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Abstract ─ The wide-angle Claerbout scheme of three-

dimensional time domain parabolic equation (Claerbout-

TDPE) is derived in this paper, which can provide 

accurate results at angles within 25° of the paraxial 

direction. At first, the Crank-Nicolson (CN) type is 

introduced to discretize the Claerbout-TDPE. In this 

way, a three-dimensional EM scattering problem can be 

divided into a series of two-dimensional ones. Moreover, 

the alternating direction implicit (ADI) type is utilized to 

the Claerbout-TDPE. In this way, a three-dimensional 

EM scattering problem can be further reduced to a series 

of one-dimensional ones. Furthermore, the alternating 

group explicit (AGE) type is introduced to the Claerbout-

TDPE for higher computational efficiency. Comparisons 

are made among the CN, ADI and AGE types in the 

numerical results.  

 

Index Terms ─ Electromagnetic scattering, time domain 

parabolic equation, wide angle. 

 

I. INTRODUCTION 

The parabolic equation (PE) has been applied to 

study the wave propagation [1-3] and EM scattering 

problems [4-7] for several decades. The split-step Fourier-

based PE is extremely attractive for its computational 

efficiency. However, it lacks the flexibility of boundary 

modeling for complicated targets. Therefore, it is best to 

use the FD schemes when dealing with problems of 

complicated boundaries. When applying the finite 

difference method to the paraxial direction, the PE can 

be solved in a marching manner. As a result, a series of 

two-dimensional problems are needed to be computed 

instead of a three-dimensional problem. Therefore, the 

computational efficiency can be improved significantly. 

However, the traditional PE methods are based on finite 

difference schemes in each transverse plane, which use 

rectangular meshes. This kind of meshes will result in 

poor accuracy to approximate complex targets. Moreover, 

the PE method cannot model the scattering targets with 

large changes along paraxial direction since the creeping 

waves cannot be captured. Therefore, some hybrid PE 

methods have been proposed by us to improve the 

accuracy and expand the application of the traditional PE 

method for EM scattering problems [8-11]. Moreover, 

some novel finite difference schemes and parallel 

technologies are introduced to accelerate the calculation 

of PE method [2-3, 11-13]. All of these works are focus 

on narrow-angle approximation of parabolic equation, 

which can obtain accurate results within 15° of the 

paraxial direction. Wide-angle parabolic equation methods 

were introduced for wider angle EM analysis by using 

high-order expansions of exponential or square-root 

functions. The Pade approximation [7, 14-17] is the  

most popular one, but may result in bad computational 

efficiency or instability with the Pade order increasing. 

The right approach is to use rational approximations 

instead. Therefore, the development of the Claerbout 

solution has a practical significance. The error for a  

plane wave propagating at angle   from the horizontal 

is of the order of 
6(sin ) , which makes it acceptable for 

propagation angles up to 45 degrees or so from the 

paraxial direction.  

In recent years, the transient EM scattering analysis 

becomes a hot topic. Some numerical methods are used 

for wide-band analysis, such as the time domain integral 

equation (TDIE) method, the finite-different time-

domain (FDTD) method and so on. However, it is time-

consuming to obtain the transient EM properties by  

these numerical methods. Therefore, the time domain 

parabolic equation (TDPE) method was proposed to fast 

solve the transient problems [18-23]. By implementing 

the finite difference scheme along both the temporal and 

paraxial directions, the calculation can be taken plane  

by plane for each time step. It can be found that high 

efficiency can be obtained by the TDPE method [22]. 

Moreover, we proposed a marching-on-in-degree solver 
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of TDPE in which the weighted Laguerre polynomials 

are used to expand the electrical fields [23-25]. However, 

all these methods can only provide accurate results at a 

small angle of 15° along the paraxial direction.  

In this paper, the three-dimensional time domain 

wide-angle Claerbout parabolic equation (Claerbout-

TDPE) is formulated firstly. Accurate results can be 

obtained at angles within 25° of the paraxial direction by 

the Claerbout-TDPE method while 15° for the traditional 

TDPE method. Then three different kinds of finite 

difference schemes are introduced to solve the Claerbout-

TDPE, namely the Crank-Nicolson (CN) scheme, the 

alternating direction implicit (ADI) scheme and the 

alternating group explicit (AGE) scheme. For CN 

scheme, the calculation can be performed in a marching 

manner along the paraxial direction for each time step. 

For ADI scheme, the unknowns can be computed row  

by row or column by column in each transverse plane  

for any time step, thus the computational efficiency  

is further improved. For AGE scheme, the reduced 

transient scattered fields in each transverse plane of any 

time step are obtained directly without solving any 

matrix equations. As a result, it has the best performance 

among CN, ADI and AGE schemes. Moreover, the 

bistatic RCS result at any observed angle can be obtained 

by rotating Claerbout-TDPE method. Several numerical 

examples are given to demonstrate the validity of the 

proposed method and comparisons are made among 

different schemes. It can be observed that the AGE 

scheme of Claerbout-TDPE method can save the 

computational resources when compared with both the 

CN and ADI schemes.  
 

II. THEORY 

The wide-angle Claerbout TDPE 

The standard parabolic equation in frequency domain 

can be expressed as: 

 (1 1 ) 0        , ,sik Q u x y z
x
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where 
su  denotes the reduced scattered fields, the x  axis 

is supposed to be the paraxial direction of the parabolic 

equation. The pseudo-differential operator Q  in free 

space is defined by: 
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The square-root operator in (1) is expanded with the 

one order Pade approximation [7], which can be derived 

as: 
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Introduce the Fourier transform along the x,y,z axes,  

which is given by: 
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where  F k  represents the spectrum function, s ct x   

and c  is the light speed.  

Then the three-dimensional time domain wide-angle 

Claerbout parabolic equation (Claerbout-TDPE) can be 

derived by using the forward Fourier transform: 
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By introducing the CN scheme to both the temporal 

and marching steps, the semi-discretized formula for (5) 

can be obtained: 
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in which, , ,

s

n l  is the transient reduced scattered fields 

for  component, x  denotes the range step along the 

paraxial direction, t  represents the time step, and 
2 2,y z   are the second-order difference operators.  

It can be observed from (6) that the calculation can 

be taken plane by plane along the paraxial direction for 

any time step. As a result, the computational resources 

can be saved significantly. The CN, ADI, AGE solutions 

of Claerbout-TDPE are discussed as follows.  

The equations in (6) are coupled with the 

inhomogeneous boundary conditions. For the conducting 

targets, the tangential total field is zero on the surface, 

which yields: 
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 (7) 

where 
i

E  is the incident field, ( , , )b b bx y z  represents 

the boundary point, and ( , , )
x y z

n n n  denotes the outer 

normal component.  
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Moreover, the divergence-free condition is used to 

ensure the unicity [4]: 
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CN solution of the Claerbout-TDPE 

By introducing the CN scheme to (6), the full-

discretized form of Claerbout-TDPE can be obtained: 
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where ,y z   denote the range steps along the y, z 

directions, 
, ,

, ,

s p q

n l  is the component of the transient 

reduced scattered field for ( , , )n x p y q z    at the  l th  

time step.  

It can be seen that the unknowns in the ( 1)n th

transverse plane for the ( 1)l th  time step can be  

computed by the known fields of previous time steps and 

transverse planes. In this way, the Claerbout-TDPE can 

be calculated in a marching manner.  
 

ADI solution of the Claerbout-TDPE 

The ADI solution of the wide-angle Claerbout PE in 

frequency domain has been introduced in [16]. Then its 

time domain counterpart can be derived as: 
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It can be seen that the unknowns are solved line by 

line in each transverse plane for any time step. As a 

result, the computational efficiency can be further 

improved.  
 

AGE solution of the Claerbout-TDPE 

Four asymmetry schemes in Fig. 1 are introduced 

to (5), and then the AGE solution of the Claerbout 

TDPE can be expressed as: 
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It can be found from (10) that the unknowns can be 

obtained directly by using the AGE scheme without 

solving any matrix equations. Therefore, it can achieve 

the highest computational efficiency.  

The Crank-Nicolson scheme is unconditionally 

stable and it has second order accuracy. The ADI-PE 

method can be derived directly from the CN-PE method 

by adding 
2

/ ( )4y z y zr r ik   to each side of the equation. 

In this way, the ADI-PE is also unconditionally stable 

with second order accuracy as the CN-PE. The AGE 

method is explicit, second-order accurate, and is 

unconditionally stable because of using alternative 

strategies on the boundary grids. 
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Fig. 1. Four asymmetry schemes for AGE scheme. 
 

III. NUMERICAL EXAMPLES 
At first, we consider the transient EM scattering 

from a PEC sphere with the radius of 5 m. The center 

frequency of the modulated Gaussian pulse is 300 MHz 

and its bandwidth is 600 MHz. In this numerical example, 

the range steps are set to be 0.05 m and there are 800  

time steps are needed. The incident wave is fixed at 

90 , 0inc inc   . As shown in Fig. 2, the forward 

bistatic RCS results of the CN-Claerbout-TDPE, the 

ADI-Claerbout-TDPE and the AGE-Claerbout-TDPE at 

different frequencies are given and compared with the 

Mie Series. It can be seen that the accuracy can be 

ensured at the angles of 25°-30° along the paraxial 

direction. Moreover, as shown in Fig. 3, the transient 

forward-scattered field of the proposed method is 

compared with the results for the inverse discrete Fourier 

transform (IDFT) of the Mie Series. Furthermore, the 

computational resources are compared in Table 1 among 

the CN-TDPE, the CN-Claerbout-TDPE, the ADI-TDPE, 

the ADI-Claerbout-TDPE, the AGE-TDPE and the 

AGE-Claerbout-TDPE methods. It can be concluded that 

accurate results can be obtained at wider angles with less 

computational resources by the proposed AGE-Claerbout-

TDPE method than other methods.  
 

 

 
 

Fig. 2. Bistatic RCS of a PEC sphere: (a) 200 MHz, (b) 

300 MHz, and (c) 400 MHz.  
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Fig. 3. Transient forward-scattered fields for the PEC 

sphere. 

 

Table 1: Comparisons of the computational resources for 

the PEC sphere among different methods 

Methods Number of 

Discrete Grid 

Peak Memory 

Requirement 

(MB) 

Total CPU 

Time 

(s) 

CN-TDPE 120*120*120 411 12928 

CN-

Claerbout-

TDPE 

120*120*120 487 14432 

ADI-TDPE 120*120*120 325 1079 

ADI-

Claerbout-

TDPE 

120*120*120 647 1343 

AGE-TDPE 120*120*120 335 326 

AGE-

Claerbout-

TDPE 

120*120*120 396 394 

 

Secondly, the transient EM scattering from a  

PEC satellite is analyzed with the incident wave fixed  

at 180 , 0inc inc   . The center frequency of the 

modulated Gaussian pulse is 300 MHz and its bandwidth 

is 600 MHz. The range steps are 0.05 m and there are  

600 time steps are needed in this example. As shown in 

Fig. 4, the complete RCS result of the proposed AGE-

Claerbout-TDPE method is compared with the FEKO. It 

should be noted that the complete RCS result is obtained 

by five rotating AGE-Claerbout-TDPE runs. There is a 

good agreement between them. Moreover, as shown in 

Fig. 5, the stability tests are made for the proposed three 

solutions. Figure 5 shows that the magnitudes of reduced 

time-domain scattered fields at the top point of the  

satellite attenuate exponentially to 1.E-5 V/m. It can be 

observed that the stability can be guaranteed of the three 

solutions for 
2 2 21/ (1/ ) (1/ ) (1/ )t c x y z       .  

 

 
 
Fig. 4. Bistatic RCS of a PEC satellite: (a) 200 MHz, (b) 

300 MHz, and (c) 400 MHz.  
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Fig. 5. Stability tests for the PEC satellite among the CN, 

ADI and AGE solutions.  

 

IV. CONCLUSION 
In this paper, a novel wide-angle Claerbout scheme 

of three-dimensional time domain parabolic equation 

(Claerbout-TDPE) is proposed to analyze the wide-band 

EM scattering problems. It can provide accurate bistatic 

RCS results at wider angle than the traditional TDPE, 

which is up to 25° along the paraxial direction. The CN, 

ADI and AGE schemes are used to solve the Claerbout-

TDPE and efficiency tests are made among them. 

Furthermore, the complete bistatic RCS results can be 

achieved by several rotating Claerbout-TDPE runs.  
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