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Abstract─ This paper provides an overview of 
recent advances of neural network modeling 
techniques which are very useful for 
RF/microwave modeling and design. First, we 
review neural network inverse modeling method 
for fast microwave design. Conventionally, design 
parameters are obtained using optimization 
techniques by multiple evaluations of EM-based 
models, which take a long time. To avoid this 
problem, neural network inverse models are 
developed in a special way, such that they provide 
design parameters quickly for a given 
specification. The method is used to design 
complex waveguide dual mode filters and design 
parameters are obtained faster than the 
conventional EM-based technique while retaining 
comparable accuracy. We also review recurrent 
neural network (RNN) and dynamic neural 
network (DNN) methods. Both RNN and DNN 
structures have the dynamic modeling capabilities 
and can be trained to learn the analog nonlinear 
behaviors of the original microwave circuits from 
input-output dynamic signals. The trained neural 
networks become fast and accurate behavioral 
models that can be subsequently used in system-
level simulation and design replacing the CPU-
intensive detailed representations. Examples of 
amplifier and mixer behavioral modeling using the 
neural-network-based approach are also presented.  
  
Index Terms─ Behavioral modeling, computer 
aided design, neural network. 
 

I. INTRODUCTION 
Neural network is an information processing 

system, which can learn from observation and 
generalize any arbitrary input-output relationship 
similar to human brain function. It has been used 
in many modeling and design applications [1], [2] 
such as vias [3], transistor [4], amplifier [5], filters 
[6–9], etc. Neural network can capture 

multidimensional non-linear device behavior 
accurately. The evaluation of a neural network 
model is also fast. These unique qualities make 
neural network a useful alternative of EM-based 
modeling.  

Models developed in the conventional 
approach are termed as forward model where the 
inputs are the physical or geometrical parameters 
such as dielectric, length, width etc. and the 
outputs are electrical parameters such as S-
parameters. For design purpose, the EM simulator 
or the forward model is evaluated repetitively in 
order to find the optimal solutions of the 
geometrical parameters that can lead to a good 
match between modeled and specified electrical 
parameters. An example of such an approach is 
[10]. Conversely, an inverse model is defined as 
the opposite to the forward model such that the 
geometrical or physical parameters become the 
outputs and electrical parameters become the 
inputs of the inverse model. The inverse model 
provides the required geometrical solution for a 
given electrical specification. This avoids 
repetitive model evaluation. 

Recently an inverse modeling methodology 
using neural network technique has been presented 
[8]. The training data for the inverse model is 
generated using a forward EM model or from 
device measurement. The training data is 
reorganized such that the geometrical parameters 
become outputs and the electrical parameters 
become inputs. A neural network model trained 
using this reorganized model becomes the inverse 
model of the original EM-model or device. 
However, this process of reorganizing data may 
lead to a non-uniqueness problem where multiple 
solutions may exist for a single input value. We 
call it a multi-valued problem. If two or more 
different input values lead to a single value in the 
forward model, then contradiction arises in the 
training data of the inverse model. As a result, 
neural network faces hard time to provide accurate 
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solution at those points. To avoid these situations 
the data is first checked for contradictions. If 
contradiction exists, the inverse data is divided 
into sub-groups such that each sub-group does not 
contain any contradictory data. Multiple sub-
models are then developed using the divided data. 
The sub-models are then combined using a special 
technique to form the overall inverse model. The 
description of various techniques is provided in 
the Section 2. 

We also review the recent advances of neural 
network approaches for behavioral modeling of 
nonlinear microwave circuits. We focus on the 
specific artificial neural network (ANN) structures 
that are capable of learning and representing 
dynamic behaviors of nonlinear circuit blocks. 
Two ANN-based techniques, i.e., recurrent neural 
networks (RNN) [11–13] and dynamic neural 
networks (DNN) [14] techniques, are described 
from the perspective of nonlinear behavioral 
modeling. Numerical examples of modeling RF 
amplifiers and mixers are included. 
 

II. INVERSE MODELING METHODS 
A.  Formulation of Inverse Model 

Let x  be an n-vector containing the inputs and 
y  be an m-vector containing the outputs of the 

forward model. Then the forward modeling 
problem can be expressed as  

 
( )y f x ,                (1) 

    
where f defines input-output relationship,  

[ ]T
1 2 3 nx x x x. . .x , and 

[ ]T
1 2 3 my y y y    .  .  .  y . Then the inverse model 

can be defined as 
 

( )y f x ,                              (2) 

where f  defines the inverse input-output 
relationship, y  and x  contains outputs and 
inputs of the inverse model respectively.  As an 
example, if   a device contain four inputs and three 
outputs then [ ]T

1 2 3 4x x x xx  and 

[ ]T
1 2 3y y y  y . If input parameters x3 and x4 are 

design parameters, e.g., iris length and width of a 
waveguide filter and y2 and y3 are electrical 
parameters, e.g., couplings of the filter, then inputs 

of the inverse model become 
[ ]T

1 2 2 3x x y yx and output vector 

becomes [ ]T
1 3 4y x x y . Figure 1 shows the 

diagrams of a neural network forward model and 
an inverse model. The inverse model of Fig. 1(b) 
is formulated by swapping partial inputs and 
outputs of the forward model of Fig. 1(a). Note 
that two input parameters and two output 
parameters are swapped. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Example illustrating neural network 
forward and inverse models, (a) forward model (b) 
inverse model. The inputs x3 and x4  (output y2 and 
y3) of the forward model are swapped to the 
outputs (inputs) of the inverse model respectively 
[8]. 
 
B. Non-Uniqueness in Inverse Training Data 

If two different input values in forward model 
lead to the same value of output then a 
contradiction arises in the training data of the 
inverse model, because the single input value in 
the inverse model has two different output values 
(therefore contradictory data). Since we cannot 
train the neural network inverse model to match 
two contradictory data simultaneously, it is 
important to detect the existence of contradictions. 

Detection of contradiction would have been 
straightforward if the training data were generated 
by deliberately choosing different geometrical 
dimensions such that they lead to the same 
electrical value. However in practice, the training 
data are not sampled at exactly those locations. 
Therefore, we develop numerical criteria to detect 
the existence of contradictions. We calculate the 
slope between samples within a specific 
neighborhood. A slope between two samples was 
calculated by dividing the normalized difference 

  x1    x2    y2   y3 

     y1     x3     x4 

 x1    x2    x3   x4 

     y1     y2      y3 
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of the y-values of the two samples with the 
normalized difference of the x-values of the two 
samples. If any of the slopes becomes larger than 
some user defined threshold value, then the data 
may contain contradictory samples. In that case we 
need to divide the data into groups such that the 
individual groups do not contain any 
contradiction. In this way we solve the problem of 
non-uniqueness of input-output relationship and 
thus contradictory sample in the inverse training 
data. 
 
C.  Method to Divide Inverse Training Data 

If existence of contradictions is detected in 
training data, we perform data preprocessing. All 
the data samples, even though contradictory, are 
useful information and should not be deleted from 
the training data. In our method, we divide the 
data into groups so that contradictory samples are 
separated into different groups and the data in each 
group becomes free of contradiction.  We divide 
the overall training data into groups based on 
derivatives of outputs vs. inputs of the forward 
model. Because variations in the output response 
changes directions with the change of input 
variables and multivalued problems occur when 
the response changes to a reverse direction. Thus 
derivative information is a logical criterion to 
detect such reverse phenomena. Let us define the 
derivatives of inputs and outputs that have been 
exchanged to formulate the inverse model, 
evaluated at each sample, as, 

 
( )k

i

j

y
x 


 x x

, yi I and xj I ,            (3) 

where, 1,2,3,..., sk N , Ns is the total number of 
training samples,  Ix is  an index set containing the 
indices of inputs of forward model that are moved 
to the output of inverse model, and Iy is the index 
set containing the indices of outputs of forward 
model that are moved to the input of inverse 
model. The entire training data should be divided 
based on the derivative criteria such that training  
samples satisfying 

( )k

i

j

y
x







 x x
,        (4) 

belong to one group and training samples 
satisfying 

( )k

i

j

y
x





 

 x x
,  (5) 

belong to a different group, where   is zero or a 
small positive number. This method exploits 
derivative information to divide the training data 
into groups. We compute the derivatives by 
exploiting adjoint neural network technique [15]. 
Multiple neural networks are then trained with the 
divided data. Each neural network represents a 
sub-model of the overall inverse model. 
 
D.  Method to Combine Inverse Sub-Models 

We need to combine the multiple inverse sub-
models to reproduce the overall inverse model. For 
this purpose a mechanism is needed to select the 
right one among multiple inverse sub-models for a 
given input x . For convenience of explanation, 
suppose x is a randomly selected sample of 
training data. Ideally if x belongs to a particular 
inverse sub-model then the output from it should 
be the most accurate one among various inverse 
sub-models. Conversely the outputs from the other 
inverse sub-models should be less accurate if x  
does not belong to them. However, when using the 
inverse sub-models with general input x  whose 
values are not necessarily equal to that of any 
training samples, the value from the sub-models is 
the unknown parameter to be solved. So we still 
do not know which inverse sub-model is the most 
accurate one. To address this dilemma, we use the 
forward model to help deciding which inverse sub-
model should be selected. If we supply an output 
from the correct inverse sub-model to an accurate 
forward model we should be able to obtain the 
original data input to the inverse sub-model.  

In our method input x  is supplied to each 
inverse sub-model and output from them is fed to 
the accurately trained forward model respectively, 
which generate different y . These outputs are then 
compared with the input data x . The inverse sub-
model that produces least error between y and x  
is selected and the output from corresponding 
inverse sub-model is chosen as the final output of 
the overall inverse modeling problem. 

We include another constraint to the inverse 
sub-model selection criteria. This constraint 
checks for the training range. If an inverse sub-
model produces an output that is located outside 
its training range, then the corresponding output is 
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not selected. If the outputs of other inverse sub-
models are also found outside their training range 
then we compare their magnitude of distances 
from the boundary of training range. An inverse 
sub-model producing the lowest distance is 
selected in this case.  

 
III. ANN-BASED DYNAMIC 

BEHAVIORAL MODELING OF 
MICROWAVE CIRCUITS 

A. Recurrent Neural Networks (RNN) for 
Time Domain Modeling 

Conventional feed-forward neural networks 
(FFNN) [1] are well known for their learning and 
generalization capabilities. However, they are only 
suitable for mapping static input-output 
relationships. To model nonlinear circuit responses 
in time-domain, a neural network that can include 
temporal information is necessary. RNNs have 
been found to be a suitable candidate to 
accomplish this task. In the past, RNNs were 
successfully used in various engineering 
applications such as system control, speech 
recognition, etc [16]. For microwave dynamic 
modeling, the structure of a typical RNN is shown  

… … …

…

FFNN

y((k-1)T-)

u(kT)

   

u((k-1)T)

Time-independent 
parameters (p)

y(kT-)

y((k- My)T-)

Hidden 
Neurons

RNN

u((k-Mu)T)

… … …

…

FFNN

y((k-1)T-)

u(kT)

   

u((k-1)T)

Time-independent 
parameters (p)

y(kT-)

y((k- My)T-)

Hidden 
Neurons

RNN

u((k-Mu)T)

 
 
Fig. 2.  RNN structure with output feedback (My). 
The RNN is a discrete time structure trained with 
sampled input-output data [12]. 
in Fig. 2 [12]. The RNN inputs include time-
varying inputs u and time-independent inputs p. 
The RNN outputs are the time varying signal y. 
The input layer of the FFNN contains buffered 
(time-delayed) history of y fed back from the 
output layer, buffered history of u, and p. The 
hidden layer contains neurons with sigmoid 

activation functions. The FFNN outputs are linear 
functions of the responses of hidden neurons in the 
hidden layer. Let the trainable parameters of the 
RNN be denoted as w. As can be observed from 
Fig. 2, the overall RNN structure, including both 
the FFNN part and feedback connections, realizes 
the following nonlinear dynamic relationship [12] 

 

FFNN

( )
f ( (( ) ),..., (( ) ),
    ( ), (( ) ),..., (( ) ), , )

y

u

kT
k 1 T k M T

kT u k 1 T k M T


 


    

 

y
y y

u u w p
   (6) 

 
where k is the index for time step, T is the time 
step size, and  is a delay element. The number of 
delayed time steps yM  and uM , of y  and u 
respectively, represent the effective order of 
original nonlinear circuit as seen from input-output 
data. FFNNf represents a static mapping function 
that could be any of the standard FFNN structures, 
e.g., a multilayer perceptron (MLP) neural 
network [1]. The formulation (6) is a 
generalization over the conventional RNN 
structure [13] by introducing the extra delay  , 
which represents the delay between the input and 
output signals [12]. It has been found that this 
modified structure could help simplify the overall 
training of the model. 
 
 
B. Dynamic Neural Networks (DNN) for 
Nonlinear Behavioral Modeling  

For the purpose of circuit simulation, the most 
ideal format to describe nonlinear dynamics is the 
continuous-time domain formulation. In theory, 
this format best describes the fundamental essence 
of nonlinear behavior and in practice it is flexible 
to fit most or all the needs for nonlinear circuit 
simulation. On the other hand, for large-scale 
nonlinear microwave circuits, the detailed state 
equations [14] could be too complicated, 
computationally expensive, and sometimes even 
unavailable at system level. Therefore, a 
simplified (reduced order) model approximating 
the same dynamic input-output relationships is 
highly required. With these motivations, DNN 
technique [14] was presented for large-signal 
modeling of nonlinear microwave circuits and 
systems. Let Nd be the order of DNN representing 
the reduced order for original nonlinear circuit. Let 
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vi be a Ny-vector, i = 1,2,…,Nd. Let ANNg  
represent an MLP neural network [1], where input 
neurons contain y, u, their derivatives d iy/dt i, i=1, 
2, …, Nd -1, and d ku/dt k, k=1,2, …, Nd, and the 
output neuron represents d dN Nd /dty . In [14], the 
DNN model was formulated as 

 
1 2

-1

ANN 1

( ) ( -1)
1

( )  ( )
        

( )  ( )

( )  g ( ( ), ( ), ,

( ), ( ), ( ), , ( ))

d d

d d d

d d

N N

N N N

N N

t t

t t

t t t

t t t t













 



v v

v v

v v v

v u u u

(7) 

 
where inputs and outputs of the DNN model are 

( )tu  and  1( )  ( )t ty v , respectively. The overall 
DNN model is in a standardized format for typical 
nonlinear circuit simulators. For example, the left-
hand-side of the equation provides the charge or 
the capacitor part, and the right-hand-side provides 
the current part. This format is the standard 
representation of nonlinear components in many 
harmonic balance (HB) simulators. In this way, 
DNN can provide dynamic current-charge 
parameters for general nonlinear circuits with any 
number of internal nodes in original microwave 
circuit [14]. The DNN technique has been 
successfully used in modeling of nonlinear 
microwave circuits such as mixers and amplifiers. 
The trained DNN behavioral models were also 
used to facilitate fast high-level HB simulations of 
circuits and systems. As a recent advance, the 
work in [17] introduced a mathematical way to 
determine the order of the DNN formulation from 
the training data.  A further enhancement is made 
in [18] where a modified HB formulation 
incorporating constraint functions was presented 
to improve the robustness and efficiency of DNN-
based HB simulation of high-level nonlinear 
microwave circuits. 
 

IV. EXAMPLES 
A. Development of Inverse Models for 
Waveguide Filter 

Inverse models of a dual mode waveguide filter 
are developed. According to [8], the filter is 
decomposed into three different modules each 

representing a separate filter junction. Neural 
network inverse models of these junctions were 
developed separately using the proposed 
methodology.  

The first neural network inverse model of the 
filter structure is developed for the internal 
coupling iris. The inverse model is formulated as 

 

4[ ] [ ]T T
3 4 3 v h v hx x y y L L P P y     (8) 

2[ ] [ ]T T
1 2 1 23 14x x y y D f M Mo x .   (9) 

 
where D is the circular cavity diameter, fo is the 
center frequency, M23 and M14 are coupling values, 
Lv and Lh are the vertical and horizontal coupling 
slot lengths and Pv and Ph are the loading effect of 
the coupling iris on the two orthogonal modes, 
respectively. After formulating the inverse model 
training data were generated and the entire data 
was used to train the inverse model. Direct 
training produced good accuracy in terms of least 
square (L2) errors. However the worst-case error 
was large. Therefore in the next step the data was 
segmented into four sections. Models for these 
sections were trained separately, which reduced 
the worst-case error. The final model accuracy of 
the two methods is shown in Table 1. We can 
improve the accuracy further by splitting the data 
set into more sections and achieve as accurate 
result as required.  

The second inverse model of the filter is the IO 
iris model. The input parameters of IO iris inverse 
model are circular cavity diameter D, center 
frequency fo, and the coupling value R. The output 
parameters of the model are the iris length L, the 
loading effect of the coupling iris on the two 
orthogonal modes Pv and Ph, and the phase loading 
on the input rectangular waveguide Pin. The 
inverse model is defined as  

 
 4[ ] [ ]T T

3 2 3 v h inx y y y L P P P y      (10) 

[ ] [ ]T T
1 2 1x x y D f Ro x . (11) 

 
Four different sets of training data were 

generated according to the width of iris using 
mode-matching method. Each set was trained and 
tested separately using the direct inverse modeling 
method. The result of these direct inverse 
modeling is listed in Table 1. In the conventional 
direct method, L2 errors are acceptable but the 
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worst-case error is high. To reduce the worst-case 
error we split the first set of data into several 
segments and trained separately. These models 
produced acceptable accuracy. Same method was 
applied to the rest of the three models. The result 
is presented in Table 1, which shows that the 
proposed methodology produce more accurate 
result than the direct modeling method.  

The last neural network inverse model of the 
filter is developed for tuning screw model. The 
input parameters of this model are circular cavity 
diameter D, center frequency fo, the coupling 
between the two orthogonal modes in one cavity 
M12, and the difference between the phase shift of 
the vertical mode and that of the horizontal mode 
across the tuning screw P. The model outputs are 
the phase shift of the horizontal mode across the 
tuning screw Ph, coupling screw length Lc, and the 
horizontal tuning screw length Lh.  The inverse 
model is formulated as  

[ ] [ ]T T
3 3 4 h h Cy x x P L L y     (12)  

[ ] [ ]T T
1 2 1 2 12x x y y D f M Po x .  (13) 

 
All four techniques in Section II were applied to 
develop this model. The final model result is 
presented in Table 1, which shows that the 
accuracy of the tuning screw model is improved 
drastically using the proposed method. Minor 
improvement is realized for the coupling iris 
model in terms of L2 error (the improvement is 
mostly realized in terms of worst-case error), 
because the input-output relationship of this model 
is relatively simpler than that of the tuning screw 
model. The proposed method becomes more 
efficient and effective for complex devices. 

Three-layer multilayer perceptron neural 
network structure was used for each neural 
network model and quasi-Newton training 
algorithm was used to train the neural network 
models. Testing data were used after training the 
model to verify the generalization ability of these 
models.  Automatic model generation algorithm of 
NeuroModelerPlus [19] was used to develop these 
models, which automatically train the model until 
model training, and testing accuracy was satisfied. 
The training error and test errors were generally 
similar because sufficient training data was used in 
the examples. 

Table 1: Comparison of error between 
conventional and proposed method for waveguide 
filter model [8]. 

Waveguide 
junctions 

Inverse 
modeling 
methods 

Model error (%) 

L2 Worst 
case 

Coupling iris Conventional 0.46 14.2 
 Proposed 0.32 7.20 
IO iris Conventional 1.30 54.0 
 Proposed 0.45 18.4 
Tuning screw Conventional 7.51 94.25 
 Proposed 0.59 8.10 

 

B. Dual Mode 6-pole Waveguide Filter Design 
Using the Developed Neural Network Inverse 
Models 

In this example we design a 6-pole waveguide 
filer using the proposed methodology [8]. The 
filter center frequency is 12.155 GHz, bandwidth 
is 64 MHz and cavity diameter is chosen to be 
1.072". In addition to the three inverse models that 
were developed in Example A, we developed 
another inverse model for slot iris. The inputs of 
the slot iris model are cavity diameter D, center 
frequency fo and coupling M and the outputs are 
iris length L, vertical phase Pv and horizontal 
phase Ph. The normalized ideal coupling values are  

 
         R1  = R2 = 1.077 

0 0.855 0 0.16 0 0
0.855 0 0.719 0 0 0

0 0.719 0 0.558 0 0
0.16 0 0.558 0 0.614 0
0 0 0 0.614 0 0.87
0 0 0 0 0.87 0






 
 
 
 
 

M  . 

     (14) 
Irises and tuning screw dimensions are 

calculated by the trained neural network inverse 
models developed in Example A. The filter is 
manufactured and tuned by adjusting irises and 
tuning screws to match the ideal response and the 
dimensions are listed in Table 2. Very good 
correlation can be seen between the initial 
dimensions provided by the neural network 
inverse models and the measured final dimensions 
of the fine tuned filter. Figure 3 presents the 
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response of the tuned filter and compares with the 
ideal one showing a perfect match between each 
other. 
 
Table 2: Comparison of dimensions obtained from 
EM model, neural network inverse models and 
measurement of the tuned 6-pole filter [8]. 

Filter 
Dimensions 

 
EM 

Model 
(inch) 

 
Neural 
Model 
(inch) 

 
Measurement 

(inch) 
 

IO irises 0.352 0.351 0.358 
M23 iris 0.273 0.274 0.277 
M14 iris 0.167 0.170 0.187 
M45 iris 0.261 0.261 0.262 
Cavity 1 
length 

1.690 1.691 1.690 

Tuning 
screw 

0.079 0.076 0.085 

Coupling 
screw 

0.097 0.097 0.104 

Cavity 2 
length 

1.709 1.709 1.706 

Tuning 
screw 

0.055 0.045 0.109 

Coupling 
screw 

0.083 0.082 0.085 

Cavity 3 
length 

1.692 1.692 1.692 

Tuning 
screw 

0.067 0.076 0.078 

Coupling 
screw 

0.098 0.097 0.120 

 
The advantage of using the trained neural 

network inverse models is also realized in terms of 
CPU time compared to EM models. An EM 
simulator can be used for synthesis, which requires 
typically 10 to 15 iterations to generate inverse 
model dimensions. The time to obtain the 
dimensions using EM method is approximately 
6.25 minutes compared to 1.5 milliseconds for the 
neural network inverse method. 
 

-70
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-40
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-20

-10

0
12.06 12.09 12.11 12.14 12.16 12.18 12.21 12.24 12.26

Frequency (GHz)

S1
1/

S2
1 

(d
B

)

S11 ideal S21 ideal

S11 measurement S21 measurement

 
 
Fig. 3. Comparison of the 6-pole filter response 
with ideal filter response. The filter was designed, 
fabricated, tuned and then measured to obtain the 
dimensions [8]. 
 
C. Development of Behavioral Models for a 
Power Amplifier Using RNN Technique 

Here we present an example of ANN-based 
behavioral modeling where the RNN is used for 
modeling AM/AM and AM/PM distortions of a 
power amplifier [12]. The circuit to be modeled is 
an RFIC power amplifier in Agilent ADS [20], 
which is represented by a detailed transistor-level 
description. The training data are generated using 
a 3G WCDMA input signal with average power 
(Pav) of 1 dBm and center frequency of 980 MHz. 
The channel bandwidth (chip rate) is 3.84 MHz. 
Two RNN models, namely the In-phase RNN (K1) 
and the Quadrature-phase RNN (K2), are 
individually developed using 1025 input-output 
samples representing 256 symbols from ADS. The 
RNN models are trained in a step-wise manner 
using the automatic model generation algorithm 
[12], where the size (number of hidden neurons) 
and the order of the RNNs are automatically 
adjusted depending on the training status.  After 
the RNN models achieve a good learning, for 
testing signals not considered in training, the 
AM/AM and AM/PM distortions can be faithfully 
modeled by the RNNs, as shown in Fig. 4(a) and 
Fig. 4(b), respectively.  An additional benefit of 
using RNN behavioral models is the improved 
speed over conventional circuit simulators. For the 
RFIC amplifier example, ADS takes 
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approximately 100 seconds to run the entire 
envelope simulation for the 3G WCDMA input 
whereas each RNN only takes 0.16 seconds to 
reproduce accurately the output for the same 3G 
WCDMA input.  

 
(a) 

 
(b) 

Fig. 4. (a) AM/AM distortion between ADS and 
RNN power amplifier (PA) behavioral model. (b) 
AM/PM distortion between ADS and RNN PA 
behavioral model [12]. 

 

D.  Development of Behavioral Models for a 
Mixer Using DNN Technique 

This example, based on [14], illustrates DNN 
modeling of a mixer. The circuit internally is a 
Gilbert cell with 14 NPN transistors in ADS [20]. 
The dynamic input and output of the model was   
defined in hybrid form as u = [vRF, vLO, iIF]T and y 
= [iRF, vIF]T,  where vRF, vLO,and vIF  are the voltage 
values of radio frequency, local oscillator (LO), 
and inter-mediate frequency, iIF and iRF are the 

current values of intermediate frequency and radio 
frequency, respectively. The DNN model includes, 
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(16)         

where n is the order of the DNN. 
The training data were generated by varying the 

RF input frequency and power level from 11.7 
GHz to 12.1 GHz with a step-size of 0.05 GHz and 
from -45 dBm to -35 dBm with a step-size of 2 
dBm respectively. Local oscillator signal was 
fixed at 10.75 GHz and 10 dBm. Load was 
perturbed by 10% at every harmonic in order to 
allow the model learn the loading effects. The 
DNN was trained with different number of hidden 
neurons as shown in Table 3. Testing was done in 
ADS [20] using input frequencies from 11.725 
GHz to 12.075 GHz with a step-size of 0.05 GHz 
and power levels at -44 dBm, -42 dBm, -40 dBm, -
38 dBm, -36dBm. The agreement between model 
and ADS was achieved in time and frequency 
domains even though those test information was 
never seen in training. Figure 5 illustrates a 
comparison between the output of the DNN model 
and the ADS solution in time-domain.  
 
Table 3: DNN accuracy from different training for 
the mixer example [14]. 
No. of Hidden 

Neurons in 
Training (n=4) 

Testing Error 
for Time 

Domain Data 

Testing Error 
for Spectrum 
Domain Data 

45 8.7E-4 6.7E-4 
55 4.6E-4 2.0E-4 
65 6.5E-4 4.6E-4 
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Fig. 5 Mixer vIF output: time-domain comparison 
between DNN (—) and ADS solution of original 
circuit (o). Good agreement is achieved even 
though such data were never used in training [14]. 
 
 

V. CONCLUSION 
We have reviewed recent advances of neural 

network modeling techniques for fast modeling 
and design of RF/microwave circuits. Inverse 
modeling technique is formulated and non-
uniqueness of input-output relationship has been 
addressed. A method to identify and divide 
contradictory data has been proposed. Inverse 
models are divided based on derivatives of 
forward model and then trained separately to 
produce more accurate inverse sub-models. A 
method to correctly combine the inverse sub-
models is presented. The proposed methodology 
has been applied to waveguide filter modeling and 
design. Very good correlation was found between 
neural networks predicted dimensions and that of a 
perfectly tuned filter following the EM method. 
We have also reviewed recurrent neural network 
and dynamic neural network modeling techniques. 
These time-domain neural networks are trained to 
learn the nonlinear dynamic input-output 
relationship based on the external circuit signals. 
The resulting neural network models are fast and 
accurate to predict the behavior of RF and 
microwave circuits. 
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