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Abstract ─ Galerkin testing in method-of-moments 
procedures is defined as the use of the same set of 
functions as both basis functions and testing 
functions to construct a linear system from a 
continuous equation. There is a widespread belief 
that Galerkin testing enhances the accuracy of 
numerical results, and this has been shown to be 
true under certain conditions for surface integral 
equation formulations. This property is investigated 
for the volume electric field integral equation 
(EFIE) applied to dielectric bodies. The relative 
accuracy obtained in internal fields and scattering 
cross section for Galerkin and for point testing 
schemes is compared for a variety of target sizes 
and materials. In many cases, the point-tested 
results converge at the same rate as the Galerkin 
results and are more accurate. 

Index Terms ─ Dielectric targets, method of 
moments, numerical techniques, radar cross 
section. 

I. INTRODUCTION 
There are numerous applications requiring 

accurate numerical solutions for electromagnetic 
fields in the presence of heterogeneous dielectric 
bodies. Volume integral equation formulations 
offer one avenue to approach these problems, and 
are of interest in conjunction with fast iterative 
solvers due to their relatively low matrix condition 
numbers. Formulations based on both the electric 
field integral equation (EFIE) and the magnetic 
field integral equation (MFIE) using tetrahedral 
cells in 3D have been proposed [1-7]. The EFIE 
approaches impose the integral equation using 
“Galerkin” testing, where testing functions that are 
identical to the basis functions are used to enforce 

the equations and create a linear system. This type 
of testing scheme imposes a cost in the form of 
additional integrations that must be carried out to 
produce the system of equations. Galerkin testing 
offers the advantage that it produces a symmetric 
matrix for EFIE formulations, and may make it 
easier to compute the entries of the system matrix 
by distributing derivatives and thereby limiting the 
order of the Green’s function singularity. However, 
there is also a widespread belief that Galerkin 
testing is associated with a variational principle that 
enhances the accuracy of the numerical results, 
specifically the far fields and scattering cross 
section (SCS) [8-9].

For surface EFIE formulations involving 
scattering from conducting targets, the SCS 
accuracy converges at a faster rate than the surface 
current density when Galerkin testing is used with 
mixed-order divergence-conforming basis 
functions [10]. Galerkin-tested results with these 
basis functions also show faster convergence rates 
and improved accuracy for SCS compared to point-
tested results [10]. However, this “super-
convergence” does not happen for all equations and 

all basis function types [11]. Furthermore, to the 
author’s knowledge, this phenomenon has not been 
investigated for volume integral equations. 

The following considers the widely-used EFIE-
D formulation proposed in [1], where the electric 
flux is represented by mixed-order divergence-
conforming Schaubert-Wilton-Glisson (SWG) 
basis functions. Results obtained using a Galerkin 
testing scheme to enforce the EFIE are compared 
with results obtained using point testing in the 
center of the cell faces. The theory of variational 
techniques [9] suggests that the accuracy of internal 
fields obtained by the two approaches should be 
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similar, but that the accuracy of the SCS will be 
improved by Galerkin testing. However, results 
suggest that this is not the case for most of the 
examples considered. Often, point testing produces 
more accurate SCS results than Galerkin testing. 
Preliminary results of this study were reported in 
[12-13]. 

II. THE POINT TESTED EFIE-D
FORMULATION 

Details of the point-tested EFIE-D formulation 
are not reported in the literature, so the expressions 
arising from that scheme that are summarized in 
this section. The EFIE can be expressed: 
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where the asterisk denotes spatial convolution, � is 
the radian frequency, �0 and �0 are the permeability 
and permittivity of the background medium, and 
k � � �0�0  is the wavenumber of the background 
medium. The electric flux, polarization current, and 
polarization charge densities are represented by:
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where f  denotes an SWG basis function straddling 

two tetrahedral cells Tn
�  and Tn

�  adjacent to face n
[1], and � = (�r –1)/��r denotes the contrast ratio of 
the appropriate cell, where �r is the relative 
permittivity of that cell. The point-matched 
approach employs a Dirac delta test function:

Tm (r ) � ûm� (x � xm )� (y � ym )� (z � zm ),  (5) 
where (xm , ym , zm )  denotes the center of face m and 
ûm  is a normal vector to that face pointing from cell 
Tm

�  to cell Tm
� . However, since the total electric 

field exhibits a jump discontinuity at a dielectric 
boundary, the EFIE must be tested slightly to one 
side of such an interface, at a point where the total, 

scattered, and incident fields are all well-defined. 
For uniqueness, we will test slightly to the Tm

� side 
of face m.

Point testing produces the system of equations 
ZD = E, where the entries of the system are: 
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(6) 
and the excitation vector is:

Em � ûm � E inc (rm ). (7) 
The evaluation of the first and second expressions 
in (6) is straightforward; in the latter case there is a 
1/R singularity at the observer that can be handled 
by the usual singularity cancellation procedures. 
The third term in (6) may be expressed as:
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(8) 
These integrals contain 1/R2 singularities at the 
observer, but since they are volume integrals they 
are integrable and can also be handled by 
singularity cancellation transformations.

Finally, when the observation point is located 
on the source face, the final expression in (6) may 
be evaluated analytically to produce:
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(9) 
In summary, for a point-tested EFIE, the matrix 
entries are well defined and bounded and may be 
computed without difficulty. Integrals are 
performed using adaptive quadrature to an accuracy 
of at least 3 decimal places. 
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III. NUMERICAL RESULTS 
A variety of results were computed for 
homogeneous spherical targets of different size and 
permittivity, using a series of tetrahedral-cell 
meshes ranging from 32 cells (80 faces) to 3383 
cells (7067 faces). The error in each result was 
determined using exact solutions obtained from the 
eigenfunction series. The 2-norm error in the 
scattering cross section is defined: 

E �

1
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sin"m
m�1
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� $ exact ("m ,#n ) � $ numerical ("m ,#n ) 2

n�1

N"

�
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,

 (10) 
while the 2-norm error in the internal electric field 
is: 
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The SCS error was averaged on a 30 degree grid in 
spherical angles (",#); the error in internal fields 
was compared at the center of each face in the mesh. 

In addition to results obtained from the point-
tested EFIE-D and the Galerkin-tested EFIE-D, we 
also computed results for each target using the 
Galerkin-tested EFIE-H formulation, which 
employs solenoidal basis functions for the electric 
flux [3,7]. 

As an illustration of typical results, Fig. 1 
shows the error in the bistatic SCS versus number 
of unknowns for a homogeneous dielectric sphere 
with ka = 0.6 and �r = 10, averaged over samples 
taken every 30 degrees in " and #. For this target, 
the Galerkin-tested EFIE-D SCS is slightly more 
accurate than the point-tested EFIE-D SCS, but 
both are converging at an approximate rate of O(h2), 
where h is the average cell dimension. SCS results 
were observed to converge at an O(h2) rate for every 
target considered in this study, for both point-tested 
and Galerkin results. The SCS produced by the 
EFIE-H formulation is somewhat more accurate 
than either EFIE-D result for a given mesh and for 
a similar number of unknowns. Figure 2 shows the 
error in the internal electric fields versus the 
number of unknowns, for ka = 0.6 and �r = 10, 
obtained from (11) by averaging over every cell 
face in the mesh. The point-tested EFIE-D results 
are slightly more accurate than the Galerkin-tested 
EFIE-D results, and are similar in accuracy to the 
EFIE-H results. In this case, the rate of convergence 

of the internal electric field appears to be 
somewhere between O(h) and O(h2). 
 

 
 
Fig. 1. Error in the SCS for a dielectric sphere with 
ka = 0.6 and �r = 10.0. 
 

 
 
Fig. 2. Error in the internal electric field for a sphere 
with ka = 0.6 and �r = 10.0. 
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Figure 3 shows the error in the SCS versus 
number of unknowns for a larger sphere with ka =
1.5 and �r = 10. For this target, the point-tested 
EFIE-D SCS is almost an order of magnitude more 
accurate than the Galerkin-tested EFIE-D SCS, 
with both converging at an O(h2) rate. Figure 4 
shows the error in the internal electric fields for this 
target. The point-tested EFIE-D internal field 
results are more accurate than the Galerkin-tested 
EFIE-D results. The EFIE-H results exhibit an 
accuracy between those of the point-tested and 
Galerkin tested EFIE-D results. In this case, the rate 
of convergence of the internal electric field appears 
to be O(h2) for both point and Galerkin tested 
approaches. 

Table 1 shows the approximate error in the SCS 
and internal fields for a range of targets, at a 
common cell density where the average edge length 
is approximately 0.1 &d within the target. For the 
specific set of models in use, the number of faces 
(and therefore, the number of unknowns) that 
corresponds to an average cell edge length of 0.1 
dielectric wavelengths is approximately given by: 

Nfaces � 400(k0a)3(�r )
1.5.  (12) 

We will use unknown level in (12) to standardize 
accuracy comparisons. These results are 
extrapolated from error plots similar to those in 
Figs. 1-4 using (12) to identify the appropriate 
number of unknowns. Table 2 shows the observed 
rate of convergence for the electric field in each set 
of results. The SCS always appears to converge at 
an O(h2) rate. 

From Table 1 we observe that, at an average 
edge length of 0.1 &d, the point-tested EFIE-D
results for internal fields exhibit an error level of 
approximately 0.007 across a wide range of target 
parameters. The error level for the Galerkin-tested 
EFIE-D internal fields for this average edge length 
is much more variable, and usually at least twice as 
high as the point-tested errors. For SCS errors, the 
point-tested results show a trend of lower error as 
the effective target size grows, while Galerkin-
tested SCS results seem to show the opposite. In 
other words, from these data, it appears that the 
Galerkin SCS error grows as either k0a or �r

increases, despite the cell dimensions being 
reduced to compensate for the smaller dielectric 
wavelength. 

Fig. 3. Error in the SCS for a dielectric sphere with 
ka = 1.5 and �r = 10.0. 

Fig. 4. Error in the internal electric field for a sphere 
with ka = 1.5 and �r = 10.0. 
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IV. DISCUSSION 
For SWG bases, which are fundamentally 

piecewise-constant functions, the error in the 
internal fields is expected to converge at an O(h) 
rate. However, it appears that the field error at the 
center of the faces of the mesh converges at a 
superconvergent rate of O(h2). (A similar effect 
occurs in numerical solutions of the surface EFIE 
using RWG basis functions [10-11].) This may 
explain the convergence rates reported in Table 2, 
although the effect is not apparent for small target 
sizes. For the Galerkin-tested EFIE-D, the SCS 
convergence rate of O(h2) is expected due to 
variational properties [8-9]. However, the point-
tested SCS also always appears to converge at an 
O(h2) rate, which is contrary to expectation (and 
different from what is observed for the surface 
EFIE using RWG basis functions and point testing 
[11]). Since the SCS is computed by actually 
integrating over the SWG basis functions, one 
should expect an O(h) convergence rate in the 

absence of some variational effect. 
The author has also investigated two-

dimensional volume integral equations using 
triangular cells, and has observed similar behavior 
for the TM EFIE with pulse basis functions, and the 
TE EFIE with RWG basis functions [12]. In both 
cases, internal field results are usually slightly 
better with point testing, while SCS results appear 
to be as good or sometimes better with point testing 
than with Galerkin testing. 

It is also observed in Table 1 that the point-
tested results exhibit an SCS error that is usually 
comparable or larger than the field error, while the 
Galerkin-tested SCS error is often much smaller 
than the field error. This observation seems to be in 
accordance with the Galerkin theory that predicts 
that the SCS error will be lower than field error [8-
9]. However, for these results the point-tested field 
error is often substantially smaller than the 
Galerkin-tested field error, so there is no net 
improvement in SCS error with Galerkin testing. 

 
Table 1: Approximate error levels when the average edge length is 0.1 dielectric wavelengths 

ka �r Unknowns for Avg. 
Edge Length = 0.1 &d 

Point-Tested 
E-Field Error 

Galerkin 
E-Field Error 

Point-Tested 
SCS Error 

Galerkin 
SCS Error 

       
1.0 3 2100 0.007 0.015 0.006 0.006 
1.0 5 4500 0.006 0.020 0.005 0.009 
1.0 7 7400 0.007 0.035 0.004 0.016 
1.0 10 12,600 0.007 0.060 0.0035 0.035 

       
0.35 10 540 0.011 0.008 0.03 0.0034 
0.6 10 2700 0.005 0.01 0.009 0.005 
1.0 10 12,600 0.007 0.06 0.003 0.035 
1.5 10 42,700 0.009 0.03 0.02 0.1 

Table 2: Approximate convergence rates for the 
internal electric field error 

ka �r Point E-Field 
Error Rate 

Galerkin E-Field 
Error Rate 

    
1.0 3 Between h and h2 O(h) 
1.0 5 O(h2) Between h and h2 
1.0 7 O(h2) O(h2) 
1.0 10 O(h2) O(h2) 

    
0.35 10 O(h) O(h) 
0.6 10 Between h and h2 O(h) 
1.0 10 O(h2) O(h2) 
1.5 10 O(h2) O(h2) 

IV. CONCLUSION 
Results suggest that for the most widely-used 

volume integral formulation, the expected benefit 
of Galerkin testing is not realized in practice for 
many targets. Galerkin testing imposes a significant 
additional cost (an order of magnitude) in terms of 
matrix fill time, while increasing the complexity of 
the required integrations since observer locations 
are often closer to source cells as a result of the 
iterated integrals. However, it seldom produces 
more accurate near fields and only occasionally 
produces more accurate far fields than point testing. 

It was observed in [7] that the EFIE-H 
formulation usually outperforms the Galerkin 
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EFIE-D approach. That observation also applies 
here, for a wider range of target size and 
permittivity than considered in [7]. However, in 
many cases the point-tested EFIE-D outperforms 
the EFIE-H approach. 

In conclusion, when compared to the Galerkin-
tested EFIE-D approach [1], the point-tested EFIE-
D formulation is more efficient, more accurate for 
near fields, and usually as accurate for far fields. 
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