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Abstract ─ Recently, the FDTD method was used 
to investigate the optical functional response of 
retinal photoreceptors. Light scattering patterns of 
the cells were simulated under various 
hypothetical states to determine the physiological 
processes that are most likely responsible for the 
experimentally observed signals. An FDTD model 
of a photoreceptor cell spans several wavelengths, 
therefore, the numerical dispersion, inherent in 
FDTD algorithms, will introduce significant phase 
errors in the simulation results. These phase errors 
can lead to erroneous predictions, especially for 
narrow band light stimulus. Currently, the 
qualitative and quantitive effects of numerical 
dispersion on light scattering computations are still 
unknown. In this paper, an analysis of the 
numerical dispersion errors in the near and far 
scattered fields is performed. The analysis 
provides decision guidelines for selecting enough 
computational resources to obtain the light 
scattering patterns with acceptable margin of 
errors. 
  
Index Terms ─ Finite-difference time-domain, 
biomedical applications, scattering, numerical 
simulation, time-domain analysis. 
 

I. INTRODUCTION 
A large number of diseases can cause various 

changes in the structural and physiological 
properties of biological tissues. Previous research 
studies [1-2] have shown that such changes can 
affect light scattering patterns of the infected cells. 

Therefore, the interest in numerical simulations of 
light scattering from biological tissue has 
increased significantly in the past years [3-5], 
especially with the advent of parallel processing 
and the increase in available computational 
resources. In most cases, the finite-difference 
time-domain (FDTD) method was the preferred 
numerical technique due to its simplicity in 
modeling large and complex structures such as the 
biological cells. Recently, we have used the FDTD 
method in investigating the causes of the optical 
functional response of retinal photoreceptors cells 
[6, 7]. The goal was to understand which of the 
physiological processes that can affect the power 
of the backscattered light. 

When compared to the exact analytical 
solution, the FDTD results suffer from phase 
errors that originate from the discrete nature of the 
FDTD algorithms. For second-order accurate 
finite-difference algoirthms, the phase errors 
strongly depend on the ratio of wavelength to the 
grid meshing size [8]. Therefore, the effect of the 
errors on a propagating signal is similar to the 
effect of propagation in a dispersive material, and 
consequently, the term ``numerical dispersion'' 
was coined for this class of errors. In general, 
reducing the effect of numerical dispersion is 
constrained by the computational resources and 
the size of the problem since halving the phase 
errors requires the doubling of the resolution (i.e., 
doubling the mesh size in all directions). The main 
trade-off is between computational resources and 
accuracy. Moreover, numerical dispersion is more 
severe in electrically large structures which spans 
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several wavelengths since the error in phase can 
accumulate up to a 180  phase reversal during the 
propagation in the space-time coordinate system. 
Currently, there are no studies that quantify the 
error introduced by the numerical dispersion in the 
scattering profiles. Therefore, the meshing step is 
usually set to the minimum possible value. This 
approach consumes large computational resources 
in terms of memory, processing units, storage and 
it will increase the waiting time for simple 
profiling first round simulations. 

In this paper, in light of the increasing interest 
in the use of the FDTD method to simulate wave 
interaction with biological media, we study the 
critical effect of numerical dispersion in light 
scattering simulations. The nature and magnitude 
of errors introduced in the scattering profiles for a 
given mesh size are investigated while making a 
distinction between results calculated for the near 
field vs. those calculated for the far field. While 
the focus here is related to our work on light 
scattering from retinal photoreceptors, the results 
obtained have direct implication to the general 
problem of scattering from electrically-long 
biological tissues. The results and conclusions 
reached here will help to optimize computational 
resources when applying FDTD for scattering 
related problems. 
 

II. PHYSICAL VS. NUMERICAL 
DISPERSION 

Numerical dispersion is manifested by the 
modification of the real wavenumber k to a 
numerical wavenumber k~ . Eq. 1 shows how the 
wave dispersion equation in FDTD depends on the 
time step t and the mesh step z [8]. The stability 
of the FDTD algorithm constrains the Courant 
factor C=t/z to be less than 1/dim1/2 (less than 
1/31/2 for 3D simulations). Setting the Courant 
factor to 0.5, k~  can be simply expressed as a 
function of the relative mesh size z/ (eq. 2) and 
the solution will be stable up to the coarse 
meshing of z=10. In the case of sinusoidal 
waves, the numerical phase velocity can be 
calculated using eq. 3 [8]. Figure 1 presents a plot 
of the ratio of the numerical phase velocity to 
theoretical one versus the relative mesh size. The 
maximum phase error introduced in a structure 
spanning m number of wavelengths can be 

calculated using eq. 4 [8]. Fig. 2 shows the phase 
error introduced in a sinusoidal wave after 
propagating a distance of 10 (i.e. m=10). From 
these results we observe that for a structure of 
several wavelengths, a small change in the relative 
mesh size can lead to a phase error of several 
degrees (see Fig. 2).  
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In an ideal world where computational 
resources are infinite, one would like to have the 
lowest relative mesh size ratio as it yields the 
lowest phase error. The FDTD method, while 
extremely robust, flexible and having the ability to 
model a wide range of problems, demands 
excessive computational resources. In the coming 
sections, we show that optimal simulation does not 
necessarily imply lower relative mesh size. The 
reason is that not only the computational efficiency 
of the simulation has to be taken into account but 
also the target of the simulation (viz., fixed field 
point, distributed field, near-field monitor point vs. 
far-field monitor point, etc.). 

 
III. NUMERICAL METHODS 

A. Overview 
In light scattering computations using the 

FDTD method, there are two processing steps: The 
first step consists of the FDTD solution of the 
interaction of an incident wave with a scattering 
object. At the end of the first step, the near-fields 
over a surface enclosing the object are stored. The 
second step consists of the near-to-far field 
transformation which integrates the contribution of 
all near-fields at the far zone. Numerical 
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dispersion is introduced in the first step and it has 
been suggested in [9] that the integration aspect of 
the near-to-far field transform can mitigate the 
phase errors, therefore, reducing the weight of the 
numerical dispersion on the scattering profiles. In 
investigating the effect of numerical dispersion on 
light scattering, separate analyses were made for 
the near- and far-fields results.  

 

 
Fig. 1. Relative numerical phase velocity vs. 
relative mesh size. The numerical phase velocity is 
taken relative to the theoretical one. 
      

 
Fig. 2. Numerical phase error (in degrees) vs. 
relative mesh size. The error is introduced in the 
phase of a sinusoidal signal which propagated a 
distance of 10.   
 

 

B. Model 
Since we are interested in quantifying the 

errors in the simulations of light scattering patterns 
of the photoreceptors, the scattering object was 
selected to match the basic photoreceptor model, 
shown by the solid cylinder in fig. 3. The 
refractive index for the host medium is n0=1.34 
and for the cylinder is n1=1.41. The effect of 
numerical dispersion on the model was simulated 
by increasing progressively the mesh size in the 
axial direction since the incident wave travels for 
the longest distance and duration in this direction. 
The incident plane wave pulse has 100nm 
bandwidth around a central wavelength of cen = 
1m. The simulations were performed for three 
cylinders of different diameters (0.1m, 1m and 
5m. These different apertures are meant to be 
representative of the three distinct scattering 
regimes: In the first regime, , the wavelength of 
the excitation is greater than  where = d2/4 
is the scattering cross section area and d the 
diameter of the cylinder. In the second regime,  is 
comparable to and in the third regime,  is 
smaller than . 

 
C. Near-Fields Analysis Method 

The analysis of the near-fields consists of 
determining the error in phase introduced during 
the propagation of the plane wave from its 
insertion point at the Total-Field Scattered-Field 
(TF-SF) boundary to the opposite boundary, going 
through the solid cylinder representing the 
photorecyptor. Two time-domain point monitors 
were positioned along the main axis of the 
cylinder to record the time signals that will be 
used in the processing (see Fig. 3). The first time-
monitor records the incident plane wave entering 
the TF region whereas the second time-monitor 
records the signals reaching the other end of the 
TF region. The incident signal recorded by the 
first time-domain monitor was used to create the 
propagated incident signal as it should be 
theoretically at the location of the second time-
domain monitor.  

Figure 4 presents the processing flow used to 
implement the ideal propagation of the incident 
signal. A Discrete-Fourier-Transform (DFT) 
transforms the incident pulse into the frequency 
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Fig.  3. The setup of the FDTD simulations for 
numerical dispersion. The stars show the locations 
of the time-domain monitors used. The refractive 
index for the host medium is n0=1.34 and for the 
cylinder is n1=1.41. 
 
domain, then each frequency component is 
selected and inverse transformed back to the time-
domain using Inverse-Discrete-Fourier-Transform 
(IDFT). The harmonical signal obtained in the 
previous step is multiplied by the phase factor e-

kxwhere k is the wavenumber corresponding to the 
frequency f and to the medium of propagation with 
length L and refractive index n (c is light 
celerity). Finally, all time sub-signals are 
integrated to generate the ideally propagated signal 
Stheoretical. Ideally, Stheoretical has zero phase error and 
therefore, the difference in phase when compared 
to the FDTD signals recorded by the second time-
domain monitor approximates the phase error 
introduced by the numerical dispersion. It is 
important to note that the wave number k   used in 
the phase translation e-kx takes into account the 
different media encountered along the path of 
propagation (viz., the media n0 and n1, see Fig. 3.) 

 Figure 5 presents the processing diagram for 
the computation of phase errors in the near fields 
point signals. First, the DFT signals of both 
reference (i.e. theoretical) and target (i.e. 
simulated) signals were computed to determine the 
spectrum of interest. Then each frequency 

component is selected and inverse transformed 
back to the time-domain using IDFT. The time-
domain sub-signals are inputted to the hilbert 
analyzer which computes the phase difference. 
The phase difference are reported per each 
frequency of the source signal spectrum.  

 

 
Fig.  4. Processing flow showing the generation of 
the theoretical signal Stheoretical with ideally zero 
phase error. Stheoretical was obtained from an ideal 
propagation of the incident signal recorded by the 
first time-domain monitor toward the location of 
the second time-domain monitor. 
 

 
Fig.  5. Diagram of processing to determine 
numerical dispersion. 
 

IV. NUMERICAL SIMULATION 
RESULTS 

A. Near-Fields Results 
Figure 6 shows the phase error introduced in 

the near-fields data after propagating through the 
TF region. The figure shows that, as the mesh size 
increases, the phase error at the smaller 
wavelengths starts to increase at a faster rate 
compared with the errors at the longer 
wavelengths. For relative mesh sizes /z > 0.02, 
this difference in phase error can pass the 200%. 
Fig. 7 presents the phase error occurring at the  
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Fig. 6. Phase error plotted vs. signal wavelength 
spectrum for various mesh sizes (/z=0.01, 0.02, 
0.05 and 0.1). 

 
Fig. 7. Phase error at median spectrum wavelength 
(with highest power) plotted vs. mesh sizes 
(z=0.01, 0.02, 0.05 and 0.1). 
 
median wavelength with peak power nm. 
The result compares well with the theoretical 
phase error calculated for the same wavelength 
and presented in fig. 1. Also, it shows that for a 
structure of 10, the error in phase in the near-
fields is less than 180o for most practical meshing 
sizes and less than 90o for mesh size satisfying 
z/ < 0.06. 

 Figure 8 presents the ratio of the average 
phase velocity of the propagated signal. The 
results show significant deviations and faster 
decrease as a function of the mesh size when 
compared with phase velocity values reported by 

 
Fig. 8. Ratio of average phase velocity to the 
theoretical phase velocity plotted vs. mesh sizes 
(/z =0.01, 0.02, 0.05 and 0.1). 

 
Fig. 9. Effect of numerical dispersion on light 
scattering in the case of small scattering cross 
section as compared to the wavelength (case 1). 

 
the theoretical analysis done in Fig. 1. 

The analysis of the effect of numerical 
dispersion on near-fields showed that the phase 
error will not exceed 90o

  for mesh size satisfying 
/z>0.05. Also, over a spectrum of 
100nm=central/10, the variation in phase error will 
not exceed 60o, again for mesh sizes z/ < 0.05. 
Above these thresholds, the variations show a 
deviation from the linear behavior where the phase 
error can change by values up to 180o. In terms of 
phase velocity, the change is less or equal to 5o

 for 
mesh size satisfying z/ < 0.05 and can reach 15o  
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for mesh size satisfying z/ < 0.1. 
 
B. Far-Fields Results 

The far-fields results consist of scattering 
profiles computed for each mesh size. The errors 
can only be reported relative to the case of finest 
grid since there is no analytical solution for light 
scattering from a finite cylinder where the incident 
wave propagates along the axial direction.  

The far-fields results are reported for the three 
regimes of scattering as explained earlier. Fig. 9 
shows the light scattering profile for the first 
regime, where the wavelengths of the signal are 
much greater than the diameter of the cylinder. In 
this case, numerical dispersion has the greater 
effect around the normal scattering directions 
where the sidelobes experience large fluctuations 
in their magnitude. The sidelobes in the forward 
and backscattering directions show a slight shift 
towards lower angles.    

 
Fig. 10. Effect of numerical dispersion on light 
scattering in the case of medium scattering cross 
section as compared to the wavelength (case 2). 
 

Fig. 10 presents the light scattering profile for 
the second regime of scattering where the diameter 
of the cylinder is comparable to the wavelengths 
of the signal. In this regime, the sidelobes around 
the normal directions start to show less magnitude 
fluctuations and more positional fluctuations 
whereas the opposite happens in the normal and 
backscattered directions. Fig. 11 presents the light 
scattering profile for the third regime of scattering 
where the diameter of the cylinder is larger than 
the wavelengths of the signal. In this regime, the 

sidelobes around the normal directions show slight 
variations in magnitude whereas the sidelobes of 
the backscattered and forward regions show a mix 
of large magnitude and positional changes. 

 
Fig. 11. Effect of numerical dispersion on light 
scattering in the case of large scattering cross 
section as compared to the wavelength (case 3). 
 

V. CONCLUSION 
We have investigated the effect of numerical 

dispersion on light scattering profiles obtained 
from simulations of retinal photoreceptors models. 
The near-fields results quantified the maximum 
phase error and the relative phase velocity 
observed versus the meshing size. Far-fields 
results show that the numerical dispersion either 
affects the sidelobes in forward and backscattering 
regions or the sidelobes in the normal scattering 
directions. The normal direction sidelobes are less 
affected as the aperture increases whereas the 
opposite happens for the sidelobes of the forward 
and backscattering regions. The results presented 
show that, depending on the simulation objectives, 
the relative mesh size ratio can be optimally 
selected to achieve sufficient accuracy while 
minimizing the computational requirements of the 
FDTD method. 
 

VI. ACKNOWLEDGMENTS 
The authors acknowledge the financial support 

from NSERC, ORDCF and the University of 
Waterloo that made this research possible. 
 
 
 

393 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010



REFERENCES 
[1]  M. J. Piket-May, A. Taflove, and J. B. Troy, 

“Electrodynamics of visible light interactions with 
the vertebrate retinal rod,” Optics Letters, vol. 18, 
pp. 568-570, 1993. 

[2]  A. K. Dunn, Light Scattering Properties of Cells, 
Phd, Univ. Texas at Austin, 1997) 

[3]  A. Dunn, C. Smithpeter, A. J. Welch, and R. 
Richards-Kortum, “Finite-difference time-domain 
simulation of light scattering from single cells,” J. 
Biomed. Opt., vol. 2, no. 3, pp. 262—266, 1997. 

[4]  R. Drezek, A. Dunn, and R. Richards-Kortum, “A 
pulsed finite-difference time-domain (FDTD) 
method for calculating light scattering from 
biological cells over broad wavelength ranges”, J. 
Opt. Express, vol. 6, no. 7, pp. 147-157, 2000. 

[5] R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. 
Malpica, C. Macaulay, M. Follen, and R.Richards-
Kortum, “Light scattering from cervical cells 
throughout neoplastic progression: influence of 
nuclear morphology, DNA content, and chromatin 
texture”, J. Biomed. Opt., vol. 8, no. 1, pp. 7-16, 
2003. 

[6] S. S. Abdallah, Finite-Difference Time-Domain 
Simulations of Light Scattering from Retinal 
Photoreceptors, Electrical Eng., Univ. of 
Waterloo, 2007. 

[7] S. S. Abdallah, O. M. Ramahi, and K. Bizheva, 
“FDTD Simulation of Electromagnetic Wave 
Scattering from Retina Cells”, The 29th Annual 
International Conference of IEEE Engineering in 
Medicine and Biology Society, pp. 1639-1642, 
2007.   

[8] T. Taflove, and S. C. Hagness, Computational 
Electrodynamics: The Finite-Difference Time-
Domain Method, 2nd ed. Norwood, MA: Artech 
House, 2000. 

[9] F. D. Hastings, J. B. Schneider, and S. L. 
Broschatc, “A finite-difference time-domain 
solution to scattering from a rough pressure-
release surface,” J. Acoust. Soc. Am., vol. 102, no. 
6, pp. 3394-3400, 1997. 

   
 

394ABDALLAH, IOLOV, BIZHEVA, RAMAHI: DISPERSION IN FDTD SIMULATIONS OF LIGHT SCATTERING FROM PHOTORECEPTORS




