the accuracy and efficiency of the 
proposed method. Finally, some conclusions are 
given in section IV. 

 
II. THEORY 

Consider a three-dimensional electromagnetic 
problem; the object is illuminated by an incident 
wave 


iE  that induces current 


sJ  on the 

conducting surface. The current satisfies the 
following electric-field integral equation: 

tan| [ ( ') ( , ')i ss
E j J r g r r 
          

tan( ' ( ')) ' ( , ')] 's
j J r g r r ds


  

   
               (1) 

In which Green’s function
'

( , ')
4 '

jk r reg r r
r r

 




 
 

  , ω is 

the angular frequency, and k is the wave number 
which is   .   ,   are the free space 
permeability and permittivity, respectively. The 
second “tan” denotes the component that is 
tangential to the conducting surface S . By 
expanding the unknown surface current density 


sJ  

using Rao-Wilton-Glisson (RWG) basis functions 
and applying Galerkin’s method on (1) gives a 
MoM equation: 

Zx V                                  (2) 
where 

'[ ( ) ( ')mn m ns sm n
Z ds ds j J r J r  

   

 
( ( ))( ' ( '))] ( , ')m m

j J r J r g r r


   
     

 (3)  

and 
( ) ( )

m
m m is

V J r E r ds 
   

                      (4) 

Here, Z  is the impedance matrix, x are the 
coefficients of the induced current expanded in 
RWG basis functions, and V  is the vector of 
incident field. The dimension of Z  is often as high 
as millions for electrically large EM scattering 
problems. This blocks the MoM application to the 
analysis of scattering from electrically large 
objects. The FMM and its multilevel version, 
MLFMM has been developed to accelerate the 
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MVP, lower the memory requirement to O(N1.5) 
and O(NlogN). The process of the MVP in 
MLFMM is splitted in two parts as  

.NF FFZ x Z x Z x                                  (5) 
Here, the first term NFZ  is the interactions from 
the nearby cubes, and is calculated directly by 
MoM. While the second term FFZ  is the 
interactions from the well-separated cubes which 
are computed in a group-by-group manner by 
MLFMM. The computation of NFZ x  is done 
directly, while the computation of FFZ x  is done in 
three stages called the aggregation phase, the 
translation phase, and the disaggregation phase 
which are contributions from far-field interaction 
computation. These steps are now well 
documented and we refer the reader to consult the 
literature [6-8] for more details. 

For the objects with fine structures, a 
straightforward MoM for computing the near-field 

NFZ  is very expensive. Our approach is to 
approximate part of NFZ  by a matrix which can be 
stored in a data-sparse format; The MLGFIM is 
introduced in MLFMM to descript part of the 
near-field matrix by a sparse matrix format leading 
to a significant reduction in the near-field memory 
requirement.  
 

A. Data-sparse representation of the low-rank 
matrix 

Here, the free space Green function 
'( , ') / 4 'jk r rg r r e r r 

 
    

 is considered. 

r means 

the field point located in cube m  and 'r


means the 
source point located in cube n . If cube m and cube 
n are two well-separated cubes, the Green function 

'( , ') / 'jk r rG r r e r r 
 

    
can be interpolated using 

Lagrange interpolation technique, it can be written 
as 

, , , ,
1 1

( , ') ( ) ( ') ( , ' )
m n

K K

m p n q G p G q
p q

G r r r r G r r 
 

 
   

     (6)       

where , ( )


m p r and , ( ')


n q r are the pth  Lagrange 
interpolation points in cube m and qth  Lagrange 
interpolation points in cube n , , pmr denotes the  
Lagrange interpolation in cube m . K  is the 
number of interpolation points in cube m or n , 

, ,( , ' )p qm nG r r is the Green’s function matrix 

generated from interpolation point ,'
n qr in cube n  

to interpolation point , pm
r  in cube m ,substituting 

(6) into (3) gives : 
, , , ,

1 1
( , ' ) ( ) ( ) ( ') ( ') '

4

k k

mn p q m m p n n qm n s sm np q

jZ G r r J r r ds J r r ds  
  

    
     

, , , ,
1 1

( , ' ) ( ) ( ) ' ( ') ( ') '
4

k k

p q m m p n n qm n s sm np q

j G r r J r r ds J r r ds 
  

    
     
   (7) 

The submatrix mnZ can be represented in a 
factorized form 

,
, Tt s

t t s sZ W G W                         (8) 
where   1 2   

t t tW W W ， 1 2
s s sW W W     

,

1,
,

2

0

0

t s

t s
t s

G
G

G

 
   

 

                              (9) 

1 2,  mM Kt tW W    1 2
 nM Ks sW W   

, ,

1 2, 
t s t s

K KG G  
And 

1 ,( ) ( )
t

mp m m psm
W J r r ds 

  
   

2 ,( ) ( )
t

mp m m psm
W J r r ds 

  
  

1 ,( ') ( ') '
s

nq n n qsn
W J r r ds 

  
  

2 ,' ( ') ( ') '
s

nq n n qsn
W J r r ds 

  
 

,
1 , ,( , ' )

4

t s
pq p qm n

jG G r r



    

,
2 , ,( , ' )

4

t s
pq p qm n

jG G r r



                                  (10)
 

where mM and nM  denote the number of 
unknowns in cube m and n . p  is the number of 
interpolation points along each direction, in 
which 1, 2,3d , for 1-, 2-, and 3-D problems, 

respectively. Clearly, the rank of matrix 
,t s

Z  is at 
most 2×K regardless of the cardinality of t  and s , 
it is obvious that if min( , ) m nK M M , the 

computing of mW , nW  and mnG will be significantly 
faster than that of mnZ . Both the memory 
requirement and the matrix filling time are greatly 
reduced. 

From above, we know that the MLGFIM is a 
rank-based method; it is realized by using the 
Lagrange interpolation technique in Green’s 
function when the source and observation cubes 
are well separated. Applying the MLGFIM to the 
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low-ranked impedance matrix will result in 
significant memory reduction and computational 
time savings. For this, a cube tree is first needed to 
construct. We first enclose the entire object in a 
large cube, and then the cube is partitioned into 
eight smaller cubes. Each subcube is recursively 
subdivided into eight smaller cubes until the finest 
cubes satisfy the termination criterion. For 
MLFMM, the finest cube size is about half a 
wavelength. After constructing a tree, numerical 
operations can be performed on it. Two cubes are 
well separated if the ratio of the cube-center-
distance to the cube size is greater than or equal 2. 
The impedance matrix between them is low-
ranked. Otherwise, they are near each other, share 
at least one edge point, and the impedance matrix 
is full-ranked. This will cost a lot of CPU time and 
memory for the near-field computation if the 
number of unknowns contained in every cube is 
large. By the MLGFIM technique in the near-field 
computation, we can continue to subdivide the 
cube tree until the number of unknowns in each 
cube is less than or equal to a given number which 
is a parameter to control the tree depth. Therefore, 
the number of basis functions contained in every 
cube is reduced a lot, the MoM for the near-field 
computation is reduced; part of the near-field in 
MLFMM now can be computed by MLGFIM. In 
order to explain the implementation of the 
MLGFIM in the near-field computation in the 
MLFMM clearly, a brief description of its 
workflow is presented in the following. 

As a simple example, a PEC plate is considered 
as shown in Fig. 1; it is a 1 λ wide square plate. 
With MLFMM, a 2-level division is used. The 
finest cube size is 0.25 λ, the line-filled cubes are 
the neighbors of cube 5, and the interaction 
between them is computed by MoM and stored in 
memory. The other cubes are the far-field of cube 
5, the interaction between them is computed by the 
MLFMM. With the MLGFIM in the near-field 
computation, the cubes at level-2 are subdivided 
into cubes at level-3. Therefore the number of 
basis functions contained in every cube at level-3 
reduced to about one-fourth of the original 
compared with the cube at level-2. Cube 5 at level-
2 is the parent of cube 6 at level-3, with the 
MLFMM all the line-filled and the darkened cubes 
at level-3 are the near-field of cube 5 at level-2. 
While with MLGFIM at level-3, the interaction 
between the Cube 6, and the darkened cubes are 
computed by MoM; the interaction between the 

Cube 6 and the line-filled cubes are computed by 
MLGFIM. Therefore, the total near-field 
computation in the MLFMM is decomposed into 
two parts by using MLGFIM. One part of the near-
field is computed directly by the MoM, the other is 
computed by MLGFIM. From above, we know 
that the MLGFIM is a rank-based method; 
applying the MLGFIM to the low-ranked 
impedance matrix will result in significant 
memory reduction and saves computing time. 
Therefore, the total near-field memory 
requirement is reduced in MLFMM. 

 
B. Lagrange interpolation technique in the 
Green’s function 

The rank-deficiency of the proposed method is 
realized by the interpolation of the Green’s 
function technique. Therefore, the accuracy 
analysis of the Green function interpolation 
technique is very important. From [11], it can be 
seen that for static problems or problems having 
small electric sizes, the number of interpolation 
points K in every cube keeping constant at all 
levels can keep the accuracy across all levels of a 
cluster tree. However, for full-wave problems, the 
use of constant rank cannot keep the accuracy to 
the same order when the size of the cube increases. 
This can be analyzed as below. 

 In MLFMM, we known that the lower the tree 
is, the larger the cube size is. The phase of the 
Green’s function oscillates rapidly when the 
separation between the cubes increases. Obviously 
to accurately compute the Green’s function 
between two points in two well separated cubes, 
the number of interpolation points should be 
increased when the frequency increases or when 
the sizes of the cubes increase. Consequently, to 
employ the MLGFIM to the full-wave problem, 
K should be replaced by lK , in which subscript l  
denotes the level index. lK  means the number of 
interpolation points in every cube at level l . Since 
increasing frequency is equivalent to increasing 
the tree depth, in order to keep the same order of 
the accuracy across all tree levels, the interpolation 
points lK  should be increased when the size of the 
cubes increase. From paper [12], we observe that 
when the electric sizes of the cubes are smaller 
than 0.2λ, for each variable, only 3 points are used 
as the interpolation points, a total of 27 
interpolation points in a cube are sufficient to get a 
higher accuracy. While the size of the cube 
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increases to 2 λ, to constrain the error to 0.0135, 
1000 interpolation points should be used, a large 
number that will drastically reduce the efficiency 
of the MLGFIM. Hence in this paper, the Green’s 
function interpolation technique is just used in the 
near-field computation where the electric size of 
the cube is small. Few interpolation points can get 
a higher accuracy and efficiency. The accuracy 
and efficiency retains the same in a wide range 
when the electric size of the cube is smaller than 
0.2 λ;  

 

 
Fig. 1. A three level octree structure. 

 

C. Lower-to-upper level interpolation 
The MLGFIM is used in this paper to calculate 

part of the near-field defined in equation (5). 
Therefore, the near-field part in (5) can be written 
as the following form: 

                  

1

LNF NFl
l L

Z x Z x


                          (11) 

In (11), the term NFZ  denotes the total near-field 
in the MLFMM which are calculated by MoM. 
The first term LNFZ denotes part of the near-field in 
MLFMM which is calculated by MoM at the finest 
level of the MLFMM-MLGFIM, the second term 

1



 l
l L

is part of the near-field which is calculated 

by the MLGFIM. These two terms combined 
together form the total near-field in MLFMM. L is 
the number of levels which the MLGFIM 
technique is used for computing the near-field , 
The core in MLGFIM is to calculate the second 
term defined in equation (11). According to the 
tree structure used in MLFMM-MLGFIM, the 
near-field NF LZ  in (11) can be expressed as 

, ; , ,
,

 of ,

( )NF m L n LL L L n LL
Gn LL

Neighbors
Gm LL

Z Z x


                (12-a) 

, ; , ,

Interaction List
of 

, 1, 1 ,

, , 1, 1

l m L n L n L
G G G

G G G

L L L
n n nl l l l L L

m n l n Ll l l L

A x


 
 



         (12-b) 

The term , ; ,m L n LL L
A  in (12-b) can be written as 

the following for 

, ; , , , ; , ,L L L L L L

T
m L n L m L m L n L n LA W G W             (13) 

For two well-separated cubes , 11 m LL
G and 

, 11 n LL
G  at level 1L , cube ,m LL

G  is the child of 
cube , 11 m LL

G and cube ,n LL
G  is the child of 

cube , 11 n LL
G , the Green’s function matrix 

, ; ,m L n LL L
G  can be interpolated using the 

interpolation matrix , 1; , 11 1  m L n LL L
G . 

, ; , , 1; , 1, 1; , 1 11

T
m L n L m L n LL L m L m L L LL L

G C G    
              

, 1; ,1n L n LL L
C


          (14) 

, 1; ,1n L n LL L
C


 is the lower-to-upper interpolation 

matrix defined in  [11], performing the Green’s 
function interpolation recursively, (14) becomes 

, ; , , ; ,, 1; , , ; , 11 1
T T

m L n L m l n lL L m L m L m l m l l lL L l l
G C C G

  
          

, ; , , 1; ,1 1n l n l n L n Ll l L L
C C

 
             (15) 

Substituting (15) and (13) into (12-b) gives (16) 
Let 

, , , T
n L n L n LL L L

S W x    and 

, , 1, ; , 11
,1, 1


 

 n l n ll n l n l ll lG Gn n ll l l

S C S           (17) 

,n ll
S  here is just a symbol for recurrence without 
any means, Hence (16) can be rewritten as 

, , 1; , , ; , 11 1
T T

l m LL m L m L m l m lL L l l
W C C

  
    

, ; , ,
Interaction,

 List of ,

m l n l n ll l l
Gnl l

Gml l

G S


      (18) 

Let 
        

, , ; , ,
Interaction,

 List of ,

m l m l n l n ll l l l
Gnl l

Gml l

G S


           (19)                     

Hence 

, ,, 1; , , ; , 11 1
T T

l m L m lL m L m L m l m l lL L l l
W C C 

  
  

 
(20) 
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Substituting (20) into (11) and let 

, , , 1, 1; , 11
T

m l m l m ll l m l m l ll l
B C B  

    , 1 1,1 ,1m mB  (21) 
Substituting (21) into (20) recursively gives (22). 
Hence the formula for MLGFIM algorithm is 

derived, what we want is to compute ,m LLB , which 
can be obtained using recurrence (22) from the top 
level to the finest level of the cluster tree. At the 
top level of the MLGFIM 

1 1,1 ,1m mB  is obtained 
using (22) from the finest level to the top level of 
the tree. Thus the procedure of the MVP of 
MLGFIM is similar to the MVP of MLFMM. (17) 
Is similar to the procedure in upward pass of 
MLFMM, (19) is similar to the procedure of 
shifting phase of MLFMM and (22) is similar to 
the procedure in downward pass of MLFMM. The 
difference is that our method uses Green’s 
function interpolation instead of multipole 
expansion in each step. Equation (15) indicates 
that the Lagrange interpolation matrix of a cube 
can be interpolated using the Lagrange 
interpolation matrix of its child. For any other 
non-leaf cluster, we can directly use the 
contribution from its eight sons to obtain the result 
of MVP without any additional operations. This 
property is an important factor that enables us to 
reduce the complexity of MLGFIM. 
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( (

( ( ( )))))

( (

(

T T
m L m L m LL L m L m L L m l m lL L l l
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

            

, ,m L m LL LW B                                                  (22) 
 

D. Compression of the Green’s function 
matrices using ACA, QR factorization, SVD 

For any two well-separated cubes m  and n  at 
the same level, the Green’s function matrix 

( , )m nG r r is a K K  full matrix. Since, the Green’s 
function matrix represents interactions between 
the interpolation points of two well-separated 
cubes, it is low rank. In order to reduce the 
computational complexity of MLGFIM, the ACA 
[13-14], QR factorization [15-16], and SVD, are 

used to compress the Green’s function matrix as 
data sparse representation, which brings a great 
advantage in the MVP operation , ; , ,m l n l n ll l lG S .  

Let the K K  rectangular matrix ( , )m nG r r  
represent the interactions between the 
interpolation points of two well-separated cubes 
m and n , the ACA allows the low rank Green’s 
function matrix ( , )m nG r r to be represented by only 
a few rows and columns of ( , )m nG r r  to obtain the 
numerical representation from namely, 

 ( )
K K K r K r HG A B
                (23) 

where the number of terms r is much less than K , 
K rA and K rB  are two dense rectangular matrices. 

The goal of the ACA is to achieve 
 

    
K KK K K K K KR G G G for a given 

tolerance  , where R  is termed as the error 
matrix. . refer to the matrix Frobenus norm.  If 

min( , )r m n , then a significant reduction in MVP 
can be accomplished. For the matrix U andV , we 
can continue to use QR decomposition technique 
to compress it 

1 1
K r K r r rA Q R                          (24-1) 

2 2
K r K r r rB Q R                      (24-2) 

Then, the matrix  K K
G can be expressed as the 

following form 


1 1 2 2

1 1 2 2

( ) ( )

( ) ( )

K K K r r r H K r r r K r r r H

K r r r r r H K r H

G A B Q R Q R
Q R R Q

      

   

 


         (25) 

Here, we let 1 2( )  r r r r r r HW R R , using singular 
value decomposition (SVD), 

r r r r r r r rW U S V                           (26)  
where U and V are orthonormal matrices, and S  
is the diagonal matrix whose elements are the 
nonnegligible singular values of r rW  , it can be 
written as 1 2 3( , , , )rS diag      . We discard 
those normalized values which fall below the 
threshold; typically chosen threshold to be 310 , 
the columns of U and V corresponding to 
negligible singular values of S  are discarded. 
Then, the matrix  K K

G can be written as the 
following 
 


1 1 2 2( ) ( )

K K K r r r r r H K r HG Q R R Q
      

1 1 1 1
1 2( )K r r r r r r r K r HQ U S V Q      (27)  
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Let 
1 1 1 1

1 1
   K r K r r r r rA Q R S  and  

1 1
2( )r K r r K r HB V Q    

then 
 1 1K K K r r KG A B

                              (28) 
Usually the compressed matrices rank 1r  is much 
smaller than the number of interpolation points K . 
This brings a great advantage in the MVP because   

1 1K KK K K r r KG S A B S                              (29) 
When 1 r K , to calculate 1 1 KK r r KA B S     is 

much faster than to calculate  K K KG S . Table 1 
lists the corresponding average numerical ranks of 
Green’s function matrices with different sizes of 
the cube. We can see that the corresponding 
numerical ranks are very small. Thus, a high 
compression of the Green’s function matrices is 
obtained. 

 
III. NUMERICAL RESULTS  

In this section, three examples are presented to 
demonstrate the benefits of the proposed method. 
All the simulations are performed on a computer 
with 2.8GHz CPU and 2 GB RAM. The 
terminating tolerances of the ACA and SVD are 
set as 0.001   and 0.001  , respectively. The 
resulting linear systems are solved iteratively by 
the GMRES (30) solver with a relative residual 
of 310 . 

First, the proposed method is used to analyse 
scattering from a PEC sphere of radius 0.5 λ, its 
surface is discretized with 6312, 11649, and 25944 
unknowns, respectively. The finest cube size is 
0.25 λ in MLFMM, two-level MLGFIM are added 
to calculate part of the near-field of the MLFMM. 
The finest cube size is 0.0625 λ in MLFMM-
MLGFIM. Figure 2 shows the bistatic radar cross-
section (RCS) results obtained from the MIE 
series and the MLFMM-MLGFIM. It can be seen 
from Fig. 2, that the result from the MLFMM-
MLGFIM has good agreement with the MIE 
series. Table II lists the near-field memory 
requirement, the matrix filling time and MVP time 
of MLFMM and MLFMM-MLGFIM for different 
discretizations. The time and memory requirement 
in computing the near-field impedance matrix in 
MLFMM-MLGFIM includes two parts. The first 
part denotes the time and memory requirement in 
computing the part of the near-field matrix by 
MoM, while the second part denotes the time and 

memory requirement in computing part of the 
near-field matrix by MLGFIM.  It can be seen 
from Table 2 that the memory requirement and 
filling time of the near-field matrix in MLFMM-
MLGFIM is significantly reduced as the number 
of unknowns increases compared with MLFMM.  

The second example is a PEC ogive, whose 
length and maximum radius is 2λ and 0.5 λ. The 
ogive is discretized with 11874 and 18876 
unknowns, respectively. 1-level MLGFIM is 
added to calculate part of the near-field interaction 
when the number of unknowns is 11874, the finest 
cube size is 0.125 λ. 2-level MLGFIM is added to 
calculate part of the near-field interaction when 
the number of unknowns is 18876, the finest cube 
size is 0.0625 λ. Figure 3 is the bistatic RCS of the 
ogive computed by MLFMM and MLFMM-
MLGFIM. It can be seen from Fig. 3 that the 
proposed method agrees well with the MLFMM 
results. Table 3 lists the near-field memory 
requirement, the near-filed impedance matrix 
filling time, and the MVP time needed by 
MLFMM-MLGFIM and MLFMM for different 
discretizations. It can be seen from Table 3 that the 
memory requirement by the MLFMM-MLGFIM 
can be saved by a factor of 4.1 with one-level 
MLGFIM when the number of unknowns is 
11874. The flaw for the MLFMM-MLGFIM is 
that the MVP time is 1.9 while the MLFMM is 
1.07s. The near-filed matrix filling time and 
memory requirement can be saved by a factor of 
16.8 and 14.2 with two-level MLGFIM when the 
number of unknowns is 18876. Again, it can be 
seen that the MLFMM-MLGFIM can greatly 
reduce the near-filed memory requirement and the 
matrix filling time compared with MLFMM. 

The last example is a VIAS structure as shown 
in Fig.4, the electric size of the VIAS structure 
is 1.2 1 1    , it is discretized with 10609 and 
15305 unknowns, respectively. For MLFMM, a 2-
level division is used since the finest cube size is 
0.30 λ. For MLFMM-MLGFIM, a 4-level division 
is used. The finest cube size is 0.075 λ. A 2-level 
MLGFIM is added to calculate part of the near-
field interaction. Good agreement is achieved as 
shown in Fig. 4. Table 4 lists the comparison of 
the near-field memory requirement, the near-filed 
matrix filling time, and the MVP time between the 
MLFMM-MLGFIM and MLFMM for the two 
above discretizations. It can be found that the 
MLGFIM can extremely decrease the near-filed 
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matrix filling time when compared with MLFMM, 
MLFMM-MLGFIM can save much of the memory 
requirement by a factor of 9.9 with 10609 
unknowns and 10.3 with 15305 unknowns for the 
near-field. When the number of unknowns is 
15305, the MVP time in each iteration step in the 
MLFMM-MLGFIM is less than that in MLFMM. 
This is because the number of elements in the 
near-field impendence matrix is greatly reduced by 
the MLGFIM. The result of Table 4 indicates 
again that the matrix filing time and memory 
requirement can be greatly reduced with the 
MLGFIM in MLFMM in the near-field 
computation. 
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Fig. 2. RCS of a PEC sphere obtained from the 
MIE series and the MLFMM-MLGFIM. 
 

IV.    CONCLUSIONS 
In this paper, the MLGFIM is introduced in 

MLFMM to solve electromagnetic scattering 
problems of the objects with fine structures. It is 
found that with MLGFIM we can continue to 
subdivide the cube until the number of unknowns 
in each cube is less or equal to a required number 
regardless of the cube size. Several examples have 
demonstrated that with MLGFIM the near-field 
memory requirement is greatly reduced in 
MLFMM-MLGFIM compared with MLFMM 
without compromising the accuracy. Moreover, 
the ACA, QR factorization, SVD are applied to 
compress the low rank Green’s function matrix for 
speeding up the MVP in MLFMM-MLGFIM. 
Therefore, the MLGFIM is an efficient augment 
for MLFMM. 
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Fig. 3. The bistatic RCS from MLFMM and 
MLFMM-MLGFIM for the PEC ogive example. 
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Table 1: Corresponding rank of the Green’s function with different size of the cube 
Cube size d=1.0 d=0.5 d=0.25 d=0.125 

Interpolation points 8×8×8 6×6×6 4×4×4 3×3×3 

﹟of entries in G 262144 47524 4096 729 

Threshold 
0.01   
0.01   

Numerical rank 11 6 5 4 

﹟of entries in Q and R 11264 2616 640 216 

Threshold 
0.01   
0.001   

Numerical rank 17 11 9 8 

﹟of entries in Q and R 17408 4752 1152 432 

Threshold 
0.001   
0.01   

Numerical rank 11 8 5 4 

﹟of entries in Q and R 11264 3456 640 216 

Threshold 
0.001   
0.001   

Numerical rank 17 12 9 8 

﹟of entries in Q and R 17408 5184 1152 432 

 
Table 2: The near-field memory, the matrix filling time and one MVP time of MLFMM、MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns Methods CPU time for 
Matrix filling 

CPU time for each 
MVP Memory 

6312 
MLFMM 35.2 s 0.22 s 70 Mb 

MLFMM-MLGFIM 2.1 s+0.57 s 3.65 s 4.1 Mb+ 2.5 Mb 

11649 
MLFMM 124.3 s 0.81 s 240 Mb 

MLFMM-MLGFIM 6.9 s+0.96 s 3.9 s 14 Mb+ 4.7 Mb 

25944 
MLFMM 641.1 s 3.1 s 1191 Mb 

MLFMM-MLGFIM 32.5s+2.0 s 4.4 s 69 Mb+ 10 Mb 

 
Table 3: The near-field memory, the matrix filling time and one MVP time of MLFMA、MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns level Methods CPU time for 
Matrix filling CPU time for each MVP Memory 

11874 
3 MLFMM 206.9s 1.07s 404Mb 

4 MLFMM-MLGFIM 46.5s+0.32s 1.9s 89Mb + 9Mb 

18876 
3 MLFMM 533.5s 2.5s 1019 Mb 

5 MLFMM-MLGFIM 31.2s+0.56s 2.9s 56 Mb + 15.5 
Mb 

 
Table 4: The near-field memory, the matrix filling time and one MVP time of MLFMA, MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns level Methods CPU time for 
Matrix filling 

CPU time for each 
MVP Memory 

10609 
2 MLFMM 214.2s 1s 388Mb 

4 MLFMM-MLGFIM 20.9s+0.33s 1.48s 35Mb + 4 Mb 

15305 
2 MLFMM 451.4s 2.04s 805Mb 

4 MLFMM-MLGFIM 42s+0.43s 1.59s 72Mb+6Mb 
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Abstract ─ In this paper, a modified marching-on-
in-order time-domain integral equation method is 
utilized to analyze transient electromagnetic 
scattering from arbitrarily shaped objects. The 
spatial and temporal testing procedures are 
separate, and both of them are performed with the 
Galerkin’s method. The curvilinear RWG basis 
functions are used as spatial basis functions with 
curved triangular patch modeling. It gives a 
remarkable reduction to the number of unknowns, 
also the memory requirement and CPU time, 
without sacrificing the accuracy. The use of the 
weighted Laguerre polynomials as temporal basis 
functions ensures an absolutely stable solution 
even in late time. Several numerical results, 
including the single ogive and NASA almond, are 
given to demonstrate the accuracy and efficiency 
of the proposed method.   
 
Index Terms ─ Curvilinear RWG basis functions, 
Laguerre polynomials, marching-on-in-order time-
domain integral equation, transient scattering.  
 

I. INTRODUCTION 
Accurate and efficient transient simulation has 

drawn great interest in the past decades for its 
important applications in the ultra wide band 
(UWB) technology, electromagnetic compatibility 
(EMC), radar imaging, etc. Numerical techniques 
in time domain falls mainly within the scope of the 
finite difference time-domain (FDTD) [1], the 
time-domain finite element method (TD-FEM) [2], 
and the time-domain integral equation (TDIE) [3], 
which can overcome the drawbacks encountered in 
the partial differential equation (PDE) methods. 

The most popular method to solve TDIE is the 
marching-on-in-time (MOT) procedure [4], but it 
may suffer from late-time oscillation and 
inaccuracy. Some progresses seem to eliminate the 
drawback [5, 6].  

In the realm of the integral equation method, 
the RWG basis function defined over the planar 
triangular patches was proposed to model the 
behavior of the induced surface current [7, 8]. 
Afterwards, the curvilinear counterpart with 
curved triangular patch modeling was developed, 
and much less unknowns are required without a 
loss of accuracy [9, 10].   

References [11-13] used the curvilinear RWG 
(CRWG) basis functions and other techniques to 
analyze transient scattering based on the time-
domain magnetic field integral equation (TD-
MFIE) with MOT procedure. For closed bodies, 
because using the time-domain electric field 
integral equation (TD-EFIE) or TD-MFIE alone 
would lead to wrong results near the resonant 
frequencies, the time-domain combined field 
integral equation (TD-CFIE) is preferred [14].  

Recently, the marching-on-in-order (MOO) 
TDIE solver with weighted Laguerre polynomials 
as temporal basis functions was introduced, which 
can obtain unconditionally stable solution [15-18]. 
In this scheme, accurate results near the resonant 
frequencies can be ensured with only TD-EFIE or 
TD-MFIE [18]. However, the conventional MOO 
TDIE method is not efficient in terms of RAM and 
CPU time. To circumvent the bottleneck, in this 
paper CRWG basis functions are utilized with 
MOO TD-EFIE to analyze the electromagnetic 
scattering from conducting objects. 
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This paper is organized as follows. Section II 
presents the formulation of MOO TD-EFIE and 
the CRWG basis functions. This is followed, in 
Section III, by giving several numerical results to 
demonstrate the accuracy and efficiency of the 
proposed method. The conclusion is drawn in 
Section IV. 
 

II. FORMULATION 
 

A. MOO TD-EFIE 
With the boundary condition on the surface of 

the conducting scatterers, the time-domain electric 
field equation (TD-EFIE) is 
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where  ,i tE r  is the incident electric field, 

R  r r'  is the distance between the observation 
point r and source point r' , /Rt R c  , J  is the 
first derivative of the electric surface current 
density J with respect to time t, c, μ0, and ε0 are 
light speed, permeability, and permittivity in free 
space,  respectively. 

J can be expanded using N spatial basis 
functions and M temporal basis functions as 
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and  nf r  is the spatial basis function and 
specifically the CRWG in this paper. ( )j t  is the 
temporal basis function, i.e. the weighted Laguerre 
polynomial, defined as 
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where s is a temporal scaling factor and jL  is the j-
th order Laguerre polynomial with the form 
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The temporal derivative and integration terms 
in (1) are given as [17] 
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After the spatial and temporal testing procedure 
with the Galerkin’s method, for the i-th order case 
we obtain 
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Rewrite (7) into a matrix equation 
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We can solve the matrix equation recursively to 
get the temporal coefficients order by order. Then 
the surface current density can be obtained from 
(2). 
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B. CRWG basis function 
The CRWG basis functions are defined over 

curved triangular patches. Compared with planar 
triangular patches, the curved ones give a 
significant reduction to the mesh density, and 
hence the number of spatial unknowns, without a 
loss of the accuracy of the geometry modeling and 
the numerical solution. 

As shown in Fig. 1, a curved triangular patch is 
defined by six nodes, and a position in the ( 1 2,  ) 
parameter space is described by 
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where jr  is the Cartesian coordinate,  1 2,j    is 
the shape function with the form 
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and 
1 2 3 1     .                     (18) 
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Fig. 1. (a) A curved triangular patch with six nodes 
in the Cartesian coordinate system, (b) The 
triangular patch in the  1 2,   parametric space. 
 

The CRWG basis function is defined as 
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and J is the Jacobi factor 
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The surface divergence of the CRWG basis 
function is 

  2     ( =1,2,3)s J 
 f r .      (22) 

The differential tangent vector and normal 
surface element are given below, respectively, 
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The surface normal unit vector is 
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III. NUMERICAL EXAMPLES 

This section gives several numerical results 
obtained using an implementation described above 
to validate the proposed method. All CPU times 
are taken on a 3.0GHz processor. 
 
A. Sphere 

As the first example, we consider a metallic 
sphere centered at the origin with a radius of 0.5 
meter. The problem is discretized into 219 CRWG 
basis functions and 50 temporal basis functions 
(i.e., the weighted Laguerre polynomials). The 
incident Gaussian pulse is with the form of 

  24ˆ,
π

t
T

E ri x e ,                (28) 

 0
4 ˆt t c
T

    r k/ ,                (29) 

where k̂  is the unit vector in the direction of the 
wave propagation and is along ˆz  direction in this 
example. t0 = 12 lm represents a time delay of the 
pulse peak from the time origin, and T = 8 lm is 
the pulse width. In this work, we use lm as time 
unit, which is the short form of light meter. One 
light meter is the time taken by the 
electromagnetic wave to travel one meter in free 
space. This pulse has a frequency spectrum of 125 
MHz. The scaling factor s is with the value of 
1.0×109. 
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The θ component of the backward far field 
response ( 0   , 0   ) from the sphere is shown 
in Fig. 2 (labeled C 219). For the sake of 
comparison, results obtained in Reference [18] 
(labeled Ref) and that via 795 conventional planar 
RWG (PRWG) basis functions (labeled P 795) are 
also shown. Good agreement can be observed. 
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Fig. 2. θ component of transient backward far field 
response from a sphere. 
 
B. Single ogive 

Another example is a metallic single ogive. 
The analytical expression for this target is as 
follows: 

for –1.27 m < x < 1.27 m and –π < φ < π, 
define 
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The incident wave used in this example is a 
modulated Gaussian pulse given by 
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where the central frequency 0f  is 160 MHz, 
ˆt c   r k/ , k̂  is along ˆz  direction, 

 6/ 2 bwf  , 4.5pt  , the bandwidth bwf  of 
the signal is 320MHz. 

The problem is discretized into 444 CRWG 
basis functions and 100 temporal basis functions. 
The scaling factor s is with the value of 1.5×109. 

After the solution procedure in time domain, 
the far-field signals are Fourier transformed into 
the frequency domain and then the bistatic radar 
cross section (RCS) in 0    plane at several 
representative frequencies are calculated. These 
frequencies are chosen near the lowest, the middle 
and the highest frequency of the frequency band, 
and in this example they are 20 MHz, 160 MHz 
and 300 MHz. The results (labeled CRWG 444 
DFT) are compared with those obtained via 
frequency domain MoM using 444 CRWGs 
(labeled C 444) and TD-EFIE using 648 PRWGs 
(labeled P 648 DFT) in Fig. 3. The results are in 
good agreement with each other. It’s worth 
mentioning that 648 is the minimum number of 
PRWGs through exhaustive numerical 
experiments with increasing spatial unknowns. 
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Fig. 3. Bistatic RCS of the single ogive: (a) 20 
MHz, (b) 160 MHz, and (c) 300 MHz. 
 
C. NASA almond 

A metallic NASA almond is referred to as the 
last structure. The mathematical description used 
for this target is as follows: 

for –0.41667 < l < 0 and –π < φ < π, define 

2

2

 m

0.193333 1 cos
0.416667

0.064444 1 sin
0.416667

x dl

ly d

lz d







    
 

    
 

,  (32) 

for 0 < l < 0.58333 and –π < φ < π 

2

2

 m

4.83345 1 0.96 cos
2.08335

1.61115 1 0.96 sin
2.08335

x dl

ly d

lz d







         
         

.(33) 

where d=2.52374 m. 
The incident wave used in this example is a 

modulated Gaussian pulse with the form of (31). 
The problem is discretized into 626 CRWG basis 
functions and 100 temporal basis functions. The 
central frequency of the incident modulated 
Gaussian pulse is 110 MHz and the frequency 
bandwidth is 220 MHz. The scaling factor s is 
with the value of 1.5×109. After a Fourier 

transform, the bistatic RCS in 0    plane at 20 
MHz, 110 MHz and 200 MHz are given.  

The result (labeled C 626 DFT) is compared 
with those obtained via frequency domain MoM 
using 626 CRWGs (labeled C 626) and TD-EFIE 
using 985 PRWGs (labeled P 985 DFT) in Fig. 4. 
985 is found to be the minimum number of 
PRWGs for an almost indistinguishable result, 
which are more than that of the CRWGs. 

The efficiency of the proposed method is 
further compared in Table 1. Considerable 
reduction to both memory requirement and total 
CPU time are achieved. 
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Fig. 4. Bistatic RCS of the NASA almond: (a) 20 
MHz, (b) 110 MHz, and (c) 200 MHz. 
 
Table 1: Comparison of memory requirement and 
total CPU time 

 Geometries 
Sphere Ogive Almond

Matrix 
Size 

PRWG 795 648 985 
CRWG 219 444 626 

RAM 
(MB) 

PRWG 244 321 744 
CRWG 18 151 300 

Total 
Time (s) 

PRWG 275 754 1896 
CRWG 14 298 734 

 
VI. CONCLUSION 

In this paper, the marching-on-in-order time-
domain integral equation method with curvilinear 
RWG spatial basis functions is presented to 
analyze transient electromagnetic scattering from 
arbitrarily shaped objects. Stable solutions can be 
ensured, and the memory requirement and CPU 
time are reduced without sacrificing the accuracy. 
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Abstract ─ A numerical study for the 
electromagnetic detection of buried objects is 
presented. The whole GPR set-up is simulated 
through an integral formulation solved by means 
of the Method of Moments and a new 
discrimination process based on the 2D-Wavelet 
decomposition of computed electric field maps is 
proposed. The new wavelet methodology proves 
to be an effective tool for discrimination even in 
presence of noise.  
  
Index Terms ─ 2D wavelet decomposition, GPR, 
MoM.  
 

I. INTRODUCTION 
Electromagnetic induction sensors (EMIS) and 

ground penetrating radars (GPR) are tools 
commonly used to find buried objects, such as 
antipersonnel landmines (APM) [1-3]. The basic 
concept they are based on is to illuminate the 
target with an incident field (low-frequency 
magnetic or high-frequency electric field) and 
measure the broadband spectrum of the scattered 
field. Different sources, antennas ,and sensors 
have been proposed in the past, such as horns, 
spirals, loaded-dipoles, or dielectric rods, loops [1-
7].  

The main issue is not the simple detection but 
the recognition of unknown buried objects, 
allowing to classify them as potential known 
targets or to discard them as clutters [1,2]. The 
recognition process necessarily needs the accurate 
design of the source system, detection sensors, and 
the development of post-processing algorithms 

[7,8]. Moreover it is worth noting that the 
recognition problem becomes deeply more 
difficult in the presence of plastic landmines, when 
reflections greatly surpass and hide the weak field 
scattered by the buried plastic targets. 

In this work, the behavior of a new high 
frequency system for the detection of buried 
objects is numerically investigated by an integral 
approach in conjunction with a method of 
moments (MoM) numerical tool. The key feature 
of the system lies in the fact that both the 
magnitude and phase of all the components of the 
scattered electric field are used to collect 
information about the EM behavior of the buried 
object [9]. Furthermore, the potentiality of a two 
dimensional post processing of the collected data 
based on a wavelet decomposition approach is 
investigated. The purpose is to highlight the 
features of the two-dimensional signature of the 
buried object significantly, facilitating its 
discrimination. 

The MoM code proves to be a suitable and 
efficient tool for the study of these configurations, 
allowing a sensitivity analysis on the influence of 
material and shape variations. 

In order to assess the robustness of the 
proposed technique, a Gaussian white noise has 
been added to the collected data before post 
processing. By adding the noise we try to simulate 
the uncertainties and the so called “physical noise" 
normally encountered in practical measurements; 
even in this case, the signature detection is 
satisfactory. 
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II. EXPOSURE SET-UP 
The set-up configuration is shown in Fig. 1. It 

consists of a double-ridged antenna which is used 
as a field source and an observation plane where 
the total field (incident plus scattered) is observed. 

 

 
Fig. 1. Set-up configuration with a buried APM 
(units in cm). 

 
The performances of the GPR are mainly 

affected by two key-points that must be accounted 
for in the optimization of the set-up. 

The working frequency range must be a trade-
off between penetration and resolution [2,5]. The 
direction and intensity of the reflection which 
occurs at the ground surface (ground bounce) 
depends on the electrical properties of the ground 
itself and the roughness of the surface while the 
penetration depth of the transmitted wave into the 
soil mainly depends on the ground humidity and 
the wavelength of the field. Lowering the working 
frequency of the GPR reduces the ground bounce 
and increases the penetration depth, but on the 
other side, it causes a loss of resolution in the 
received maps, which is necessary for an accurate 
detection of the buried object. 

The height of the transmitting antenna must be 
a trade-off between transmitting antenna 
performance and enhancement of the received data 
[2,5]. A transmitting antenna closer to the ground 
surface shows better energy coupling with the 
target and reduced ground bounce, but the strong 
antenna-ground interaction can significantly 
change the antenna radiation properties, leading to 

a large number of false alarms. Anyway, if 
elevating the transmitting antenna reduces the 
antenna interaction with the target and the ground, 
on the other hand, due to the roughness of the 
ground surface, it makes the observation plane 
receive the field scattered by a larger portion of 
the ground, loading to a more difficult target 
detection. To reduce the superposition of the field 
scattered by the soil, the ground is usually 
illuminated with an oblique angle. 

In light of these remarks, the set-up shown in 
Fig. 1 has been chosen. The double ridge antenna 
is the Electrometrics EM-6961 model, which 
shows efficient performance characteristics in the 
frequency range 1-6 GHz. It has been chosen since 
it constitutes a good tradeoff between penetration 
and resolution [2-8]. The antenna has been tilted 
20° around the y-axis and has been oriented with 
his E-plane on the xz-plane, as shown in Fig. 1. 
The total electric field (i.e. electric field radiated 
by the antenna plus that scattered by the soil and 
the target), is computed on the observation plane 
showed in Fig. 1. As for the measurement 
procedure of this field, the photorefractive effect 
of thin ferroelectric films [10] can be used and is 
now under investigation. 

 
III. NUMERICAL MODELING 

 
A. Integral equations 

The whole GPR configuration has been 
studied through a standard integral formulation. 
The set of equations which solve the problem can 
be derived through a customary application of the 
equivalence principle [11]. First an equivalent 
electric current density aJ  is introduced over the 
PEC surface aS  of the antenna which is excited 
with a delta-gap voltage source. Next, equivalent 
electric sJ  and magnetic sM current densities are 
introduced on the surface sS  of the buried 
scattering object, which is considered penetrable. 
The boundary conditions at the surfaces aS  and 

sS  dictate a set of integral equations that can be 
written as 
 inc a s

a0n S      u E E E r  (1a) 

 inc a s s
d sn n S        u E u E E E r  (1b) 

 inc a s s
d sn n S        u H u H H H r , (1c) 
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where  inc inc,E H  is the incident field,  a a,E H  
is the field scattered from the PEC antenna, 

 s s,E H  and  s s
d d,E H  are, respectively, the field 

scattered by the currents  s s,J M  outside and 
inside the homogeneous penetrable target [11,12], 

nu  is the outward unit vector normal to the 
surface. Equations (1a-1c) can be cast into coupled 
integral equations by expressing all fields as 
superposition integrals (symbol  ) between the 
sources and the relevant dyadic Green functions 
(GFs): 

 
inc EJ
0 00 a

EJ EM
0g s 0g s a0 S

  

     

E G J

G J G M r
 (2a) 

 
inc EJ EJ EM
g g0 a gg s gg s

EJ EM
d s d s s0 S

      

     

E G J G J G M

G J G M r
 (2b) 

 
inc HJ HJ HM
g g0 a gg s gg s

HJ HM
d s d s s0 S

      

     

H G J G J G M

G J G M r
,(2c) 

where the cross product with nu  is suppressed for 
the sake of simplicity. In eqs (2), the incident 
fields  inc inc

g g,E H  and inc
0E are, respectively, those 

inside the ground and in free space due to the 
voltage source of the antenna,  PQ , 'lmG r r  is the 
dyadic GF relating the P-type field at the 
observation point r  in the medium l with the Q-
type current source at source point r  in the 
medium m, and  PQ

d , 'G r r  is the PQ-type GF in 
the homogeneous dielectric space (inside the 
penetrable target). Obviously, when the target is a 
PEC object, s 0M  and eq. (2c) is not necessary 
anymore. 
 
B. Solution of the integral equations 

To efficiently solve the system of equations 
(2) by means of the MoM technique, it is better to 
recast it in a mixed potential form [11,12]. 
Anyway, since in a layered medium the scalar 
potentials of a point charges associated with 
horizontal and vertical current dipoles are in 
general different [13,14], it is necessary to modify 
either the scalar or the vector potential kernel. 
Choosing the so-called Formulation C in [13] 
leads to 

 
 

 

AEJ
0

V V

0

1
lm lm

lm lm z

j

K C
j





    

     

E J G J G J

J u J
 (3a) 

   EM
lm E M G M  (3b) 

   HJ
lm E J G J  (3c) 

 
 

 

HM
0

W W

0

1
lm lm

lm lm z

j

K C
j





     

     

FH M G M G M

M u M
, (3d) 

where  A/F , 'lmG r r  are the magnetic/electric vector 

potential GFs , V/W
lmK  are the corresponding scalar 

potentials and V/W
lmC  are the so called correction 

factors [13,14]. All the expressions of the GFs can 
be obtained through a transmission line analogy in 
the transformed spectral domain as in [14]. 

A standard MoM procedure has been used to 
solve the integral equations system (2), once it has 
been cast in an MPIE form. In particular, the 
antenna and the target surfaces have been 
discretized through nonoverlapping triangles, and 
the unknown current densities have been expanded 
by a set of second-order subdomain basis 
functions, which provide a linear-
normal/quadratic-tangent (LN/QT) representation 
of the vector quantities [15]. All encountered 
singular terms in the source integrals (proportional 
to 1/R) have been extracted and integrated 
analytically [16], while the remaining (source and 
testing) integrals have been computed by means of 
standard Gaussian formulas [17]. For an efficient 
computation of the Sommerfeld integrals 
necessary to transform the GFs from the spectral 
to the spatial domain, the weighted-averages 
method has been used [18]. 

 
C. Discretization of the problem 

The antenna mesh is shown in Fig. 2a. The 
antenna is constituted of two exponentially shaped 
ridges, two lower and upper flares placed parallel 
to the H-plane (plane xz of Figs. 2) and thin 
copper straps placed parallel to the E-plane (plane 
yz of Figs. 2) [19,20]. The radiated field can be 
considered meanly linearly polarized with the E-
field parallel to the y-axis and the H-field aligned 
with the x-axis. 

The surface three-dimensional model of the 
antenna was entirely constructed with a 
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commercial CAD program and discretized with a 
professional mesh generator. The model is 
constituted of 3976 triangle patches, whose 
maximum edge length was forced to be below 

/10  at the frequency of 6 GHz. The coaxial type 
N input connector was not simulated as in [19], 
and the scheme was excited with a lumped delta-
gap voltage source placed between the two ridges 
in the lower cavity. 

 

 
(a)   (b) 

Fig. 2. Simulation model of the double-ridged 
antenna (a) and E-field radiation pattern (b). 

 
The computed three dimensional pattern of the 

radiated E-field at 2 GHz, in the near field region 
( 22 /D  = 52 cm, with D  maximum dimension of 
the radiating structure) at a distance of 50 cm, is 
shown in Fig. 2b, together with a magnification of 
the antenna (for the sake of clarity). Furthermore 
the electric field radiation patterns in the E- and H- 
planes are shown in Fig. 3. The 3dB beamwidth is 
around 52° and 40° in the E- and H- plane, 
respectively. 

To test the effectiveness of the ground-
penetrating system to distinguish between clutters 
and mines and to recognize the signature of a 
particular mine, the landmines and clutters shown 
in Fig. 4 have been considered [21]: the PMN 
(r=112 mm, h=56 mm) considered completely 
metallic, the PMA-1 (L=140 mm, H=30 mm, 
W=70 mm) made of plastic with dielectric 
constant r  = 4.8, a cylindrical clutter (r=10 mm, 
L= 100 mm) and a spherical one (R=20 mm), both 
considered perfectly conductive. 
A realistic dielectric constant of 11.8 and loss 
tangent of 0.084 have been chosen for the ground 
in the frequency range of interest. The electric 

field has been computed on the observation plane 
on a grid of 64×64 points ( 62 ), in order to allow 
the wavelet decomposition to the fifth level. The 
number of MoM unknowns is 2350; the CPU time 
and memory requirement for solving the described 
problem are, respectively, five minutes and 3 Gb 
on a four-core 3 GHz 64-bit desktop workstation. 
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Fig. 3. E- and H- plane amplitude patterns of the 
double ridged antenna. 
 
 

  
(1)   (2) 

 

   
(3)   (4) 

 
Fig. 4. Considered landmines – PMN (1) and 
PMA-1 (2) – and clutters – cylindrical (3) and 
spherical (4). 
 

IV. IMAGE PROCESSING 
As mentioned in the previous sections, both 

the magnitude and phase of all the components of 
the scattered electric field are used to collect 
information about the EM behavior of the buried 
object. This big amount of data can be easily 
represented by the use of two dimensional maps. 
The capability of the wavelet expansion tool in 
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signal processing is well established [22], and has 
been used also in electrical engineering in order to 
evidence special behavior of the analyzed 
quantities, which cannot be evidenced by a simple 
analysis of the signal in its unprocessed form [23, 
24]. Furthermore, some attempts of wavelet based 
post processing in the area of discrimination of 
buried objects have been previously presented 
[25]. 

It is well-known that a multiresolution 
analysis is characterized by wavelet bases 
composed by the scaling functions  x  and 
wavelet functions  x , the former being a low 
pass filter and the latter a high pass filter. A single 
dimension wavelet expansion yields a set of 
coefficients related to the correlation between a 
general function  f x  and the scaling and 
wavelet functions. In particular filtering performed 
by  x  leads to what is called a “blurred 
version” of the original signal, while filtering with 
 x  gives a signal containing the higher 

frequencies, called “detail”. Iteratively performing 
this sub band filtering (on the blurred version) 
leads to the multi – resolution decomposition of a 
signal in sum between a smooth signal 
(qualitatively an averaged signal) and a set of 
details. 

In this case, we deal with 2D signals (the 
value of electric field on a plane) which can be 
easily organized in 2D color maps, i.e. figures to 
be analyzed by a proper technique. 

The construction of two dimensional bases, 
necessary for image processing, is performed by 
using the so called separable wavelet bases, i.e. 
using the following basis functions 

 

     
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  

  

  







 ,

 (4) 

in which functions at the same level of 
decomposition are used. Thinking about the 
frequency characteristics of the functions  x  

and  x , it is evident that  1ˆ ,x y    is a low 
pass filter in two dimensions, hence performing 
the role of extracting the average of the map; on 

the other hand  1ˆ ,x y    is a low pass filter for 

the x-direction and a high pass filter for the y-
direction, responding to variations in the vertical 
direction. In a similar way  2ˆ ,x y    responds 

to variations on the horizontal direction, while 

 3 ,x y    is a high pass filter both for 

horizontal and vertical frequencies, hence 
responding to variations along diagonals. 

Each image is consequently decomposed 
following the same scheme of the multiresolution 
analysis into a set of blurred versions plus a set of 
details. The only difference is that at each level of 
decomposition a set of 3 matrices of details are 
obtained, called vertical, horizontal, and diagonal. 
Considering that this analysis can be performed on 
each field component, this results in a considerable 
amount of data to be analyzed. 

Two main issues arise at this point: the first 
one comes from the previous consideration, since 
it is not always easy to deal with big amount of 
data. An efficient way to treat them is needed, and 
it should be characterized by a highly synthetic 
approach. This issue is addressed in the next 
section. 

Furthermore, there is the need of a proper 
choice of the wavelet family to be used: after 
several different tests, the authors’ choice is to use 
biorthogonal wavelets, since they are symmetric 
and are the best choice for image processing. 

 
V. NUMERICAL RESULTS 

 
A. Data post processing 

A careful analysis of the whole set of data – 
i.e. E field in each direction decomposed at 
different levels – has been performed, with the aim 
of determining their most significant subset and 
define a simple technique which is able to solve 
our problem. 

A simple 1-level wavelet decomposition is 
enough to evidence the signatures of the bombs 
and the clutters. 
Furthermore, through numerous tests, it has been 
observed that the most significant information is 
given by the z component of the electric field. 
Figure 5 shows the color maps relative to the 
magnitude of the z component of the total electric 
field on the observation plane of two targets, PMA 
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and PMN, and of the two clutters, cylindrical (#1) 
and spherical (#2).  

The wavelet expansion of the total field on the 
observation plane when the soil is absent is 
necessary to construct a first level signature of the 
considered target. The signature is a crucial 
parameter in the discrimination of the unknown 
object as a target or as a simple clutter. 

Figure 6 reports the diagonal coefficients of 
the 1-level wavelet expansion performed on the 
previous map of the Ez-component of a PMN 
mine, respectively in vacuum and buried. 

Figure 7 reports the diagonal coefficient of the 
1-level wavelet expansion of the Ez-component of 
a PMA mine. Finally, Fig. 8 reports the diagonal 
coefficients of the 1-level wavelet expansion of 
the Ez-maps of the two considered buried clutters. 

In all the previous figures, brighter colors are 
related to higher magnitudes on a scale of 255 
tones. 

At first sight, it is obvious how the use of the 
wavelet expansion allows determining the 
characteristic behavior of the different objects, 
which is not visible by simply analyzing the 
electric field maps. 

 
 

 
Fig. 5. z-component of the total electric field on 
the observation plane for the two targets and the 
two clutters. 
 

 
(a) 

 
(b) 

Fig. 6. Diagonal coefficients of the wavelet 
expansion of the Ez electric field related to the 
PMN bomb a) in vacuum , b) buried. 
 
 

 
(a) 
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(b) 

Fig. 7. Diagonal coefficients of the wavelet 
expansion of the Ez electric field related to the 
PMA bomb a) in vacuum, b) buried. 

 

 
(a) 

 

 
(b) 

Fig. 8. Diagonal coefficients of the wavelet 
expansion of the Ez electric field related to a) the 
buried cylindrical, b) spherical clutters. 

 
It is also easy to note how the signatures of the 

two clutters are very similar to each other and very 
different from the signatures of the bombs in 
empty spaces. On the other hand, the signatures of 
the buried bombs can be easily recognized in the 
figures, comparing them with the signature of the 
bombs in empty space. 

The conclusion drawn by simply looking at 
the color maps of the details can also be obtained 
by calculating the correlation between the single 
maps. The correlation between two matrices yields 
a coefficient which gives information about how 
the two matrices are correlated: a higher 
coefficient means highly correlated matrices, 
while a lower coefficient substantially means two 
different matrices. 

We start from the knowledge of the diagonal 
details for 4 levels of decomposition of the two 
bombs in free space. For each single level the 
correlation between the diagonal details of the 
unknown object and the two bombs in free space 
is calculated and the coefficients of all the levels 
of decomposition are added up to obtain a single 
coefficient. The results are shown in Table 1. It is 
worth noting that the 5-level decomposition is 
possible on a grid of 64 points but it is useless 
since it does not add any information content. 

 
Table 1: Correlation coefficients of the unknown 
target (clutter or bomb) with the two bombs 

 PMA PMN 
PMA buried 2.2 -3 
PMN buried -0.4 1.5 
Clutter1 2.1 -2.2 
Clutter2 2.2 -1.9 

 
The grey cells show a high correlation, which 

means that the two bombs can be recognized, but 
at the same time the clutters would lead to a false 
alarm since they would be related to a PMA bomb. 
In this case, a visual analysis of the color maps is 
necessary to definitely discern the clutters from 
the real bomb. 

 
B. Robustness analysis  

In order to take into account the typical errors 
present in practical measurements, a Gaussian 
white noise has been added to all the simulations 
relative to buried objects (PMA, PMN, Clutter 1 
and Clutter 2), while the vacuum simulations of 
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the PMA and PMN have been kept as in the 
previous subsection. 

The procedure previously explained for the 
calculation of the correlation has been performed 
again for a statistically significant set of cases. The 
results are reported in Table 2, which shows the 
probability of positive correlation. 

The results are in accordance with Table 1; the 
same grey cells show the highest probability of 
positive correlations, meaning that the two bombs 
can be recognized, but at the same time the clutters 
would lead to a false alarm since they would be 
related to a PMA bomb. At the same time, there is 
a 29% percent of probability that a PMN bomb 
would be recognized as PMA, which is of course 
not an exact detection but it doesn’t lead to any 
risky situation. 

 
Table 2: Correlation coefficients of the unknown 
target (clutter or bomb) with the two bombs when 
noise is added 

 PMA PMN 
PMA buried 0.97 0.00 
PMN buried 0.29 0.90 
Clutter1 0.97 0.02 
Clutter2 0.97 0.05 

 
VI. CONCLUSION 

The paper presents the numerical study of a 
GPR set-up for the electromagnetic detection of 
buried objects. The MoM method is used for the 
full-wave simulation of the whole set-up with 
targets and clutters. A post-processing based on 
the Wavelet decomposition of 2D electric field 
maps is proposed. The Wavelet decomposition 
makes easy the discrimination between targets and 
clutters but further investigations and 
improvements are necessary to reduce the false 
alarms. 
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Abstract ─  A planar high-pass filter with simple 
topology, low insertion loss and high power 
handling is presented in this paper. It is based on 
the half-mode substrate-integrated waveguide 
(SIW) structure whose shorting wall is 
implemented with periodical via-holes. 
Meanwhile, bevel edges are embedded to achieve 
good impedance matching. Parameter studies are 
also performed to give design insights for practical 
applications. A planar waveguide filter with cutoff 
frequency of 10 GHz is designed and built. The 
measured data have a good agreement with the 
simulated responses, and demonstrate practical 
utility of the proposed topology. 
  
Index Terms ─ Half-mode, high-pass filter, 
impedance matching, waveguide. 
 

I. INTRODUCTION 
Microwave filters, including low-pass, band-

pass, band-stop and high-pass types, play a key 
role in modern wireless systems. Recent studies 
introduce some waveguide-based or other 
bandpass filter structures [1-6]. The design of high 
performance high-pass filters (HPFs) seems to be 
more challenging because the series connected 
capacitors from lumped prototype filters introduce 
extra loss by using distributed components. 
Waveguide-based structures characterize 
inherently high-pass responses [7], but its three 
dimensional (3-D) configuration is not easy to be 
integrated with planar circuits.  

An HPF with planar structures based on an 
exponentially tapered nonuniform transmission 
line [8], but its size may be bulky. Using high 
performance inductors in advanced high resistivity 
SOI CMOS technology, [9] develops an ultra 

wideband HPF integrated into the silicon-based 
substrate. Based on complementary split ring 
resonators, HPFs can also obtain compact sizes, 
but the double-sided configuration leads to a 
relatively complicated circuit topology and 
assembly problems [10-11]. A filter in [12] based 
on modified double-sided parallel strip lines shows 
good electric performance, but it has a multilayer-
based structure. 

Using the conventional microstrip line with 
short-circuited edge for planar filter applications is 
an effective way to design HPFs since it is 
compatible with most of planar circuits with good 
performance [13-14]. By using an electric wall 
placed at the edge of wide microstrip line, the 
structure is analyzed and confirmed from 
measurements [13]. Further, it is incorporated with 
other circuits to demonstrate a practical 
application of a 20-40 GHz subharmonically 
pumped mixer [14]. A transmission line loaded at 
regular intervals with closely-spaced shorted stubs 
[15]. Such a periodic structure exhibits 
waveguide-like behavior with a first pass-band 
whose width is a function of the characteristic 
impedance and pitch of the stubs. It also shows 
that the structure degenerates into a planar 
waveguide whose cutoff frequency corresponds to 
a short-circuited stub length when the stub pitch 
vanishes. To achieve good impedance matching, 
on the other hand, the extra matching networks 
lead to a large circuit size.  

In this paper, a planar HPF with simple 
topology, low insertion loss and high power 
handling is studied. It is a waveguide-based 
structure, specifically, a half-mode substrate-
integrated waveguide (SIW) structure [16]. To 
obtain good impedance matching, a pair of bevel 
edges is adopted. Measurement results with cutoff 

447ACES JOURNAL, VOL. 26, NO. 5, MAY 2011

1054-4887 © 2011 ACES



frequency of 10 GHz agree well with simulated 
characteristics, and demonstrate practical utility of 
the developed planar HPF topology. 
 

II. DESIGN OF THE SIW FILTER 
Figure 1 shows the 3-D view of the proposed 

filter structure. Basically, it can be treated as a 
section of the main transmission line with width wf 
loaded unsymmetrically with a stepped microstrip 
line. The length of the stepped transmission line is 
L, and far away from the main line, a series of 
metalized via-holes with radius r and periodicity p 
are parallelly etched on the stepped edge. The 
distance from the hole center to another edge of the 
line is denoted as w. Meanwhile, a pair of tilting 
edges with an angle α and a length a are etched on 
the corners. The structure is etched on the upper 
side of a Rogers RT/Duroid 5870 substrate that has 
a relative permittivity of 2.33 with a thickness of 31 
mils. 

a
p

r

w

wf

L



 
Fig. 1. 3-D view of the proposed filter. 
 

Such a structure supports the microstrip higher-
order field modes. The first HE1 mode is similar to 
TE10 mode in a rectangular waveguide. Figure 2 
illustrates the transition from a half-mode SIW 
mode to an equivalent TE10 mode. Fringe electric 
fields from the line to the ground plane are 
equivalent to a supplementary capacitor, which can 
be replaced with a slightly widened strip. Thus, the 
effective line width weff is observed with the needed 
line extension l  for compensating the open-end 
effect. At the same time, the initial relative 
permittivity of the substrate is represented by an 
effective one εeff in this case. Finally, the equivalent 
result corresponding to TE10 mode of a rectangular 
waveguide is obtained by introducing a magnetic 
wall. Figure 3 shows that the electric field 
distribution in the proposed structure is similar to 
those in a rectangular waveguide.   

r w

h

eff
weff

h

l

eff 2weff

h

magnetic wall

 
Fig. 2. Transition from the structure to an 
equivalent rectangular waveguide.  

 
Fig. 3. Simulation results (by HFSS Software [17]) 
of electric field distribution in the structure.  

 
Therefore, the half-mode SIW exhibits a cutoff 

frequency and high-pass filtering characteristic. It 
also exhibits low insertion loss and high power 
handling capacity like waveguides. Its cutoff 
frequency fc can be evaluated from the equivalent 
rectangular waveguide model 

0
c

eff eff4
cf

w 
 ,                            (1) 

where c0 is the light velocity in free space. The 
microstrip effective width weff is given by [18] 

2

eff 0.24
rw w

p
  .                           (2) 

 The radius r and periodicity p of via-holes can 
be determined as follows [19] 

g

0.25p


 ,                              (3) 

and 

0.5r
p
 ,                                (4) 

where λg is the guided wavelength at the cutoff 
frequency. 
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 To simplify the design of an HPF with 
fc=10GHz, εeff in (1) is approximated to εr. 
Therefore, weff should be 4.91 mm from (1). Via-
holes with r=0.25mm and p=0.8mm, which satisfy 
design rules of (3) and (4), are adopted. 
Meanwhile, w is calculated from (2) to be 5.17 
mm. After performing optimal electromagnetic 
design with junction discontinuities, the filter is 
designed with its physical parameters as: 
L=12mm, w=5mm, a=2.6 mm, α=30, and wf 
=2.2mm for a 50Ω microstrip line. Figure 4 shows 
the achieved performance of this filter. 
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Fig. 4. Frequency responses of the filter. 
 

To validate our design, a demonstrator filter 
shown in Fig. 5 is built. Measurements are 
performed by using a vector network analyzer 
[20]. The measured frequency responses are also 
recorded in Fig. 4, where the measured insertion 
loss involves the circuit loss and effects of SMA 
connectors (i.e., non-ideal coaxial/ microstrip-line 
transitions). Measurements indicate that the 
insertion loss is gradually increased with the 
increase of the operation frequency. This can be 
attributed to the following possible reasons: the 
substrate utilized in this demonstration generally 
works below 18GHz. Thus, its dielectric loss 
beyond this frequency may be relatively high. 
Another reason is due to the Ku-band SMA 
connectors employed in the measurement. A 
higher loss associated with the connectors is 
suffered from at the higher operation frequency 
band. It is found that the measured maximum 
insertion loss within the passband is approximately 
3dB. Within the pass-band, the minimum return 
loss is better than 10dB. Figure 4 also plots the 
measured pass-band group delay variation of the 
fabricated circuit, and its value is less than 0.5ns. 

From these results, it is seen that the measured 
data reasonably match the predictions. 

 
Fig. 5. Photograph of the fabricated circuit. 
 

III. PARAMETER STUDIES 
     Purposes of parameter studies in this section 
are to provide some design insights for practical 
applications. It can be seen from above 
presentations that the metalized via-holes (r and p) 
are empirically predetermined based on (3) and 
(4). Although the parameter w needs fine tuning 
from optimal EM simulations, it is basically 
determined from (1) and (2). Hence, the first key 
parameter that needs studying is the length L of 
the short-circuited planar waveguide. By sweeping 
L (other parameters a, α, w, r, p, and wf keep 
constant as mentioned before), it is interesting to 
find that L primarily affects the roll-off of the 
filter, as illustrated in Fig. 6(a). A shorter L 
corresponds to a more compact design at the cost 
of slightly poor roll-off or filter selectivity. Hence, 
L=12mm is utilized in this design for compactness 
considerations.  

Results from sweeping simulations with the 
angle α indicate that α is not sensitive to filter 
selectivity or stop-band roll-off, but α primarily 
affects the pass-band return loss. A smaller angle 
cannot improve the lower pass-band return loss, 
while a larger α deteriorates the whole pass-band 
return loss, as shown in Fig. 6(b). Therefore, 
α=20 is adopted to obtain good return-loss 
performance.  
   Figure 6(c) shows that the bevel length a also 
influences the pass-band return loss. The lower 
pass-band return loss can achieve good 
performance under a small value of a. On the other 
hand, a larger bevel length a can worsen the whole 
pass-band performance when referring to a 20dB 
return loss. Consequently, a=2.6mm is selected 
from optimal simulations in our design. 
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(a) Sweeping parameter L. 
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(b) Sweeping angle α. 
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(c) Sweeping parameter a. 

Fig. 6. Sweeping responses of the studied filter.  
 

VI. CONCLUSION 
By replacing electric walls in a rectangular 

waveguide with metalized via-holes, a planar 
waveguide-based HPF has been developed in this 
paper. Further, based on the symmetry of mode-

field distribution, a half-mode structure is 
employed to get a compact circuit topology. A pair 
of bevel edges is embedded into the planar 
waveguide to obtain good impedance matching. 
Parameter studies have been performed to give 
more insights to design such a kind of filters. An 
example filter with cutoff frequency of 10 GHz 
has been designed, built, and experimentally 
examined, and results validate the predications 
well. 
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