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Abstract - In this paper, we proposed an effective 
technique to enhance the anti-interference performance 
of the adaptive antenna arrays. The null depth in the 
direction of interferers determines the anti-interference 
performance of an adaptive antenna array. However, 
the null depth generated by the conventional virtual 
array transformation (VAT) algorithm is usually not 
sufficient. By introducing the interference direction 
information into the transformation matrix, we can 
effectively improve the level of null depth; in turn, the 
anti-interference performance of the adaptive antenna 
arrays is significantly enhanced. The numerical 
experiments are employed to validate the proposed 
approach.       
 
Index Terms - Beam forming, null depth, SINR 
transformation matrix, virtual array. 

 
I. INTRODUCTION 

Generally speaking, the number of interference 
signals processed by an antenna array should be less 
than the degrees of system freedom [1, 2]. In the 
practical applications, the size and number of array 
elements are finite; however, frequently the number of 
interferers is much larger than the number of array 
elements. Obviously, some of the interferers will not 
be effectively inhibited when the number of interferers 
exceeds the degrees of system freedom. Friedlander 
[3] has proposed a virtual array transformation (VAT) 
method that the number of virtual array elements can 
be increased to be more than the degrees of system 
freedom so that all the interferers can be processed.      

When Friedlander’s method is used in the beam 
forming of an adaptive antenna array, the null depth is 
relatively shallow compared to the real antenna array. 

Consequently, the output signal to interference and 
noise ratio (SINR) will be decreased; in turn, it is not 
suitable for the applications that require the higher 
communication quality. The existing improvement 
techniques with regarding to the VAT performance [4-
6] are concentrated on the applications in the 
estimation of interference arriving direction. Shubair et 
al. combined the least mean mixed norm (LMMN) 
algorithm and initialization using sample matrix 
inversion (SMI) to control the error norms and offer 
the extra degrees of freedom [7]. In order to achieve 
the better virtual array performance, the influence 
generated by the transformation area selection on the 
beam forming is analyzed in the literature [8]. The 
literature [9] proposed a method to transform an 
arbitrary shaped array into a virtual uniform linear 
array (ULA) and then suppress multiple coherent 
interferences through the spatial smoothing technique.  

Based on the conventional VAT beam forming 
algorithm, an improved VAT method is presented in 
this paper, which can be effectively applied to raise the 
inhibition gain by improving the null depth. By 
projecting the transformation matrix on the 
interference space that enhances the interference 
components in the virtual covariance matrix, a higher 
interference inhibition gain can be achieved.  
 
II. VIRTUAL ARRAY TRANSFORMATION 

THEORY 
      Considering an array with N elements [10], when 
M far field narrow band signals are incident on an 
antenna array, the received data X  can be expressed 
as follows: 

                           S( ) ( ),t t X A N                            (1) 
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where 1 2( ) [ ( ), ( ), , ( )]T
Mt s t s t s tS  is a vector 

containing the complex signal envelops of M 
narrow-band signal sources.  T  denotes the 
matrix transposition. 

1 2( ) [ ( ), ( ), , ( )]T
Nt n t n t n tN   is a vector of 

zero-mean spatially white sensor noise of 
variance 2

n . 1 2[ ( ), ( ), ( )]M  A a a a is an 
array manifold vector, where 

( ),( 1,2 , )k k M a   represents a steering 
vector in the k  direction. 
If an antenna array with N elements is uniform 
and linear, we have: 

  
2 2sin ( 1) sin

( ) [1, , , ] ,k k
d dj j N T

k e e
  
 

  
a      (2) 

where d is the space between two adjacent 
elements. If both the signal and noise are 
linearly independent, the data covariance can 
be represented as: 

            2( ) ( ) ,H H
s nE t t   R X X AR A I   (3) 

where ( )E   denotes the mathematical 
expectation.  S( )S ( )H

s E t tR represents the 
autocorrelation matrix of signal complex 
envelops. 2

n  is the noise power. I  is the unit 

matrix, and  H  denotes the matrix conjugate 
transposition. The array covariance matrix is 
estimated using the finite snap data ( )iX : 

                      1

1ˆ ( ) ( )
K

H

i
i i

K 

 R X X , 

where K  is the snap number. In the array 
interpolation operation, the real array manifold 
is transformed on a preliminary specified 
virtual array manifold over a given angular 
sector  , namely, an interpolation matrix B  
is designed to satisfy: 

                    ( ) ( ), ,    Ba a                (4) 
where ( )a  and ( )a  are 1N   and 1N   
steering vectors of the real and virtual arrays, 
respectively; N  is the number of virtual 
elements; virtual array manifold ( )a  
corresponds to a uniform linear array (ULA). 
       The computation of interpolation matrix 
B  is carried out by choosing k representative 
directions 1 2, , , k   from the interpolation 
sector  , and minimizing the sum of 
quadratic interpolation errors in these 
directions: 

 

2

1
( ) ( ) ( ) ,

k

i i F
i

F  


   B Ba a BA A     (5) 

where A  and A  are the real and virtual array 
manifold vector matrixes, respectively; and 

F
 denotes the  Frobenius mold. The 

optimal minimum variance obtained from (5) 
is: 

                    
1( ) .H H B AA AA                     (6) 

After transformation, the covariance of virtual 
array becomes: 
                       .HR BRB                              (7) 
Through the noise-prewhitening process [3], 
the optimal weight can be obtained by using 
the minimum variance distortionless response 
method: 

                     
1

0( ),opt  W R a                     (8) 
where 0( )a  represents a virtual array steering 
vector in the desired signal direction; and the 
coefficient 

11
0 0( ) ( )H  

   a R a . 
 

III.   NULL DEEPENING 
TECHNIQUE  

        Compared to the real array with the same 
parameters, the null depth formed by a virtual 
array in the Friedlander’s VAT method is 
relatively shallow. To improve the null depth, 
we project the transformation matrix B  on the 
interference space, and thus, the constraint 
information of the interference direction can 
be imported into the transformation matrix to 
enhance the interference components in the 
sampling covariance matrix. The detailed 
procedure is described as follows: 
        If the interference directions are 

'1 2, , ,
M

    and the number of interferers is 
'M , the virtual array steering vector in the 

interferer directions '1 2( ), ( ), , ( )
M

  a a a  
can be calculated. Define a projection matrix 
C  as: 

                  

'

1
( ) ( ) .

H
M

H
i i

i
 



 
   
 
C a a               (9) 

Projecting the transformation matrix on the 
interference space, we have: 

                            .B CB                            (10) 
Now the covariance matrix of virtual array 
becomes:   

         .H H H H  R BRB CBRB C CRC    (11) 
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After the mathematical operations, the 
information of the interference direction has 
already been involved in the transformed 
virtual covariance matrix R , and the 
interference components is strengthened.  
 

IV. THEORETICAL ANALYSIS 
        According to Schmidt’s orthogonal 
subspace resolution theory, using the 
eigenvalue decomposition from (7) R  can be 
expressed as [11]: 
                            ,HR UΣU                      (12) 
where U  is an eigenvector vector of 
covariance matrix R , the diagonal matrix Σ  
constituted by the corresponding eigenvalues  
 

is: 

                     

1

2 .

N







 
 
   
 
  

Σ


              (13) 

    If a virtual array with N  elements is ULA, 
the steering directions can be written as:  

    
2 2sin ( 1) sin

( ) [1, , , ] ,i i
d dj j N T

i e e
  
 

  
a  (14) 

where d  is the space between two adjacent 
elements. We have:

 

2 sin 2 2sin ( 1) sin

2( 1) sin

2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

(

1

( ) ( ) [1, , , ].

1 , , ,

, , ,

i i i

i

i i

i i i

dj d dj j NH
i i

dj N

d dj j N

d d dj j j N

j

e e e

e

e e

e e e

e

      

 


  
 

    
  

 

 
 
 
 
 
 
 
 
 
 
 
  

   

 

  

      



 



a a 





   

.

2 2 21) sin ( 1 1) sin 2 ( 1) sin
, , ,i i i

d d dN j N j N
e e

    
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       


          

(15) 

        Substitute (15) into (9), we can obtain the expression of projection matrix C : 

'

2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

1
2 2 2( 1) sin ( 1 1) sin 2 ( 1) sin

1 , , ,

, , ,( ) ( )

, , ,

i i

i i i

i i i

d dj j N
H

d d dj j j NM H
i i

i
d d dj N j N j N

e e

e e e

e e e

  
 

    
  

    
  

 

 



 
 
 
 
 
 

  





  

      



        

 C a a




   



'

1
.

M H
i

 
 

 
 
 
 
 
 
 
 
 
 
 
 
   




(16) 

       Substitute (12) and (13) into (11), then we have: 

1

2 .H H H H H

N






                          

  R CRC C UΣU C C U U C      


               

(17) 

       Substitute C  into (17), R  can be expressed as: 
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2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

1
2 2 2( 1) sin ( 1 1) sin 2 ( 1) sin

1 , , ,

, , ,

, , ,

i i

i i i

i i i

d dj j N

d d dj j j NM

i
d d dj N j N j N

e e

e e e

e e e

  
 

    
  

    
  

  
         
 
 
 
 
 
 
 
 
  

  

      



        

 R


 

   



1

2

2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

2( 1) sin

1 , , ,

, , ,

,

i i

i i i

i

H

H

N

d dj j N

d d dj j j N

dj N

e e

e e e

e e

  
 

    
  

 








     

   
   
   
   
   
   
   
    
    
    
         



  

      

  

U U   





   

,
'

1
2 2( 1 1) sin 2 ( 1) sin

, ,i i

M

i
d dj N j N

e
  
 

   
  
  
  
  
  
  
  
  
  
  
  
  
      



     





   

(18) 

       (18) can be further simplified as: 
2

1 '

1 '

'
1

2
2 22 sin 2 sin

2

2
2 22( 1) sin 2( 1) sin

1

1

M

M

d dj j

d dj N j N
N

M

e e

e e

  
 

  
 







 
 
 
 
 
  
  
  
  
  
  
  

  
 
 
 
 
 
 
                
 
 
 

     

         



   



   

R U



    




,

1

2

,H

H

H

N







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





U

U Σ U

U U

   

  



             

(19) 

where U  is the eigenvector matrix 

corresponding to R , 

1

2

N







 
 
 

  
 
 
  

Σ








 is 

the diagonal matrix  constituted by the 
eigenvalues of R . From (19) it is obviously 
observed: 

                 , 1,2, , .i i i N                       (20) 
The eigenvalues of the covariance matrix 
obtained by using the improved VAT 
algorithm are bigger than those obtained from 
the conventional VAT algorithm.  
        Next, we briefly introduce the minimum 
variance distortionless response (MVDR) 
beam forming method [12]. In the direction of 

the desired signal, the gain is constrained to be 
1, and the array output power is ensured to be 
minimum, namely, the interference and noise 
will generate the minimum output power. 
Applied to the virtual array, the weight vector 
of the MVDR beam forming is the solution to 
the following problem: 

       

0

0

2

( ) 1

( ) 1

arg min ( )

arg min ,

H

H

H
MVDR

H

E k








    



W a

W a

W W X

W RW

 

(21) 

where the  
0( ) 1

arg min
H  W a

 represents the 

optimal solution which can minimize the 
function value in    and satisfy the equality 

0( ) 1
H

 W a . The arg represents an inverse 
function. It can be solved using Lagrangian 
multiplier method: 
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


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which is equivalent to (8). The characteristic 
of the MVDR method in the desired signal 
direction is that the gain is restrained to be 1 
and the simultaneously array output power is 
ensured to be minimum. The higher the 
interference power in array is, the stronger it’s 
inhibited in these directions. By introducing 
the  constraint information of the interference 
direction into the transformation matrix B  in 
the improved VAT algorithm, the new 
eigenvalues of the covariance matrix become 
bigger, and the signal components 
corresponding to them are strengthened. 
Therefore, in these directions the inhibition 
gains will increase by the the MVDR method, 
namely, the null depths will be deeper as 
showed in the beam pattern. 
 

V. SIMULATION VERIFICATION 
       The original array with 5 elements is 
uniform and linear, and the element space is 
 . The expected signal illumines from the 0° 
direction. The signal to noise ratio is 
SNR=0dB. Three independent interferers come 
from -60°, -40°, and 50° directions, 
respectively. The signal to interference ratio is 

40SIR dB  . The virtual array with 8 
elements is uniform and linear, and the 
element space is / 2 . The virtual 
transformation area is [-65°, 55°]. The step-
size is 0.1°. The number of snapshots is 200. 
Figure 1 shows the gain comparison obtained 
by using the MVDR beam forming through the 
real array method, the conventional and 
improved VAT algorithms. Figure 2 shows the 
eigenvalue comparison of covariance matrix 
obtained using three methods. Figure 3 shows 
the comparison of output SINR obtained by 
three methods. 
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Fig. 1.  Beam patterns using the different 
methods. 
 
      It is observed from Figures 1 to 3 that 
when the number of independent interferers is 
not larger than the number of the array 
elements, the nulls of the beam forming using 
the real array, conventional VAT, and the 
improved VAT algorithm are generated 
precisely in the interferer directions, and the 
main lobe is pointed to the desired signal 
direction. The inhibition gain using the real 
array and conventional VAT algorithms is 
about -35 dBi and -45 dBi, respectively. 
However, the inhibition gain using the 
proposed algorithm can reach up to -150 dBi. 
The eigenvalue of the covariance matrix has 
been significantly improved in the proposed 
method. Similarly, the output SINR has been 
significantly improved as well in the proposed 
method. 

     

1 2 3 4 5 6 7 8
-10

0

10

20

30

40

50

60

70

80

E
ig

en
va

lu
e

(d
B

i)

Real array method
Conventional VAT algorithm
Improved VAT algorithm

Index  
Fig. 2. Eigenvalues of the covariance matrix in 
the different methods. 
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Fig. 3. Output SINR using the different 
methods. 
     
       Next, we use an example to validate the 
proposed method, in which the original array 
with 5 elements and space   between the 
adjacent elements is uniform and linear. The 
desired signal incidence comes in the 0° 
direction. The signal to noise ratio is 

0SNR dB and five independent interferers 
come in -60°, -40°, 20°, 50°, and 70° 
directions, respectively. The signal to 
interference ratio is 40SIR dB  . The virtual 
array with 8 elements and space / 2 between 
the adjacent elements is uniform and linear. 
The virtual transformation area is [-65°, 75°] 
and the step size is 0.1°. The number of 
snapshots is 200. Figure 4 shows the 
comparison of the MVDR beam forming using 
the different methods. Figure 5 shows the 
eigenvalue comparison of the covariance 
matrix using the three methods. Figure 6 
shows the comparison of output SINR using 
three methods. 
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Fig. 4. Beam forming of five independent 
interferers using the different methods. 
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Fig. 5. Eigenvalues of five independent 
interferers using the different methods. 
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Fig. 6. Output SINR of five independent 
interferers using the different methods.  

 
       It is observed from Figs. 4 to 6 that when 
the number of interferers exceeds the freedom 
of original array, the nulls in the real array 
method cannot be generated in these 
interference directions. The virtual array with 
8 elements cannot process all the interferers, 
but the nulls precisely point to these 
interferers. The inhibition gain using the 
conventional and proposed VAT algorithms is 
about -30 dB -120 dB, respectively. The 
eigenvalue of the improved algorithm has 
significantly improved, as well as the SINR.  

 
VI. CONCLUSIONS 

      An improved VAT method has been 
presented in this paper, compared with the 
conventional approach; the null performance 
of beam forming is significantly improved. 
The nulls pointing to interference directions 
can be more steadily generated, and 
interference inhibition gains are much better 
and ensure a higher output SINR. Compared to 
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the conventional algorithm, the proposed 
method only needs one more matrix 
multiplication operation.  
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