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Abstract ─ This paper introduces a hybrid finite-
difference time-domain (FDTD) method with 
weighted Laguerre polynomials to extract 
attenuation constants of lossy transmission lines. 
In the case of uniform lossy transmission lines, the 
complex variable compact two-dimensional (2-D) 
Laguerre-FDTD method is suitable for extracting 
attenuation constants exactly. To reduce memory 
requirements in this method, the divergence 
theorem is used to obtain a memory-efficient 
matrix equation. A lossy coplanar waveguide 
(CPW) example is presented to validate the 
accuracy and efficiency of the hybrid algorithm. 
  
Index Terms ─ FDTD, Laguerre polynomials, 
memory reduction, skin depth.  
 

I. INTRODUCTION 
Although the finite-difference time-domain 

(FDTD) method has been widely used for 
electromagnetic simulation, it often results in a 
long solution time for the problems with fine grid 
division based on the Courant-Friedrichs-Lewy 
(CFL) stability condition [1-3]. In recent years, 
much attention has been paid to the 
unconditionally stable techniques, such as the 
alternating direction implicit (ADI) FDTD [4], 
Crank-Nicolson (CN) FDTD [5], Laguerre-FDTD 
[6], and locally one-dimensional (LOD) FDTD [7].   

  The Laguerre-FDTD method, based on 
weighted Laguerre polynomials and Galerkin’s 
testing procedure, does not have to deal with time 
steps and separately computes the temporal and 
spatial variables. It may be much more efficient 
than the FDTD method with too many time steps 
to compute the solution. However, the Laguerre-
FDTD method results in an implicit relation and 

has to perform the matrix inversion. Its memory 
storage requirements and computation time is 
dependent on the produced sparse matrix equation. 
Similar to the conventional FDTD case [8], an 
efficient Laguerre-FDTD method combined with a 
memory-reduced (MR) technique is introduced for 
electromagnetic modeling by substituting a 
Maxwell’s divergence relationship into one of 
the curl difference equations [9-10].  
      In the past years, some numerical algorithms 
have been proposed to extract circuit parameters 
of lossy transmission lines [11-12]. To calculate 
more accurate results, an iterative process is 
applied to the compact 2-D Laguerre-FDTD method 
for the exact parameter extraction in this paper. A 
hybrid time-domain algorithm, which combines 
the MR Laguerre-FDTD method with the compact 
2-D complex variable technique, analyzes a lossy 
coplanar waveguide (CPW). Starting from the 
three-dimensional (3-D) Maxwell’s differential 
equations considering the divergence equation, 
the hybrid method analytically deals with the 
partial derivatives with respect to the propagation 
direction and time variable, respectively, and 
forms an implicit relation to obtain an order-
marching scheme. Then, we use an iterative 
process with three steps for finding the exact 
solution of attenuation constants by using the 
compact 2-D complex variable technique. 
 

II. THEORIES 
A. A MR-Laguerre-FDTD algorithm with 
complex variables  
      In the conventional compact 2-D Laguerre-
FDTD method [13], only a phase shift term 0j ze   
involved in the field expressions is not enough for 
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lossy lines because a spatial attenuation term ze   
is ignored, where z, α and β are the wave 
propagation direction, attenuation constant and 
phase constant, respectively. In general, however, 
the attenuated field components must not only 
vary with (x, y, t), but vary with z. Taking the 
spatial attenuation along z into account, the fields 
 , , ,U x y z t  can be expressed as 

     0, , , , , j zU x y z t u x y t e     .           (1) 

If the partial derivative with respect to z is 
replaced with  0j   , taking xe  and xh  for 
example the 3-D differential Maxwell’s equations 
yield  

 0
1x z

y x
e h j h e
t y

  

  

      
,       (2) 

  0
1x z

y
h ej e
t y

 

  

      
.            (3) 

The other four equations can be constructed in a 
similar way.  

Because of the explicit appearance of ze   in (1), 
the degenerated complex field components are not 
the functions of z anymore. It is apparent that, for 
single mode propagation, the temporal variations 
of field components are exactly steady oscillations. 

 In charge-free regions, the divergence of D can 
be chosen to replace (2) 

 0 0yx
z

ee j e
x y

 


      
 

D .       (4) 

 Since the Laguerre polynomials ( )nL t  are 
orthogonal with respect to the weighting function

te , an orthogonal set  0 1 2,, ,       is chosen as 
the basis functions 

/ 2( ) ( )st
n nst e L st  ,                         (5) 

where 0s   is a time scale factor. Using these 
entire-domain temporal basis functions, the 
electromagnetic fields  , ,u x y t can be expanded 
as 

     
0

, , , ( )
N

n
n

n
u x y t u x y st



 .           (6) 

 The first derivative of field components 
 , ,u x y t  with respect to time t  is [14] 

1

0 0,
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( , , ) ( , ) ( , ) ( )
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  
  .   (7) 

     Using a Galerkin’s testing procedure in time 
domain and central difference in space domain, 
and eliminating magnetic fields, with reference to 
[6], we get 
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where                            
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where, ix  and jy  are the lengths of the lattice 
edge where the electric fields are located; ix  and 

jy  are the distances between the adjacent center 
nodes where magnetic fields are located. 
     Compared with the traditional Laguerre-FDTD 
method, ,|m

x i je  in the MR form has a relationship 
only with adjacent four electric field components 
from (8), which results in a reduction of nonzero 

xe  element storage by four-ninth, and does not 
need to summate from order 0 to m-1. 

 Then, we have a matrix form equation 
      1m mA e g    ,                (15) 

where,    T
, ,m m m m

x y ze e e e ,    T
, ,0x yg g g  is 

the excitation  and  1m    is the summation of 
terms from orders 0 to m-1.       
     After obtaining T0 0 0, ,x y ze e e , we can solve (8), 
(9) and (10) in an order-marching procedure 
recursively for the given   and  . Thus, we can 
obtain the time-domain electromagnetic fields 
from (5) and (6) from the calculation for the 
expansion coefficients. 
      
B. Iterative process for parameter extraction  

  Based on the above Laguerre-FDTD equation 
(15), an iterative process for finding the exact 
attenuation constant exact  of a lossy transmission 
line is suggested. The whole process has the 
following three steps. 

  Step One: Real-Variable Laguerre-FDTD Step. 
For a given phase constant  , set 0 , and then 
the complex-variable Laguerre-FDTD equations 
degenerate into the conventional real-variable 
Laguerre-FDTD equations. From [13], we can 

obtain an approximate attenuation constant approx  
corresponding to the given  . The late-time field 
distribution of the propagation mode is saved as 
the full-wave excitation in the next step to shorten 
the early-time period. 
      Step Two: Complex-Variable Laguerre-FDTD 
Step. For the same phase constant  , set 

guess approx  . If guess exact  , the late-time 
response will be a steady oscillation, i.e., its 
amplitude will keep constant. If guess exact  , the 
amplitude of the late-time response will decrease 
exponentially in time domain. If guess exact  , it 
increases exponentially. The phenomena, shown in 
Fig. 1, can be easily understood because the 
exponential variations in the late-time response’s 
amplitude will compensate partly the insufficient 
or excessive losses made by guess .  

 guess exact 

 guess exact 

 guess exact 

 

la
te

-ti
m

e 
re

sp
on

se
 [V

]

time [s]
Fig. 1. Sketch of different late-time voltage responses 
for guessed attenuation constants. 
 
     In general, the late-time response’s amplitude 
based on the 2-D Laguerre-FDTD equations will 
not keep constant. If the late-time response 
exponentially increases, that means approx exact  , 

and in this case we set min approx0.5   and 

max approx  . If the late-time response 

exponentially decreases, i.e., approx exact  , then 

we set min approx   and max approx1.5  . Thus, 

the search range  min max,   for searching exact is 
determined. 
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 Step Three: Searching for exact . For the same 
given  , a simple linear searching algorithm is 
combined with the proposed Laguerre-FDTD 
method to find exact  between min  and max  
iteratively. After several times of search, not more 
than twenty in general, the amplitude of the late-
time response becomes constant, and the latest   
is just the solution we want.  
 

III. NUMERICAL EXAMPLE 
     In this example, the excitation source J  is 
chosen as  

  ( , , ) ( , ) ( )x y t x y tJ g ,               (16) 
where the temporal variation of the excitation 

( )t  is a Dirac pulse, and the spatial variation 
( , )x yg  is a quasi-static finite-difference solution 

of the transverse electric fields in the transmission 
line. 
      Figure 2 shows the cross structure a lossy 
coplanar waveguide (CPW). The anisotropy of 
LiNbO3 substrate and the finite conductivity of 
Au are taken into consideration. The parameters of 
the CPW are 10.4μmW  , 9.6μmG  , 4.4μmt  , 

400μmd  , 200μmM  , 74.1 10 S/m   , 

r// 43   and r 28   . The perfect electric 
conductors (PECs) are used as the peripheral 
boundary condition. 

 
Au( )

W G M

LiNbO3 substrate r// r( , )  

t

d

 
Fig. 2. Cross section of a lossy finite-ground 
CPW. 

 
     To consider the conductor loss in the CPW 
structure, the fields in conductors are analyzed and 
fine grid spacing is taken because of the influence 
of the skin depth. Graded grid division is adopted, 
and the minimum grid spacing is one-third of the 
skin depth corresponding to the maximum 
frequency f = 40GHz. 
     When only involving Step One of the whole 
three steps, the comparison of the computing time 
between the compact 2-D MR-Laguerre-FDTD 
method, conventional compact 2-D Laguerre-

FDTD method and compact 2-D FDTD method 
for 3.496rad/cm  is shown in Table 1. The two 
compact 2-D Laguerre-FDTD methods, which are 
free of stability constraint, show the significant 
improvement in computational efficiency. 
Moreover, the MR-Laguerre-FDTD method is 
more efficient than the conventional Laguerre-
FDTD method because its memory storage of 
nonzero unknowns is reduced and 1/3 of electric 
field components do not need to summate from the 
order 0 to m-1. It is noted that it requires sixteen 
times of search to obtain the solution in Step Three.  

 
Table 1: Comparison of the computing time when 

min min 0.13μmx y     and the whole lattice 
number is 51×27 

Methods  Total CPU time (s) 
MR-Laguerre-FDTD 213 
Laguerre-FDTD  309 
FDTD  945 

 
    The measured data in [15], numerical results 
with the compact 2-D Laguerre-FDTD method 
involving the whole three steps, and that only 
involving Step One is shown in Fig. 3, 
respectively. Compared with the results only 
involving Step One, the results with all three steps 
are in a better agreement with the measured data.  
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Fig. 3. Attenuation constants versus frequency for 
the lossy CPW. 

 
IV. CONCLUSION 

      In this paper, an iterative process with complex 
variable technique is introduced for compact 2-D 
MR-Laguerre-FDTD method to analyze lossy 
transmission lines. With the divergence theorem, 
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the memory storage of nonzero unknowns of xe  
elements is reduced by 4/9 and 1/3 of electric field 
components do not need to summate from the 
order 0 to m-1.  Under the condition of very fine 
grid spacing taken inside the lossy conductors, this 
unconditionally stable method shows improvement 
in computational efficiency compared with the 
FDTD method. Furthermore, an iterative process 
with complex variables is suggested to find the 
exact attenuation constants by using two additional 
steps, Step Two and Step Three. Although more 
CPU time is required, the hybrid method can 
obtain more accurate solutions than that only 
involving Step One, especially in the cases of 
heavily lossy lines. 
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