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Abstract ─ A novel compact bandpass filter considered 

as the harmonic suppression circuit is designed in this 

paper. Because of the application of a T-shaped structure, 

the filter is improved in performance and reduced in  

size. Two transmission zeros at passband edge can be 

conveniently adjusted by changing the length of the open 

stubs located at the center of the T-shaped structure. Two 

filters with different open-stub structures are designed. 

Good agreement between the simulation and the 

measurement is acquired, which verifies the theoretical 

predictions. Benefiting from this feature, an active 

frequency multiplier with the proposed filter as the 

output matching network is designed. When input signal 

is set to be 6 dBm, output power of the second harmonic 

varies from 6 to 8 dBm with 20 dBc suppression for the 

first, third and fourth harmonics. 

 

Index Terms ─ Harmonic suppression, multiplier, output 

power, passband, T-shaped structure, transmission zero. 

 

I. INTRODUCTION 
As one of the most important microwave component, 

filters with high performance and compact size are 

highly desirable in wideband microwave circuit. 

Structures of ring resonators, short/open stubs, multiple-

mode resonators and so on [1-9] have been utilized to 

design the wideband bandpass filter in the past few years. 

In [1-3], traditional coupled lines are considered as the 

key substitute for the wideband filter of compact size and 

simple structure. However, due to the limit of process 

technique, it is difficult to realize small size of gap and 

line width. To tackle the problem of process, low-pass 

and high-pass filters are connected serially to achieve  

the wideband system [4-5]. Unfortunately, this kind  

of structure will lead to the increase of volume. In  

[6-7], kinds of patterns are etched on the ground plane  

of substrate to reach the wideband performance. 

Unfortunately, disadvantages of package, integration and 

electromagnetic leakage are inevitable. In [8-9], a novel 

concept of signal interaction is adopted to design the 

wideband filters by introducing two parallel transmission 

paths. In order to realize sharp-rejection bandpass filters, 

it is the most effective to create two transmission zeros 

at either side of the passband. In [10-12], quarter/half 

wavelength open stubs connected to the center of the 

resonator are proposed to realize transmission zeros 

located at lower or upper stopband. In summary, the 

performance of bandpass filter has been improved. 

However, the application of the proposed filter in 

microwave circuit is rarely involved. 

In this paper, a novel structure with its series 

quarter-wavelength line replaced with an equivalent T-

shaped structure is presented, as shown in Fig. 1. The 

new transmission zero can be controlled exactly by 

adjusting the length of the open-circuited stub. Two 

different wideband filters are designed and fabricated for 

demonstration. In addition, the filter size is reduced for 

use of the T-shaped structure. Two transmission zeros 

located at each side of the passband can be observed  

in simulation and measurement results. Besides, to 

demonstrate its advantage in engineering application, an 

active frequency multiplier based on the proposed filter 

is designed. And tunable transmission zeros produced by 

the filter can be employed to suppress the first, third and 

fourth harmonics  
 

II. ANALYSIS OF THE WIDEBAND 

BANDPASS FILTER  
Figure 1 (a) shows the conventional bandstop filter 

with two open stubs (Z0) connected by the quarter-

wavelength (Z) line. A passband can be realized between 

f0 (the central frequency of the bandstop filter) and 3f0. 

But, the filter has spurious passband at 4f0 and several 

cascaded open stubs are needed to realize good 

impendence match. By replacing the quarter-wave length 

line with a T-structure, a novel bandpass filter is proposed 
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in this paper, as shown in Fig. 1 (b). 
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Fig. 1. (a) Conventional filter circuit and (b) novel 

bandpass filter circuit. 

 

As shown in Fig. 1 (b), one open stub of Z0, qand 

another stub of Z2, q2are adopted to produce two 

transmission zeros which can be utilized not only to 

suppress unwanted harmonics, but also to adjust the 

bandwidth of the filter. And the filter is much more 

compact due to the small size of T-shaped structure over 

the quarter-wavelength line. In Fig. 1 (b), Z1, Z2, θ1 and 

θ2 represent the characteristic impedances, the electrical 

lengths of the series and shunt sections of the T-shaped 

structure respectively. ABCD matrix is used to obtain 

design equations and prove equivalence between T-

shaped structure and a quarter-wavelength line. The 

ABCD matrix of a microstrip line with electrical length 

qis: 
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The ABCD matrix of the T-shaped structure can be 

written as M1×M2×M1: 

 
1

1

1

1 1

1 1
,

cos / 2 sin / 2

sin / 2 cos / 2

 
  
 

jZ
M

jY

q q

q q
 (2) 

 2

2 2
.

1 0

tan 1

 
  
 

M
jY q

 (3) 

In the work here, the T-shaped model is equivalent 

to the quarter-wavelength line (θ0=90°at f0,), and we thus 

have: 

 
0 j
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From (1)-(3), Z1, Z2 can be found based on Eqs. (5) 

and (6): 
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When θ2=90o, the open stub looks like an impedance 

inverter, and if it is terminated in an impedance ZU on 

one port, the impedance ZL seen at the other port can be 

calculated by Eq. (7). As is known, ZU here is infinite, so 

its impedance at another port is zero which makes the 

symmetrical part of the filter shorted. In this case, the 

transmission zero fθ2 that makes θ2=90o appears and can 

be acquired by Eq. (8): 

 2 / ,L UZ K Z  (7) 

 
2 0 2/ 90 / . of fq q  (8) 

In order to achieve a compact equivalent T-shape 

model, θ1 should be less than 45°. And, the transmission 

zero fθ2 created by the stub θ2 can be adjusted easily, with 

Z1, Z2, f0 and θ1 fixed. Relation curve of fθ2/f0 and θ2  

(0° < θ2 < 360°) is shown in Fig. 2. With the increase of 

θ2, fθ2/f0 becomes less and less. When θ2=90°, the novel 

created transmission zero of fθ2 and f0 are coincident. 
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Fig. 2. Relationship between transmission zero fθ2 and θ2. 

 

In order to validate above design ideas, a bandpass 

circuit with Z0 = Z = 50Ω, f0 = 3 GHz and θ0 = 90° are 

simulated with Advanced Design System (ADS). Here 

we choose θ1 = 26.5°, two different θ2, saying, 23° and 

35° are chosen to indicate the transmission zero produced 

by open-ended stub can be adjusted. From (4), it is easy 

to get Z1 = 100Ω. From (5), the corresponding Z2 in two 

cases of θ2 are found to be 28Ω and 46.6Ω, respectively. 

In addition, transmission zeros for two different θ2  

can be calculated by (8). fθ2 = 11.7 GHz and 7.7 GHz 

respectively. Figure 3 shows the simulated results for 

two cases with different impedance values. Comparing 

the simulated and the calculated results, we may see  

that when θ2 < 30°, a wideband bandpass filter can be 

implemented between f0 and 3f0, while the created 

transmission zero fθ2 can be used to suppress the fourth 

harmonic, thus resulting in wider upper stopband for the 

bandpass filter; when 30° < θ2 < 90°, a narrowband 

bandpass filter between f0 and fθ2 is achieved, and the 

transmission zero fθ2 can be used to improve the rejection  
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performance. It is true that a transmission fθ2 zero can be 

also located below f0, when θ2 > 90°. However, the 

passband performance is dissatisfactory. In this way, two 

different bandpass filters with an adjustable bandwidth 

can be realized by controlling the location of the 

transmission zero fθ2 created by the open stub (θ2). In 

addition, the filter size is much reduced by the introduced 

T-shaped lines. 
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Fig. 3. Simulated results for two different fθ2, Z0 = 50 ohm, 

f0 = 3 GHz, θ0 = 90°, θ1 = 26.5°, Z1 = 100Ω. 

 

III. TWO WIDEBAND BANDPASS FILTERS 
In this work, the quarter-wavelength line of the 

conventional bandstop filter is replaced with proposed T-

shaped structure. For demonstrating the design strategies 

discussed in Section 2, two different wideband bandpass 

filters are designed. Here we choose θ2 < 30° for filter A 

and θ2 > 30° for filter B to realize wide passband. The 

two filters are all simulated with Ansoft HFSS and 

constructed into the Rogers4350B substrate with r = 3.66 

and h = 0.508 mm. Figure 4 illustrates the simulation model 

of bandpass filters. For filter A, Z0 = 50Ω, f0 = 3.2 GHz, 

θ0 = 90°, Z = 50Ω, θ1 = 27°, θ2 = 24°, Z1 = 80Ω,  

and fθ2 = 4f0 = 12.8 GHz. To obtain better passband 

characteristics, the optimized impedance Z2 = 80Ω. For 

filter B, Z0 = 50Ω, f0 = 3.2 GHz, θ0 = 90°, Z = 50Ω,  

θ1 = 15°, θ2 = 40°, Z1 = 100Ω, fθ2 = 7.9 GHz, and Z2 = 120Ω. 

The simulated and measurement performances of 

the two filters are shown in Fig. 5, good agreement can 

be observed between the results. For filter A, the central 

frequency is 6.07 GHz with two transmission zeros at f0 

and 3f0 at either side of the passband. The transmission 

zero fθ2 created by the open stub (θ2) is located at around 

12.8 GHz to suppress the fourth harmonic 4f0 and a wider 

upper stopband is thus realized by this simple and 

effective method. In addition, in the whole passband 

there are two poles with return loss below 20 dB, as can 

be seen in Fig. 5 (a). From Fig. 5 (b), the bandpass filter 

B covers the band of 4.6-7.1 GHz, the transmission zero 

fθ2 is located at around 7.9 GHz, three transmission poles 

are observed with return loss below 20 dB in the whole 

passband. The comparisons of measured results for 

several wideband filters [16, 17] are shown in Table 1.  
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Fig. 4. The configuration of proposed filters: filter A  

(L0 = 14.8 mm, L1 = 9.0 mm, L2 = 3.88 mm, W0 = 0.77 mm, 

W1 = 0.37 mm, W2 = 0.36 mm), and filters B (L0 = 14.8 mm, 

L1 = 4.99 mm, L2 = 6.08 mm, W0 = 1.94 mm, W1 = 0.26 mm, 

W2 = 0.11 mm). 
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Fig. 5. (a) The simulated and measured results of filters 

A, and (b) The simulated and measured results of filters 

B. 

 

Table 1: Comparisons with wideband filters  

Different 

Structures 

Filter A in 

This Paper 

Ref. 

[16] 

Ref. 

[17] 

f0 6.07 GHz 1.54 GHz 6.8 GHz 

Circuit size 

(lo) 
0.54×0.37 0.05×0.21 0.17×0.32 

(f40dB-f3dB) / f3dB 9% 23% 13% 

Transmission 

poles 
3 3 3 

Second harmony 

suppression 
20 dB 30 dB 20 dB 
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IV. THE APPLICATION OF THE NOVEL 

FILTER 
As analyzed in the Section 3, the novel filter can be 

used to suppress the undesired harmonics of f0, 3f0 and 

4f0, but keeping the harmonic of 2f0. And according to 

the given center frequency f0, one is able to calculate the 

physical size of the filter based on (4) and (5). Besides, 

to make the filter more compact, a T-shaped structure 

with an open-circuited stub is employed to replace the 

conventional quarter-wavelength line. Thus, due to the 

advantages presented above, it is extremely useful in RF 

circuit design [13-15]. In this paper, an active frequency 

doubler is designed by incorporating the proposed filter 

in the output matching network, as shown in Fig. 6. A 

quarter-wavelength line at the center frequency f0 is 

adopted to bias the gate of FET, while a quarter-

wavelength line at the second harmonic 2f0 is employed 

to bias the drain of FET. Properly adjusting the location 

of three transmission zeros at f0, 3f0 and 4f0 as shown in 

Fig. 5, the output harmonics except 2f0 will be suppressed 

greatly. And, it behaves as a 50Ω line at the second 

harmonic 2f0 and also plays an important role in 

matching output circuit of the multiplier. So, when 

determining the size of the filter, harmonic suppression 

and port reflection coefficient should be considered 

simultaneously. 

In fact, the designed filter can be considered as a 

50Ω transmission line at the second harmonic 2f0 for its 

excellent matching that has been proved in Section 3. 

Thus, as shown in Fig. 6, a novel output matching 

network in which the proposed filter is introduced is 

designed. And, due to the compact feature of the filter, 

the size of multiplier is reduced further.  
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Fig. 6. The circuit of the frequency doubler (Lg = 6.9 mm; 

Wg = 0.2 mm; Ld = 3.3 mm; Wd = 0.2 mm; Ls1 = 15.6 mm; 

Ls2 = 1.69 mm; Ls3 = 9.9 mm; Ws1 = 2.0 mm; Ws2 = 0.2 mm; 

Ws3 = 0.2 mm; L11 = 9.0 mm; L12 = 1.5 mm; W11 = 0.2 mm; 

W12 = 0.25 mm; Lf1 = 9.25 mm; Lf2 = 1.81 mm; Lf3 = 2.85 mm; 

Wf1 = 0.83 mm; Wf2 = 0.15 mm; Wf3 = 0.46 mm). 

 

A Hetero-Junction FET NE3210S01 whose model 

can be found on official website is adopted for the design 

of the multiplier simulated by the Agilent’s Advanced 

Design System (ADS). The gate voltage is set to -0.25 V  

to reach the nonlinear field of the FET and drain voltage 

is fixed to be 2 V. The PCB with 14 internal ports 

inserted is optimized in ADS software, and then the 

external power, DC blocking capacitor, FET and so on is 

connected to be ports. Finally, a 14 ports block diagram 

based on S parameters of PCB is simulated to test the 

performance of multiplier. 

 

For demonstrating the introduced technique and 

validating the simulation result, an active multiplier of 

4.5~5.5 GHz implemented on Rogers 4350B substrate 

with r =3.66 and h = 0.508 mm is designed. It can be 

seen in Fig. 7 that input return loss is below 20 dB for 

simulation and 10 dB for measurement, while the output 

return loss below 10 dB both for simulation and 

measurement in the whole band. Figure 8 tells that  

under 6 dBm input power, the output power of second 

harmonic variates from 6 to 8 dBm, and the elimination 

for first harmonic, third harmonic and forth harmonic is 

lower than 20 dBc. To indicate the relationship between 

the input power and output power of second harmonic 

more clearly, Fig. 9 is introduced. Besides, the total 

length of output matching network is 15 mm, while the 

circuit without novel filter reaches 21 mm. And, nearly 

no suppression for the harmonic is produced. Finally, 

picture of the fabrication circuit is shown in Fig. 10. 
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Fig. 7. (a) The simulated and measured results of S11, and 

(b) the simulated and measured results of S22. 
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Fig. 8. (a) The output power of different harmonics  

for simulation, and (b) the output power of different 

harmonics for measurement. 
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Fig. 9. (a) The output power of second harmonic for 

simulation, and (b) the power of output second harmonic 

for measurement. 

 
 

Fig. 10. The photograph of the designed multiplier. 

 

V. CONCLUSION 
In this work, two kinds of novel bandpass filters are 

proposed and demonstrated. What’s more, the designed 

filter is applied to form an active multiplier. The highlight 

of the design is to replace the quarter-wavelength line of 

bandstop filter with a T-shaped open stub structure. One 

advantage is the size reduction of the structure; another 

is the flexible adjustability of transmission zero created 

by the open stub and thus easy bandwidth control of the 

passband. In addition, the transmission zero created by 

the central open stub of the T-shaped lines can be used 

to suppress the harmonic or improve the roll-off skirt 

selectivity; high out-of-band rejection can thus be 

realized. Two novel compact wideband bandpass filters 

are modeled and simulated for demonstration, good 

agreement can be observed between the simulation and 

theoretical analysis, indicating the validity of the proposed 

design strategies. With those good performances, a kind 

of active frequency doubler is designed based on the 

novel filter. In on hand, the size of output matching 

network is reduced; on the other hand, the output 

undesired harmonics is suppressed greatly. 
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