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Abstract ─ A wideband wide-beam dual polarized 

dipole antenna is proposed in this paper. The antenna has 

a compact size (0.48λ0×0.48λ0×0.154λ0) and can operate 

in a wide frequency range from 1.7GHz to 2.4GHz with 

a half power beam-width more than 100° in the H-plane 

for dual polarization. Furthermore, the proposed antenna 

is employed in two linear arrays. The main beam of the 

configured arrays can scan from -60° to +60° with a gain 

fluctuation less than 4dB over the entire band for dual 

polarization. The antenna is fabricated and measured in 

an anechoic chamber. The measured results have a good 

agreement with the simulated results.  

Index Terms ─ Dipole antenna, dual polarization, 

wideband, wide beam, wide-angle scanning. 

I. INTRODUCTION
In recent years, with the rapid development of 

modern wireless communication technology, high 

performance antennas have attracted more and more 

attentions. In order to improve the communication 

network capacity, achieve the high rate communication 

and minimize the multiple fading, the antenna should 

have the characteristics of the wide bandwidth, dual 

polarization, high cross polarization discrimination 

(XPD) and high front to back ratio (FBR) [1-3]. What is 

more, the emergence, progress and development of new 

technologies, such as 5G technology, Internet of things, 

low orbit satellite communication and so on, have 

stimulated researchers’ enthusiasm on the large-scale 

electronically scanned array (ESA) [4-6]. As a result, a 

wide beam-width antenna is demanded for phased array 

to improve the gain at the wide scanning angle [7]. 

To meet the above requirements, various kinds of 

antennas have been proposed [8-10]. Owing to its merits 

of low profile, easy fabrication and light weight, the 

microstrip antenna has been used widely. Many methods 

involving wide band [11], dual polarization [12], wide 

beam-width [13] and wide scanning angle [14,15] have 

been reported, but only one or some aspect is referred. 

[14] proposes a wide-beam microstrip element by

optimizing a parasitic pixel layer and achieves a 2-D

planar wide-angle scanning from -75° to +75°. But it only

works at 5.2GHz for single polarization. A wide-angle

scanning linear phased array antenna is proposed in [15].

By employing a wide-beam microstrip antenna element,

the proposed array can achieve ±75° scanning with a

gain fluctuation less than 3dB in a frequency band from

3.2GHz to 3.8GHz for single polarization, indication a

fractional bandwidth of 17%. The planar dipole antenna

is another popular radiator and it has advantages of wide

bandwidth, dual polarization and low cost, which makes

it suitable for 2G/3G/4G base station [16,17]. But the

narrow half power beam-width (generally 65°±5°) and

high profile (generally 0.25λ) make the traditional planar

dipole antenna mismatch the requirement of ESA, such

as the large-scale ESA for 5G base station. The magneto-

electric (ME) dipole antenna proposed by Luk and Wong

is an attractive antenna owing to its excellent electrical

characteristics, such as wideband, symmetric radiation

patterns, low cross polarization, low back radiation and

stable gain over the entire operating band [18]. [19]

shows a wide-beam circularity polarized (CP) microstrip

magnetic-electric dipole antenna and it is applied to

achieve a wide-angle CP scanning from -66° to 66°.

But it is only effective at 5.6GHz. As a result, to the

knowledge of the author, an antenna, which can achieve

wide-angle scanning in a wide bandwidth for dual

polarization, is rarely presented.

In order to address problems mentioned above, a 

wideband wide-beam dual polarized dipole antenna is 

proposed. By employing the proposed antenna as an 

element, two wide-angle scanning linear arrays can be 

obtained. The main beam of arrays can scan from -60° to 
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+60° with a gain fluctuation less than 4dB from 1.7GHz 

to 2.4GHz for dual polarization, which makes it a 

promising candidate for 5G base station, radar and 

satellite communication systems.  

 

II. DESIGN OF PROPOSED ANTENNA 

ELEMENT 

A. Antenna configuration 

The configuration of the proposed antenna is shown 

in Fig. 1. It consists of four layers from up to down. On 

the top layer, it is a Taconic TLY-5A substrate with the 

permittivity of 2.2 and the loss tangent of 0.0009. The 

size is 70mm×70mm×1.524mm. Two shaped dipoles are 

printed on the bottom of the substrate along the ±45° 

diagonal direction to form dual polarized radiation, while 

two microstrip lines and loop-structures are printed  

on the other side of the substrate to excite dipoles  

by coupling. Two vias are employed to avoid the 

intersection between the two feeding microstrip lines. 

There are two 50Ω coaxial cables are used to feed the 

antenna. The inner conductors are connected to the 

microstrip lines, while the outer conductors are soldered 

with the dipoles on the bottom of the substrate. As we  

all know, the height between the dipole and the PEC 

reflector is usually set as 0.25λ0 to form a directional 

radiation with high gain. In order to obtain a lower 

profile, here we make a compromise between bandwidth 

and profile and two layers are employed in the middle of 

the antenna. The upper one is an 8mm-thick foam layer, 

while the lower one is a Taconic FR-60 substrate with 

dielectric constant of 6.15 and thickness of 13mm. They 

are used to support the dipole antenna and reduce the 

overall height of proposed antenna lower than 0.25λ0. 

The bottom layer is a metal plane, which is as a reflector 

to form directional radiation. There are four plastic 

screws on the periphery of the antenna to form a solid 

structure.  

 

Table 1: The parameters of proposed antenna (unit:mm)  
Parameter W1 W2 W3 W4 

Value 4 8 3 3.5 

Parameter W5 W6 L1 L2 

Value 1 9.32 15 21.5 

Parameter L3 L4 L5 L6 

Value 3 4.75 7.07 2 

Parameter r1 r2 r3 G 

Value 1 1.13 0.5 70 

Parameter H1 H2 H3  

Value 1.524 8 13  
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Fig. 1. Configuration of the dual polarized antenna.  

 

 
 

Fig. 2. Prototype of the proposed antenna. 
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The overall size of the proposed antenna is 

70mm×70mm×22.524mm and is corresponding to 

0.48λ0×0.48λ0×0.154λ0 (where λ0 is the wavelength of 

the center operating frequency), which indicates a simple, 

compact structure and a low profile. 
 

B. Numerical study and discussion of parameters 

The proposed antenna is modeled in High 

Frequency Structure Simulator (HFSS) and optimized 

with the Finite Element Method (FEM). The detailed 

parameters of the proposed antenna are listed in Table  

1. A prototype based on the optimized parameters is 

fabricated to verify the validity of the proposed antenna 

and it is exhibited in Fig. 2. 
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Fig. 3. Numerical study of parameters. 
 

Because the hybrid substrate has a great influence 

on the impedance bandwidth, here the key parameter  

H2 and H3 are numerically studied and shown in Fig. 3, 

while the other parameters remain unchanged. It can  

be seen that as H2 goes down, the single resonance 

gradually turns into the dual resonance and the 

bandwidth is enhanced. When the H2 gets smaller, the 

two resonant points are far apart, which leads to a dual 

band antenna. As a result, H2 is selected as 8mm to 

obtain a relatively wide bandwidth. 

It can be seen from Fig. 3 (b) that the variation  

of parameter H3 will lead to the different resonance 

strength of two resonant points. Considering the balance 

between them, bandwidth and the profile, the parameter 

H3 is chosen as 13mm here.  

 

C. Performances of the proposed antenna 

The simulated S-parameters of the proposed antenna 

are illustrated in Fig. 4. It can be seen that a -10dB 

frequency band covering 1.7GHz to 2.4GHz can be 

observed, which means a fractional bandwidth of  

34%. The isolation between two ports is greater than 

25dB over the entire frequency band, indicating a good 

isolation. The measured S11 and S22 are consistent with 

the simulated ones and a lower port-to-port measured 

isolation than -25dB can be observed over the entire 

operating band. 
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Fig. 4. S-parameters versus frequency.  
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                     (a) E-plane (1.7GHz) 
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 (e) E-plane (2.4GHz) 
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Fig. 5. Radiation patterns at 1.7GHz, 2 GHz and 2.4GHz 

for -45° polarization. 
 

Considering the symmetry of the proposed antenna, 

only E-plane and H-plane radiation patterns with Port 1 

excited at different operating frequency are exhibited in 

Fig. 5. It can be seen that a stable radiation pattern can 

be obtained over the entire operating band. The beam-

width of the proposed antenna in the E-plane is 84°  

at 1.7GHz, 86° at 2GHz, and 92° at 2.4GHz, while the 

beam-width of the proposed antenna in the H-plane is 

113° at 1.7GHz, 112° at 2GHz, and 106° at 2.4GHz. It is 

obvious that the beam-width of the proposed antenna is 

wider than that of the reported planar dipole antennas 

used in base station (The beam-width is usually 65°±5°). 

The measured results agree with the simulated ones, 

especially for the principle polarization component. The 

discrimination between them may come from the 

fabrication tolerance and imperfection of measurement 

environment.  
 

III. THE PROPOSED ELEMENT FOR WIDE-

ANGLE SCANNING ARRAY 

A. Geometry of scanning linear array 

In order to verify the effect of the proposed antenna 

in the ESA, two scanning linear arrays are designed as 

shown in Fig. 6. Each array consists of eight proposed 

elements and the spacing between the adjacent element 

is set as 64mm, which approximately corresponds to 0.5λ 

at 2.4GHz. 
 

X

Y

 
(a) Configuration array 1 
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(b) Configuration array 2 

 

Fig. 6. Configuration of scanning linear array. 
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B. Simulation of the scanning linear array 

The simulated performances of two scanning linear 

arrays are exhibited in Fig. 7 and Fig. 8, respectively. It 

can be seen that the main beam of two arrays can scan 

from -60° to +60° with a gain fluctuation less than 4dB 

over the entire frequency band, especially less than 3dB 

at 1.7GHz and 2GHz. Compared with the tradition 

phased array antenna, which usually can scan from -45° 

to +45° with a gain fluctuation of 4-5dB [7], the proposed 

array has an excellent wide-angle scanning performance. 

The relevant scanning performances are concluded in 

Table 2 and Table 3.  

 

C. Measured performances of the scanning linear 

array 

The proposed array is fabricated and its prototype  

is shown in Fig. 9. Because of the similar scanning 

performances for configuration array 1 and array2, only 

the performances of configuration array 1 are measured 

in an anechoic chamber. A power divider with one input 

port and eight output ports and eight analog phase 

shifters are employed to achieve beam-steering. The 

measured results for configuration array 1 are presented 

in Fig. 10. 

The measured results show that the main beam  

can steer from -60°to 60°at 1.7GHz, 2GHz and 2.4GHz. 

Compared with the normal direction, the gain degradation 

at ±60°elevation angle is 1.9dB, 2dB and 3.6dB, which 

is basically consistent with the simulation. The measured 

results are concluded in Table 4.  

The difference between simulated and measured 

results may come from the fabrication and assembly 

error. Meantime, the imperfect measured environment 

and errors introduced by work divider and phase shifter 

also make the simulated results deviate from measured 

ones. 
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Fig. 7. Scanning performances of configuration array 1 

for -45° polarization at different frequency.  
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Fig. 8. Scanning performances of configuration array 2 

for -45° polarization at different frequency.  

 

Table 2: The scanning performances of configuration 

array 1 for -45° polarization at different frequency in 

YOZ plane 

Array 1 -60° -30° 0° 30° 60° 

1.7 

GHz 

Gain 

(dB) 
10.2 11.6 12.4 11.6 10 

SLL 

(dB) 
-8.8 -12 -13.5 -11.7 -9 

2 

GHz 

Gain 

(dB) 
10.7 11.8 13 11.8 10.9 

SLL 

(dB) 
-10.3 -11.5 -12.8 -11.6 -10.8 

2.4 

GHz 

Gain 

(dB) 
10.1 11.4 13.9 11.4 10.3 

SLL 

(dB) 
-5.8 -10 -13 -10.1 -6.4 

 

Table 3: The scanning performances of configuration 

array 2 for -45° polarization at different frequency in 

XOZ plane 
Array 2 -60° -30° 0° 30° 60° 

1.7 

GHz 

Gain 

(dB) 
10.1 11.7 12.5 11.7 10.1 

SLL 

(dB) 
-9.2 -11.7 -13 -11.1 -8.8 

2 

GHz 

Gain 

(dB) 
11.1 11.9 13.2 11.9 11 

SLL 

(dB) 
-10.9 -11.4 -13.1 -11.4 -10.5 

2.4 

GHz 

Gain 

(dB) 
10.9 11.3 13.8 11.2 10.4 

SLL 

(dB) 
-7.6 -10.2 -13.2 -10 -5.4 

 

 
 
Fig. 9. Prototype of the scanning array. 
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Fig. 10. Measured scanning performances of 

configuration array 1 for -45° polarization at different 

frequency.  

 

Table 4: The measured scanning performances of 

configuration array 1 for -45° polarization at different 

frequency in YOZ plane 

Array 1 -60° -30° 0° 30° 60° 

1.7 

GHz 

Gain 

(dB) 
10.3 10.8 12.2 12.5 11.2 

SLL 

(dB) 
-8.4 -8.9 -13.5 -12.6 -10.5 

2 

GHz 

Gain 

(dB) 
11.6 13.7 13.6 13.7 11.6 

SLL 

(dB) 
-7.7 -11.5 -13.8 -11.2 -9.3 

2.4 

GHz 

Gain 

(dB) 
10.4 14 14 12.6 10.7 

SLL 

(dB) 
-6.4 -10.7 -12.4 -11 -6.5 

 

IV. CONCLUSION 
In this paper, a novel dipole antenna is designed. 

Owing to its merits of wide bandwidth, wide beam-width 

and dual polarization, the proposed antenna is employed 

as an element and two linear arrays with eight elements 

are proposed. Compared with the traditional phased 

array, the main beam of the proposed arrays can scan 

from -60° to +60° with a gain fluctuation less than 4dB  

in a wide frequency band, covering from 1.7GHz to 

2.4GHz with a fractional bandwidth of 34%. The 

element and array are fabricated and measured for 

validity and measured results agree well with the 

simulated ones. The antenna has a simple, compact 

structure and a low profile, and can be applied to 5G base 

station, radar and satellite communication systems. 
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