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Abstract ─ In this paper, the meshfree collocation 
method is applied to the problem of EM scattering 
by a 2D crack in a PEC plane. The hybrid PDE-IE 
formulation is the mathematical statement of the 
problem. Consequently, the geometry and the 
filling material of the cavity is arbitrary. 
Validations are based on convergence analysis, 
modal solution and measurement results. 
Furthermore, elliminating numerical integrations 
has lead to a fast, accurate, and general meshfree 
solution.  
  
Index Terms ─ Collocation, crack, FFT, mesh 
free, scattering.  
 

I. INTRODUCTION 
Electromagnetic (EM) scattering by a two-

dimensional (2D) crack in a perfect electric 
conductor (PEC) plane is a well-known problem in 
computational electromagnetics (CEM). The 
problem is of high value in the fields of radar cross 
section (RCS) and non-destructive testing (NDT). 
This problem has two degrees of freedom; the 
shape of the gap and the gap filled material. When 
the shape and the gap material distribution are 
such that the computation of the modal Green’s 
function of the gap is possible, the modal solution 
is preferable which leads to an integral equation 
(IE) and can be efficiently solved by the method of 
moments (MoM) [1]. For an arbitrary shaped but 
homogeneously filled gap, coupled system of IEs 
can formulate the problem and again, MoM can be 
used for numerical solution [2]. The most general 
case, i.e., an arbitrary shaped gap with arbitrary 
material distribution, can be well formulated by 
hybridizing a partial differential equation (PDE) 

governing the internal gap field (the interior 
problem) and the boundary integral (BI) governing 
the field over the PEC plane (the exterior 
problem), which has been handled by the hybrid 
FEM-BI method [3]. The problem is also studied 
by other approaches [4-6].  

 It is already reported that meshfree methods 
(MFMs) are more accurate than the FEM [7]. 
Furthermore, meshfree methods can solve the 
same problem by considerably fewer unknowns, 
leading to smaller size coefficient matrices and 
less memory usage. This advantage is due to the 
superb fitting capability of meshfree shape 
functions. Nevertheless, these methods are in 
general slower but not necessarily, compared to 
their mesh/grid based counterparts. 

Being a weighted residual method, the kind of 
weighting function plays a key role in the 
computational cost of a meshfree method. Using 
the Dirac delta function as weighting leads to the 
meshfree collocation method which is the most 
computational efficient type. In comparison to 
plentiful research in the CEM community by 
numerical approaches such as FDTD, FEM and 
MoM, limited studies by meshless approaches are 
available in the literature such as [8-24].  

In the present work, the aforementioned 
hybrid PDE-IE formulation is solved by the 
meshfree collocation method [25]. The IE part of 
the problem can potentially impair the speed of the 
solution by imposing numerical integration. Here, 
some suggestions are made to completely by-pass 
the integrations, leading to a general, accurate and 
fast meshfree solution for the problem. 
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Fig. 1. Geometry description of the problem and 
definitions. Ω: crack domain, Γa: crack opening 
boundary, F/G: incident field, k: wave vector, n: 
normal vector to the crack wall. 
 
II. MATHEMATICAL STATEMENTE OF 

THE PROBLEM 
Geometry of the problem is depicted in Fig. 1. 

Based on the polarization of the incident wave, F 
and G are either of electric field vector E or 
magnetic field vector H. The wave number and 
intrinsic impedance of the free space are k0 and Z0, 
respectively. In addition, relative electric 
permittivity and magnetic permeability of the 
filling material are εr and μr, which are in general 
space dependent. Following [3], the mathematical 
statements of the problem for different incident 
polarizations are:  
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B. TM incidence 
In this case, ,= = =HF H z G E , and: 
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III. MESHFREE DISCRETIZATION 
From a mathematical point of view, (1) and 

(4) are non-local boundary value problems and as 
stated before, can be decomposed into two parts: 
interior and exterior. The operator governing the 
interior problem is purely differential. 
Alternatively, the exterior operator is integro-
differential. In view of intrinsic complexity of 
meshfree shape functions, improper selection leads 
to computational inefficiency. Radial interpolants 
and their partial derivatives are fast to generate 
with high order of continuity and excellent fitting 
ability [7, 25]. However, they work well when 
they are spread over the entire problem domain 
[26]. On the contrary, Shepard approximants while 
not as powerful, are still fast and localized on a 
small portion of the problem [27]. Therefore, we 
suggest expanding the field variable of the 
differential and integral parts of the problem over 
radial bases functions (RBFs) and Shepard 
functions, respectively.  

Here, meshfree discretization of TE 
polarization is presented. The TM case can be 
carried out in a similar manner. Let the problem 
domain Ω and the whole boundary ∂Ω be 
described by N nodes with the first M nodes 
placed on Γa and the next (N – P) nodes on the 

crack wall. Assume  ( ){ }2

1
ϕ

=

ND
i i  , ( ){ }1

1
ϕ

=

MD
i i

 and 

( ){ }1

1
ψ

=

MD
i i

 be sets of shape functions for 

corresponding nodes where superscripts represent 
the dimension of each set. In addition, 
mathematical functions u and v are defined for 
simplifying meshless discretization as: 
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Thus, ( ) ( )( ) ( )2
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= + . Following 
the aforementioned suggestion leads to expanding 
E and u over interpolants and v over approximants, 
e.g.: 
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where Eh and uh are interpolated values of E and u, 
respectively, and vh  is the approximated value of 
v. Subscripts G, W and C denote gap, wall and 
internal crack nodes. For generating the system of 
equations, we collocate sides of (1) and (5) at the 
nodes. Considering the first equations in (1) and 
(6), 
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Next, substituting the expansion of u represented 
in (6) in the first equation of (5) leads to: 
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Finally, the second equation of (1) gives: 
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Therefore, the corresponding system of equation 
is: 



1 0⋅ =M E                                                            (16) 
which can be uniquely solved after imposition of 
the following linear set of conditions: 
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Once E  is computed, the field variable E can be 
interpolated at any point in the domain and on the 
problem boundary.  
 
IV. COMPUTING THE ENTRIES OF M3  

Among Mi matrices,1 8i≤ ≤ , The only time-
consuming one is M3. In this section, two 
approaches are suggested for this purpose, one in 
the space domain and the other in the spectral 
domain. The latter is our proposed method.  

 
A. Space domain 

A choice of computing the entries of M3 in the 
space domain is performing the following two 
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steps. First, the Green’s function is decomposed 
into singular and oscillatory parts, i.e.: 

,Sing OscillG G G= +                                                 (18) 
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Second, the oscillatory part is integrated by a 
standard quadrature, e.g. Gauss-Legendre and the 
singular part by the quadrature rule given in [28]. 
 
B. Spectral domain 

This is our suggested method and requires the 
crack nodes to be arranged equidistance. By doing 
so, all of the ( )1ψ D

i  shape functions are shifted 
version of each other. Furthermore, the study of 
Shepard functions shows that they can be well 
approximated by a single Gaussian function. Thus, 
the mathematical form of the M3 entries can be 
approximated by: 
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where α and β are positive real constants to be 
determined by approximating a representative 
such as the central node  approximant by a 
Gaussian function. Here, "*" stands for linear 
convolution. Since the spectrum of a Gaussian 
function is practically band limited, (18) could be 
efficiently computed by the fast Fourier transform 
(FFT), i.e.: 
 { } { }{ }1 .−= ⋅P FFT FFT S FFT G                        (19) 
 

V. NUMERICAL RESUILTS 
In this section, we have applied the proposed 

meshfree method to the same problems addressed 
in [3], with the geometry as depicted in Fig. 2. The 
convergence analysis curves are provided for 
rigorously validating the method [29]. Thin-plate 
spline (TPS) functions are used for construction of 
meshfree shape functions [7]. The influence 
domain of Shepard functions are selected to be 

( )1/22 21.5× +x yD D where Dx and Dy are nodal spacing 
in x and y directions, respectively. Additionally, 
for error estimate we used: 
( )1 2 1 2 1, / ,er u u u u u= −                                    (20) 

where 
1 2

21 2
Ω

 
= Ω 

 
∫u u d . 

Consider a gap with w = 1λ and d = 0.25λ. 
Two sets of supporting nodes are used for 
meshless discretization; regular and randomly 
distributed, as depicted in Fig. 3. Figure 4 depicts 
the convergence curves for both polarizations and 
different filling materials at normal incidence 
based on regular node arrangement. The electric 
filed distribution at the crack opening for normal 
TE incidence for both node arrangements are 
depicted in Fig. 5 and the modal solution that 
validates the proposed method. Normalized 
scattering width as a function of incidence angle 
and frequency for TE and TM polarizations are 
depicted in Fig. 6, assuming regular node 
arrangement. Finally, the computational cost of 
evaluating M3 entries in space and spectral 
domains are compared in Fig. 7.  

 

 
Fig. 2. Geometry of the rectangular crack. 
 
 

 
(a) 

 
(b) 

Fig. 3. Node arrangements in the rectangular crack 
with w = 1λ, d = 0.25λ: (a) regular, (b) random. 
 

 

 

281HONARBAKHSH, TAVAKOLI: SCATTERING BY A 2D CRACK: THE MESHFREE COLLOCATION APPROACH



 
(a) 

 
(b) 

Fig. 4. Convergence curves for w = 1λ and d = 
0.25λ at normal incidence: (a) TE polarization. (b) 
TM polarization. 

 
(a) 

 
(b) 

Fig. 5. Electric filed distribution at the crack 
opening for w = 1λ and d = 0.25λ at normal TE 
incidence: (a) magnitude, (b) phase. 

 
(a) 

 
(b) 

Fig. 6. Normalized scattering width as a function 
of (a) angle for w = 1λ and d = 0.25λ for TE 
incidence, (b) frequency for w = 2.5 cm and d = 
1.25 cm for an air filled crack for TM incidence at 
φ = 10° (measurement results from [3]). 
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Fig. 7. Computational cost of evaluating M3 
entries in space and spectral domains for a sample 
simulation. 
 

VI. CONCLUSION 
In this paper, the problem of EM scattering by 

a 2D crack is solved by meshfree collocation 
method. The selected formulation is hybrid PDE-
IE that can handle a general shaped crack filled 
with an arbitrary material. A proper choice of 
meshless shape functions for PDE and IE parts are 
used for efficient meshless discretization. 
Additionally, a method is proposed to bypass 
numerical integration by exploiting FFT. Thus, a 
general, fast, and accurate meshfree method is 
developed. Convergence analysis, modal solution, 
and measurement data validate the approach. 
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