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Abstract ─ The finite element analysis of large complex 

structures makes higher demand on memory capacity 

and computation speed, which leads to the inefficiency 

of traditional serial finite element method (FEM) for 

such large-scale problems. In this paper, the element-by-

element finite element method (EBE-FEM) has been 

implemented parallelly on CUDA (Compute Unified 

Device Architecture) platform, and been programmed 

using C++ language. The thread branches that exist in 

parallel reduction program have been researched and 

optimized to improve parallel efficiency. The correctness 

of algorithms and programs are verified by the analysis 

of an open slot of motor. The optimized parallel program 

is applied to analyze the main magnetic field of a single-

phase transformer. The results show that the EBE-FEM 

implemented on CUDA platform is more effective than 

serial EBE-FEM, and branch optimization can improve 

the speedup further. 

Index Terms ─ Branch optimization, CUDA, EBE-

FEM, parallel computation. 

I. INTRODUCTION
When FEM is used to analyze the electromagnetic 

field of large electrical equipment, huge amounts of 

meshes are needed to get more accurate results, which 

leads to a large scale of computation. Using traditional 

serial FEM to calculate large-scale numerical problems, 

there will be problems such as too long calculation time 

and large calculation error, sometimes even unable 

to calculate. Therefore, more and more parallel FEM 

(PFEM) are developed and applied to numerical 

calculation and EBE-FEM is one of them [1]. EBE-FEM 

avoids the formation and storage of the global coefficient 

matrix, and has no requirement or restriction on the 

geometric shape and element number of the structure in 

the region [2,3]. The parallel computing of EBE-FEM 

can be implemented on the elements level, it has 

high parallelism. Combining EBE-FEM with advanced 

computing platform can solve the bottleneck problem of 

large-scale numerical computation. 

GPUs represent one of the newest types of parallel 

processors. For its many-core nature, it is widely used 

in parallel calculation [4,5]. CUDA is a CPU+GPU 

heterogeneous parallel computing platform [6,7], which 

provides a reliable programming environment for GPU 

to perform data parallel processing. The EBE-FEM can 

be thought as a method which transforms a highly 

memory dependent problem to a massively computational 

dependent one, the latter can be parallelized efficiently. 

CUDA platform can make full use of the advantages of 

high parallelism of EBE-FEM [8,9]. GPUs are very good 

at computing, but weaker in logical judgments. For high-

parallel and intensive computing, whether it is a small 

problem or a large problem, running on GPU in parallel 

is better than it on CPU in serial. Recent years, some 

CUDA function libraries, such as cuBLAS, cuBLAS-

XT, etc. have been developed to implement computation 

on GPUs. However, they sometimes show poor speedup 

performance due to their non-optimized operating 

process. Thread branch may appear in the process of 

EBE-FEM parallel implementing on CUDA platform. 

It is one of the main factors to reduce the parallel 

efficiency. This problem can be solved by thread-data 

remapping method [10]. 

In this paper, EBE-FEM combined with Jacobi 

preconditioned conjugate gradient (J-PCG) method 

has been researched to realize parallel computation 

on CUDA platform. The thread branches in reduction 

operation has been investigated and thread-data 

remapping method on instruction-level is proposed to 

optimize addressing process of reduction operation. All 

the corresponding programs have been developed in 

C++. The correctness of the proposed algorithms and 

programs are verified by the analysis of an open slot of 

motor. The algorithms and programs have been applied 

to calculate the magnetic field in a single phase power 

transformer, the results have been analyzed and 

discussed. 

II. METHOD DESCRIPTION

A. EBE technique

Using FEM, the Maxwell electromagnetic field

equations can be discretized as linear equations: 
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where A is the whole stiffness matrix, x the vector of 

unknown variables and b the system vector. 

According to EBE-FEM, (1) can be expressed as: 
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                                                  (2) 
where A(e) is element stiffness matrix, b(e) the element 

vector and matrix Q(e) represents transition between local 

and global numbering of the unknown variables for the 

element. 

The main operation of CG method is the inner 

product of vectors, which is appropriate to realize 

parallel computation. Therefore, CG method has been  

used to solve the equations of EBE-FEM. The iteration 

of CG method can be expressed by: 
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if rk < ε, stop iteration, x = xk; else, update βk and Pk: 
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return to the equation (4), and continue iteration process. 

In EBE method, the inner product (r, r) and (P, AP) 

can be calculated on each element as follow: 
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where r is the global residual vector, re is the local 

element residual vector, ⊕refers to accumulation of the 

contribution made by all elements to the nodes of the 

element and adj(e) represents the adjacent element which 

share the common node with element e.  

In order to improve its convergence further, the 

Jacobi preconditioned (JP) technology is applied to 

EBE-CG. The mathematic model of EBE-J-PCG was 

presented in [9]. The multi-core nature of GPU can 

exploit the parallelism of EBE-CG method considerably 

on CUDA platform. 

 

B. Parallel realization on CUDA platform 

CUDA is CPU+GPU heterogeneous computing 

platform, the programming model ensures that the GPU 

and CPU complement each other, which executes the 

complex logic control tasks on CPU and data-parallel 

computation-intensive tasks on GPU. Implementing 

EBE-FEM on CUDA, the CPU+GPU collaborative 

computing model is shown in Fig. 1. 

 

Start
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Element analysis 

Boundary condition treatment

EBE-J-PCG iterative solution

Element solution vector

Send data

Send data

CPU solution

GPU solution

 
 
Fig. 1. Flow of CPU+GPU heterogeneous computing 

model of EBE-FEM. 

 

In GPU solution, the EBE-J-PCG iterating solution 

for all elements can be operated at the same time. The 

calculations are performed by kernels with different 

function on GPU. The parallel computation on CUDA 

platform is realized by executing the kernel functions in 

parallel through thousands of threads. The inner product 

of vectors is executed parallelly for all elements by two 

kernels are shown as Fig. 2. 

 

γ=（r
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γ=（r
2）T

h（2） γ=（r
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Kernel 2:

b=（P1,AP1） b=（P2,AP2） b=（PE,APE）+ +...+

K2=1 K2=2 K2=E

 
 
Fig. 2. Kernel functions with reduction operations. 

 

The iterative process of EBE-J-PCG method can be 

given as: 

(1) Initialization  

(a) Set initial value, 

      ( ) ( ) ( )
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e e e e e  (13)

(b) Jacobi precondition, 

                  .m A
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(c) Solve equations, 
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For e∈(1,2,...,E), use kernel 1 shown as Fig. 2. 
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(4) Solve equations, 
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(5) Calculate ( , ) r hnew . 

For e∈(1,2,...,E), use kernel 1 shown as Fig. 2. 
(6) Judge convergence. 

If 0new  , the calculation stops, else,  

update ( )
p

e , 
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Then, return to (2), where he is the element 

preprocessing vector, me is the vector of the main 

diagonal elements of each element.  

Both of two kernels shown in Fig. 2 involve 

reduction operation. In EBE-J-PCG method, lots of 

reduction operations generate a large number of thread 

branches, which eventually lead to a deterioration in 

parallel efficiency. Although thousands of threads 

execute the same kernel functions, their operations and 

processed data may be different, which is due to the 

different allocation methods of threads.   
 

C. Branch optimization method of thread-data 

remapping 

Generally, threads are executed in parallel, however, 

if different threads contain different control conditions, 

threads that execute different condition paths can only  

be executed serially. This is called thread branch, which 

is one of the main factors affecting GPU parallel 

efficiency. 

Path vector is introduced to express thread branches 

in a piece of code. V represents all possible thread path 

sets, take a warp containing 4 threads as an example: 

           [tid] p [tid] p [tid] p [tid] p [tid], , , ,V m n k l        (23) 

where p[tid] is the execution path, tid is the address of 

the current thread, and m, n, k, l represent four possible 

different paths respectively. When there is only one 

element in V, such as  [tid] p [tid]=V m , thread branches 

do not occur in a warp. 
 

Data[i]

Thread ID[j]

i

j

0 1 2 3 4 6 75

0 1 2 3 4 6 75
warp1 warp2

 

Fig. 3. Original thread-data mapping. 

 

Suppose there are four threads in a warp shown as 

Fig. 3, squares in two different colors represent the data 

to be processed differently. The mapping relationship in 

warp1 is: 

           Thread ID j j 0,1 Data1 i i 0,1 .  ,    (24) 

           Thread ID j j 2,3 Data2 i i 2,3 .   (25) 

The mapping relationship in warp2 is: 

           Thread ID j j 4,5 Data2 i i 4,5 .  ,   (26) 

           Thread ID j j 6,7 Data1 i i 6,7 .    (27) 

A mapping relationship represents an execution  

path. The path vector is  1 2[tid] p [tid], p [tid]V for both 

warp1 and warp2. Two execution paths exist in both 

warp1 and warp2, which results in thread branches.  

To eliminate the threads branch, the mapping 

between thread and data can be reset, switch threads that 

execute the same code in different warp to the same warp 

so that all threads in a warp will take the same path. 
 

Data[i]

Thread ID[j]

i

j

0 1 2 3 4 6 75

0 1 2 3 4 6 75
warp1 warp2

 

Fig. 4. Redirected thread-data mapping. 
  

As shown in Fig. 4, change the direction of thread 

mapping, remap the threads in warp1 and warp2 so that 

the same type of data will be processed in the same warp. 

After remapping, the mapping relationship in warp1 is: 

     Thread ID j j 0,1, 2,3 Data1 i i 0,1,6,7 .   (28) 

The mapping relationship in warp2 is: 

     Thread ID j j 4,5,6,7 Data2 i i 2,3, 4,5 , →  (29) 

therefore, path vector has been converted to 

 1[tid] p [tid]V   for warp1 and  2[tid] p [tid]V   for 
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warp2, no thread branches exists in them.  
 

D. Branch optimization of reduction operation in 

EBE-FEM 

Generally, reduction operation adopts adjacent 

addressing mode, but this mode will generate many 

thread branches when EBE-FEM is executed on CUDA 

platform.  
 

4

1 1 1 1 1 1 1 1

2 2 2 2

0 1 2 3 5 6 7

0 1 2 3 5 6 74

4 4

0 1 2 3 5 6 74

8

Global memory

Thread ID

 
 
Fig. 5. Adjacent addressing mode. 
 

Figure 5 shows the thread-data mapping of 

reduction program using adjacent addressing (Assume 

the reduction operation generates the sum of eight  

input data). Threads with even address execute addition 

operation for two adjacent data, threads with odd address 

do nothing except the parity checking of thread address. 

Even if only one thread involved in reduction operation, 

it needs to wait for the other seven threads to perform 

parity. 

All threads in the warp need to be determined the 

parity, which will generate lots of thread branches. 

Thread-data remapping method is applied to addressing 

process to obtain better allocation of threads. Figure 6 

shows the optimized addressing mode. 
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Global memory

Thread ID

 
 

Fig. 6. Optimized addressing mode. 

 

Change the thread data mapping relationship of 

adjacent addressing, the data involved in reduction 

operation are divided into two groups on average. The 

threads that execute addition operation are mapped 

sequentially to two data from the first group and the 

second group respectively. The threads in the second 

group are not involved in any operation, so they can  

be stopped by hardware, which will reduce useless 

operations and waiting. After thread-data remapping,  

the judgments for parity have been eliminated, thread 

branches have been reduced, which would improve the 

computational efficiency. 

Branch optimization is an optimization method  

to GPU parallel technology, which improves parallel 

efficiency by reducing the number of logical judgments. 

In a multi-GPU environment, the degree of parallelism 

is higher and branch optimization is more critical, which 

can improve parallel efficiency more effectively. 
 

III. APPLICATION AND ANALYSIS 
The proposed method has been applied to analyze 

the magnetic field in an opening slot of motor and  

the field produced by a single-phase power transformer. 

All the programs have been developed in C++. The 

computations have been carried out on the Intel Xeon 

E5-2650 v2, 2.6GHz server with dual GPU (Nvidia 

Quadro K2000) and 256GB memory.  

The main computation in this paper is the inner 

product of vectors, which is not complicated, and a 

single GPU can meet the computing requirements. In the 

subsequent research of multiphysics coupling problems, 

if the kernel function involves intensive complex parallel 

calculations, the multi-GPU method will be considered. 

 

A. Magnetic field in an opening slot of motor 

The opening slot of motor is shown as Fig. 7, it is an 

example to illustrate the traditional FEM in a book [11]. 

Due to its very simple model, few meshes and very 

regular mesh shapes, the magnetic potential on each 

node can be determined accurately by traditional FEM, 

and the results are given by the book. 
 

A B F

C G

E D

1 2

3 4

5 6

7 8

9 10

 
 

Fig. 7. Model and mesh of opening slot of motor. 

 

In the model, AE and FG are the center lines of 

stator slot and tooth respectively, and AF is the center 

line of the air gap. Assuming BC is a magnetic line, 

rectangular ABDE can be taken as the solving region. 

Taking scalar magnetic potential m  as variable, the 

first boundary condition exists on AB and CDE. Setting 

0m   on CDE, and 700m   A on AB, the magnetic 

potential on each node can be obtained. 
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Fig. 8. Comparison of calculation results. 
 

Figure 8 shows the comparison of the results 

calculated by parallel program of EBE-J-PCG method 

and traditional FEM. The maximum local error is 0.83%, 

which verifies the correctness of the EBE-J-PCG method 

and program.  
 

B. Magnetic field analysis of a single-phase 

transformer 

This method is applied to calculate the 2D quasi-

static magnetic field distribution of single-phase DSP-

241000kVA/500kV transformer which the secondary 

side is opened and the primary side is excited by rated 

current. Figure 9 shows the model and meshes of the 

transformer. The distribution of the magnetic lines and 

the magnetic flux density are shown in Figs. 10 and 11. 
 

 
 

Fig. 9. The model and mesh of the transformer. 
 

 
 

Fig. 10. Distribution of magnetic lines in transformer.   

  
 

Fig. 11. Distribution of magnetic flux-density in 

transformer.   

 

To investigate the effect of branch optimization, the 

transformer model has been divided into different mesh 

size. Furthermore, the magnetic field in the transformer 

is calculated by serial EBE-J-PCG, unoptimized parallel 

EBE-J-PCG and optimized parallel EBE-J-PCG 

respectively for comparison. The serial EBE-J-PCG 

program runs on CPU only, while the two parallel 

programs run on CUDA platform. The computation 

accuracy of the three methods are the same under the 

same mesh. Table 1 shows the calculation time of serial 

EBE-J-PCG program and speedups of parallel EBE-J-

PCG program in different mesh size. Speedup is 

obtained by dividing serial time by parallel time (All the 

time in the table is in minutes).  

 

Table 1: Calculation results of transformer model 

Elements 
Serial 

Time 

Parallel without 

Optimization 

Parallel with 

Optimization 

Time Speedup Time Speedup 

  0.7 2.1 0.4 3.8 

  1.2 2.2 0.6 4.3 

  18.5 2.4 10.2 4.4 

  593.7 2.6 174.5 8.8 

 

It can be seen from Table 1, compared with serial 

EBE-J-PCG method running on CPU only, parallel 

implementation on CUDA platform can improve the 

computation efficiency. However, thread branches in 

parallel computing can degrade computational efficiency, 

which can be seen from the similarity of speedup ratios 

obtained by non-optimized programs in computing 

different number of mesh. The proposed thread-data 

remapping method can solve this problem, the speedup 

ratios of parallel computation are improved obviously 

after optimization. Moreover, the larger scale computation 

is involved, the better acceleration can be obtained.  

 

VI. CONCLUSION 
In this paper, the EBE-J-PCG method has been 

implemented in parallel on CUDA platform, and thread 

branche in GPU kernel has been researched. The 

ZHANG, YAN, REN, WANG, WU, BAI: PARALLEL IMPLEMENTATION AND BRANCH OPTIMIZATION OF EBE-FEM 599



proposed thread-data remapping method can solve the 

problem of deterioration in parallel efficiency caused by 

thread branches, and this optimization method can 

improve the speedup ratio more obviously. Except the 

reduction operations, any branching parts of parallel 

programs based on CUDA platform can adopt the branch 

optimization method to improve parallel efficiency.  
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