
Improved Constraint NLMS Algorithm for Sparse Adaptive Array 

Beamforming Control Applications 

Wanlu Shi 1, Yingsong Li 1,2,*, and Jingwei Yin 3 

1 College of Information and Communication Engineering 

Harbin Engineering University, Harbin, 150001, China  

liyingsong@ieee.org 

2 Key Laboratory of Microwave Remote Sensing 

National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China 

3 Acoustic Science and Technology Laboratory 

Harbin Engineering University, Harbin, 150001, China 

Abstract ─ In this paper, a new reweighted l1-norm 

and an lp-norm based normalized least mean square 

(NLMS) algorithms are developed for sparse adaptive 

array beamforming control applications. The proposed 

reweighted l1-norm constrained NLMS (RL1-CNLMS) 

and lp-norm constrained NLMS (LP-CNLMS) algorithms 

use the l1-norm penalty and lp-norm penalty to the 

conventional cost function of constrained normalized 

LMS (CLMS) algorithm to control the sparsity of the 

antenna array. What’s more, in the derivation process, 

the gradient descent principle and Lagrange multiplier 

method are adopted to obtain the desired updating 

formulations. Computer simulations demonstrate that the 

superiority of proposed algorithms compared with other 

LMS based beamforming methods.  

Index Terms ─ array beamforming, constrained LMS 

algorithm, l1-norm constraint, lp-norm constraint, sparse 

adaptive beamforming. 

I. INTRODUCTION
Adaptive beamforming has drawn lots of attention 

due to its good performance, and it has been widely 

developed for wireless communications, radio astronomy, 

mobile communications, radar, sonar and other fields [1-

2]. Adaptive beamformer can generate a main lobe in the 

interested direction to get a high gain, meanwhile, to 

form nulls to attenuate the interferences to obtain better 

the signal-to-interference-plus-noise ratio (SINR) [3].  

The principle of adaptive beamforming algorithms 

is to match the signals of interest (SOI) and adaptively 

suppress the interferences by dynamically adjusting the 

array weight vectors. The linearly constrained minimum 

variance (LCMV) algorithm proposed by Frost [3] is a 

famous beamforming method which can realize the 

mentioned properties. In [4], under the assumption that 

array elements can be adjusted in real-time, the CLMS 

algorithm is developed as a normalized adaptive version 

of LCMV which can minimize the output power and 

reduce unwanted interferences with the object of keeping 

a maximum gain in the desired direction.  

However, in some particular applications, especially 

in radar application, in order to realize the desired 

capacity, large arrays are always indispensable which 

attributes to the fact that big arrays are always restricted 

by the power supply and computation ability. Existing 

beamforming algorithms cannot solve this problem. 

Hence, as the development of sparse signal processing 

[5-14], and inspired by the Least Absolutely Shrinkage 

and Selection Operator [15] and Compressive Sensing 

[16], it is well worth to develop sparse adaptive 

beamforming algorithms to reduce the ratio of active 

elements in the antenna array, i.e., forcing the array 

weight vector towards sparsity [17-19].  

Sparse signal processing technique can fully take 

advantage of the sparse characteristics existing in many 

situations, and it should have special advantages in both 

performance and convergence. In recent years. sparse 

signal processing has been widely studied. A great 

number of sparse LMS based algorithms have been 

developed for various sparse system identifications 

[5-8]. In these algorithms, it is no doubt that the zero-

attracting LMS (ZA-LMS) which employs the l1-norm 

penalty is representative. The ZA-LMS algorithm creates 

a modified updating formulation with a zero-attractor on 

all filter taps so as to force the inactive coefficients to 

zero quickly. To further accelerate the convergence speed, 

the reweighted ZA-LMS (RZA-LMS) is presented to 

take account different zero attractors for different taps.  

Motivated by the ideas of sparse signal processing, 

a l1-norm CNLMS (L1-CNLMS) algorithm and weighted 

l1-norm CNLMS (L1-WCNLMS) are proposed in [17]. 

ACES JOURNAL, Vol. 34, No. 3, March 2019

Submitted On: November 4, 2018 
Accepted On: November 18, 2018 1054-4887 © ACES

419



Recently, many reweighted l1-norm penalties and lp-

norm penalties are proposed and considered in [5-8]. 

Thus, it is possible to introduce these penalties into the 

cost function of the basic CLMS algorithm for obtaining 

a new beamformer to get a better performance. 

In this paper, we develop a reweighted L1-CNLMS 

(RL1-CNLMS) algorithm and an lp-norm based CNLMS 

(LP-CNLMS) algorithm for sparse adaptive beamforming 

control applications. Simulation results demonstrate the 

proposed algorithms can get a better beam performance 

and use less antenna array elements, while the output 

SINR are also better than the existing algorithm in [17]. 

II. THE ARRAY PROCESSING MODEL
As is depicted in Fig. 1, a model of a planar antenna

array which is composed of N omnidirectional antenna 

elements with a spacing of λ/2 is considered for discussing 

the adaptive beamforming algorithm, where λ denotes 

the operating frequency wavelength. Assuming that we 

have M+1 narrowband signals received by the antenna 

array including the SOI and interferences with the 

direction of θs and θi (i=1,2,…M). Then, receiving signals 

during kth snap can be written as: 

( ) ( ) ( ) ( ).s ik k k k  x a s a i n (1) 

In our notation, a, s(k), i(k) and n(k) are the steering 

matrix associated with the SOI as well as interferences, 

complex signal envelope vector and zero-mean white 

Gaussian noise vector, respectively. Note that the SOI, 

interferences and the noise are assumed to be statistically 

independent. 

Fig. 1. Adaptive beamforming for planar antenna array. 

In this case, one can write the SINR of the 

beamformer as: 
2 H 2

H

n+i

| a |
SINR= ,s sp w

w R w
(2) 

where 2

sp is the power of SOI, w is the weighted

coefficient vector of the planar array with a dimension of 

N×1 and Rn+i is the interference-plus-noise covariance 

matrix which can be written as: 

 ( H

n+i = ( ) ( )) ( ) ( )) ,E k k k k R (i n i n (3) 

with E{·} representing the expectation operator and (·)H 

stands for the Hermitian operator. 

The output signal y(k) at time index k is given by: 
Hy( ) ( ).k k w x (4) 

III. THE CNLMS ALGORITHMS FOR

BEAMFORMING 

A. The CLMS algorithm

The solution to the LCMV algorithm presented in [1]

is expressed as: 
-1 H -1 1

opt ( ) .w R C C R C f (5) 

In (5), R is the covariance matrix of the input data. C and 

f are the constrained matrix, and the constrained vector, 

respectively, of whom the elements are associated to 

the SOI and interferences. Compared with the LCMV 

solution, the CLMS algorithm can adaptively provide 

a high gain for the SOI and effectively attenuate the 

interferences, which is to solve: 
2

min    subject to  ,kE e  
 

H

w
C w f (6) 

where ek=dk-wHxk is the estimation error and dk represents 

the expected output signal.  

Make use of the Lagrange multiplier method, one 

can transform (6) into the following cost function: 
2 H H

1( ) ( ),k kL k E e  
 

+ C w f (7) 

where γ1 is the Lagrange multiplier. 

On the basis of the gradient descent principle, the 

update formulation can be constructed as: 

1 - ( ),k k L k 
w

w w g (8) 

where μ is the step size and gwL(k) is the gradient vector. 

In this paper, we use the instantaneous estimate of 

the gradient vector for simply, which can be written as: 

2 1( ) - .k kL k e 
w

g x Cγ (9) 

Using the constraint in (6) and several straight-

forward calculations, we can get the update function:  

1 ,k k cμe
   w P w x f

k k
(10) 

where 
1( ) ,

  H H
P I C C C C

N N (11) 

and 
1( ) .c

 H
f C C C f (12) 

B. The CNLMS algorithm

Note that the step size, also known as the convergence

factor, is stationary in the CLMS algorithm. Hence, one 

can accelerate the convergence process by minimizing 

the instantaneous posteriori squared error with respect to 

the step size at snap k, which is to calculate [20]: 

     *2

* *

[| | ]
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k k
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 

 
(13) 
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where  
    H1 .ap k k k ke k e μ  x Px  (14) 

Then, we can get: 

 0

H
,k

k k c







x Px
 (15) 

where ξc>0 is a small constant to prevent overflowing, 

and μ0 is the step size used to implement this algorithm. 

At last, we can get its updating equation: 

 
1 0 H

[ ] .k k

k k c

k k c

e



   



x
w P w f

x Px
 (16) 

 

C. The proposed new RL1-CNLMS 

In this paper, we develop a new RL1-CNLMS 

algorithm for adaptive beamforming control application, 

which is to mimic: 

 
2

1

;
min    subject to   

|| || ,

k

k

k k

E e
t

     

H

w

C w f

h w
 (17) 

where t denotes the constraint factor, and hk is [6]: 

  
1 1

1
, 1,...,

| |
k i
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i N
 

 


h
w

 (18) 

where ξrl1>0 is a small value similar with ξc in (15). 

Similar to the basic CLMS algorithm, we can get the 

modified cost function applying the Lagrange multiplier 

method: 

 
=

2

1 1

1 1

( ) ( )

[|| || - ],

rl k k

rl k k

L k E e

t

  
 


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              h w

 (19) 

where γ1 and γrl1 act as the Lagrange multipliers. 

The instantaneous estimation for implementing the 

gradient of (19) is: 

 1 1 1 1( ) 2 + ( ),rl k k rl rlL k e k  
w

g x Cγ J  (20) 

with   

 
1
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( )= ,
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k
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rl k

k
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w
J
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where sgn(·) is an element-wise sign operator whose 

definition is: 

 

x
x 0;

| x |sgn(x)

0 elsewhere.




 



 (22) 

Based on the principle of gradient descent concepts 

shown in (8), we can get the final update equation that is 

written as: 

 1 1- ( ),k k rlL k 
w

w w g  (23) 

where gwLrl1(k) is given in (20). 
Now, it turns to solve the Lagrange multipliers. 

Under the circumstance that the algorithm has converged, 

we have wk+1=wk, then the constraints in (17) can be 

rewritten as: 

 

H H

1

1 1 1 1( ) ( ) || || .

k k

rl k rl k k kk k t




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J w J w h w
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After substituting (20) into (23), and pre-multiplying 

(23) by CH and Jrl1, we can get the expressions for γ1 and 

γrl1: 
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with 

 
H 1 H

2

2

( )

|| || .kn

 

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G C C C

= Ps
 (26) 

Putting γ1 and γl1 into (23), and considering the 

normalizing method in [20], we can derive the final 

updating equation for the proposed RL1-CNLMS: 

 * H 1

1 1

( )
( ( ) )( ),rl

k rl k

k
μ e t k

m
   

PJ
w w V J w
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where, for simply, we use the notations as below: 
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IV. THE Lp-CNLMS ALGORITHM 
To further improve the adaptive beamforming 

performance of the designed beamformer, we develop  

an Lp-CNLMS algorithm. Inspired by the fact for the 

corresponding sparse constraint, the more it is closer to 

l0-norm, the better result we will get. Thus, as we have 

known from the field of sparse system identification [6-

9], the lp-norm penalty which can obtain better results 

than l1-norm is considered as a new constraint in the 

CNLMS algorithm to further improve the estimation 

behavior of adaptive beamformers.  

The cost function of the Lp-CNLMS algorithm with 

0<p<1 is presented [6]: 

 
=

2

1( ) ( )

[|| || - ].

lp k k

lp k lp

L k E e

t

  
 



H H
+ γ C w f

              w
 (29) 

One can get the gradient instantaneous estimation 

for Llp(k) case, which is expressed as: 

 1( ) 2 + ( ),lp k k lp lpL k e k  
w

g x Cγ J  (30) 

where 
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p

k lp k
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k






w w
J
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 (31) 

Note that the only difference between (20) and (30) 

are the Jrl1 and Jlp terms. In this case, one can easily 

obtain the final updating function of the Lp-CNLMS 

algorithm by considering the Jrl1 term like the equation  
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(26) to obtain:
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V. SIMULATION RESULTS
In this section, experiments are set up to evaluate 

the effectiveness and improvement of the proposed 

algorithms. The SOI and interferences are QPSK signals 

from the azimuth of 90°, 22°, 62°, 120° and 147°, 

respectively, which are received by the 91-elements 

hexagonal array (HA). The interference-to-noise ratio 

(INR) is 30 dB and the initialized step size for L1-

WCNLMS, RL1-CNLMS, CNLMS and LP-CNLMS are 

5×10-2, 2×10-3, 5×10-3 and 5×10-4, respectively; while the 

constraint factor t is set to 0.8 uniformly. The iteration 

times are 1.2×10-4, while the parameters γ and ξ are 5 and 

5×10-3. 

Figure 2 illustrates the beam patterns of the proposed 

algorithms in comparison with the existing algorithms. It 

can be seen from the figure that our proposed algorithms 

can form nulls corresponding interferences while generate 

nearly identical main lobe in the direction of SOI. What’s 

more, the side lobe level (SLL) is lower than the 

algorithm developed in [17], but a little higher against 

the non-sparse algorithm CNLMS. 

Fig. 2. Beam patterns of the proposed algorithms versus 

the CNLMS algorithm and the existing algorithm in [17]. 

Yellow line stands for the SOI, pink lines are interferences. 

 (a)   (b) 

 (c)   (d) 

Fig. 3. Sparse arrays thinned by the proposed algorithms 

and the algorithm developed in [17]. (a) LP-CNLMS 

algorithm with p=0.8, (b) LP-CNLMS algorithm with p=0.4, 

(c) RL1-CNLMS algorithm, and (d) algorithm in [17].

Figure 3 shows the sparse arrays thinned by using 

the proposed algorithms and the algorithm in [17]. As the 

figure indicates, all the algorithms can achieve sparse 

adaptive beamforming successfully. However, it is 

clearly that the beam patterns of the proposed algorithms 

turn off much more active antennas in comparison with 

the algorithm in [17] under the same iteration times. 

In addition, the LP-CNLMS has a better performance 

than that of the RL1-CNLMS algorithm since it can 

effectively exploit the sparseness of the antenna array. 

Thus, our proposed adaptive beamformer can reduce the 

power supply via utilizing less antenna elements to get 

nearly same performance in the HA beamforming. 

Fig. 4. Output SINR versus the input SNR. 
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In terms of the output SINR performance shown in 

Fig. 4, the proposed algorithms can obviously obtain a 

better SINR results with the same SNR. In addition, the 

Lp-CNLMS algorithm is superior to the RL1-CNLMS. 

What’s more, if p goes closer to 0, we will get better 

SINR performance, but its beam is getting worse. Thus, 

it is a trade-off for practical applications. Moreover, 

since we aim to develop sparse antenna array, resulting 

in an inferior output SINR which should be improved in 

the future. 

VI. CONCLUSION
In this paper, a RL1-CNLMS algorithm and an 

LP-CNLMS algorithm have been proposed for sparse 

adaptive beamforming control applications. The proposed 

algorithms can reconstruct the main beam in the 

direction of SOI and provide nulls to reduce the 

influences from the interferences. Besides, they can 

achieve better performance than the existing sparse 

beamformer by using much less antenna elements. In 

terms of the output SINR, our proposed algorithms also 

have a good property. However, they still have some 

weaknesses that need for further study, such as the 

high SLL. Additionally, in the model, we neglect the 

influence of mutual coupling, which may lead to 

estimate error and need future investigate either. Also, 

we will consider the sparse beam scanning antenna 

arrays in the future studies in the MIMO antenna arrays 

[21-23]. 
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