
Parallel Implementation and Branch Optimization of EBE-FEM Based on

CUDA Platform

Yan Zhang, Xiuke Yan, Xudong Ren, Sheng Wang, Dongyang Wu, and Baodong Bai

School of Electrical Engineering

Shenyang University of Technology, Shenyang, 110870, China

yanxke@126.com

Abstract ─ The finite element analysis of large complex

structures makes higher demand on memory capacity

and computation speed, which leads to the inefficiency

of traditional serial finite element method (FEM) for

such large-scale problems. In this paper, the element-by-

element finite element method (EBE-FEM) has been

implemented parallelly on CUDA (Compute Unified

Device Architecture) platform, and been programmed

using C++ language. The thread branches that exist in

parallel reduction program have been researched and

optimized to improve parallel efficiency. The correctness

of algorithms and programs are verified by the analysis

of an open slot of motor. The optimized parallel program

is applied to analyze the main magnetic field of a single-

phase transformer. The results show that the EBE-FEM

implemented on CUDA platform is more effective than

serial EBE-FEM, and branch optimization can improve

the speedup further.

Index Terms ─ Branch optimization, CUDA, EBE-

FEM, parallel computation.

I. INTRODUCTION
When FEM is used to analyze the electromagnetic

field of large electrical equipment, huge amounts of

meshes are needed to get more accurate results, which

leads to a large scale of computation. Using traditional

serial FEM to calculate large-scale numerical problems,

there will be problems such as too long calculation time

and large calculation error, sometimes even unable

to calculate. Therefore, more and more parallel FEM

(PFEM) are developed and applied to numerical

calculation and EBE-FEM is one of them [1]. EBE-FEM

avoids the formation and storage of the global coefficient

matrix, and has no requirement or restriction on the

geometric shape and element number of the structure in

the region [2,3]. The parallel computing of EBE-FEM

can be implemented on the elements level, it has

high parallelism. Combining EBE-FEM with advanced

computing platform can solve the bottleneck problem of

large-scale numerical computation.

GPUs represent one of the newest types of parallel

processors. For its many-core nature, it is widely used

in parallel calculation [4,5]. CUDA is a CPU+GPU

heterogeneous parallel computing platform [6,7], which

provides a reliable programming environment for GPU

to perform data parallel processing. The EBE-FEM can

be thought as a method which transforms a highly

memory dependent problem to a massively computational

dependent one, the latter can be parallelized efficiently.

CUDA platform can make full use of the advantages of

high parallelism of EBE-FEM [8,9]. GPUs are very good

at computing, but weaker in logical judgments. For high-

parallel and intensive computing, whether it is a small

problem or a large problem, running on GPU in parallel

is better than it on CPU in serial. Recent years, some

CUDA function libraries, such as cuBLAS, cuBLAS-

XT, etc. have been developed to implement computation

on GPUs. However, they sometimes show poor speedup

performance due to their non-optimized operating

process. Thread branch may appear in the process of

EBE-FEM parallel implementing on CUDA platform.

It is one of the main factors to reduce the parallel

efficiency. This problem can be solved by thread-data

remapping method [10].

In this paper, EBE-FEM combined with Jacobi

preconditioned conjugate gradient (J-PCG) method

has been researched to realize parallel computation

on CUDA platform. The thread branches in reduction

operation has been investigated and thread-data

remapping method on instruction-level is proposed to

optimize addressing process of reduction operation. All

the corresponding programs have been developed in

C++. The correctness of the proposed algorithms and

programs are verified by the analysis of an open slot of

motor. The algorithms and programs have been applied

to calculate the magnetic field in a single phase power

transformer, the results have been analyzed and

discussed.

II. METHOD DESCRIPTION

A. EBE technique

Using FEM, the Maxwell electromagnetic field

equations can be discretized as linear equations:

ACES JOURNAL, Vol. 35, No. 6, June 2020

1054-4887 © ACES

Submitted On: December 17, 2019
Accepted On: April 12, 2020

595

 ,Ax b (1)

where A is the whole stiffness matrix, x the vector of

unknown variables and b the system vector.

According to EBE-FEM, (1) can be expressed as:

     () () () () () () () ,

1 1 1

    
      

    
      

Q A Q Q x Q b
T T TE E E

e e e e e e e

e e e

 (2)
where A(e) is element stiffness matrix, b(e) the element

vector and matrix Q(e) represents transition between local

and global numbering of the unknown variables for the

element.

The main operation of CG method is the inner

product of vectors, which is appropriate to realize

parallel computation. Therefore, CG method has been

used to solve the equations of EBE-FEM. The iteration

of CG method can be expressed by:

 0 0 00, 0, ...0 , .  x P br
T

,(3)

 
 

.
,

,


P b

P AP

k

k k
k ,(4)

1 .  x x Pk k k k ,(5)

 1 1.  b Axrk k ,(6)

if rk < ε, stop iteration, x = xk; else, update βk and Pk:

 
 

.
,

,




r AP

P AP

1k k
k

k k

 ,(7)

1 1 + ,P Prk+ k+ k k (8)

return to the equation (4), and continue iteration process.

In EBE method, the inner product (r, r) and (P, AP)

can be calculated on each element as follow:

 ()

1

.


  () () Q r (r)r r r r Q r s
E

T e T T e e T e

e

T
, , (9)

()

()

. s r r
e e j

j=adj e

= ,(10)

      ()()
, .



 P AP QP A QP P A P
1

TET e e e

e

e
,11)

  (1) (2) ()
, , ..., ,Q Q Q Q

T
T T E T= (12)

where r is the global residual vector, re is the local

element residual vector, ⊕refers to accumulation of the

contribution made by all elements to the nodes of the

element and adj(e) represents the adjacent element which

share the common node with element e.

In order to improve its convergence further, the

Jacobi preconditioned (JP) technology is applied to

EBE-CG. The mathematic model of EBE-J-PCG was

presented in [9]. The multi-core nature of GPU can

exploit the parallelism of EBE-CG method considerably

on CUDA platform.

B. Parallel realization on CUDA platform

CUDA is CPU+GPU heterogeneous computing

platform, the programming model ensures that the GPU

and CPU complement each other, which executes the

complex logic control tasks on CPU and data-parallel

computation-intensive tasks on GPU. Implementing

EBE-FEM on CUDA, the CPU+GPU collaborative

computing model is shown in Fig. 1.

Start

End

Mesh subdivide

Element analysis

Boundary condition treatment

EBE-J-PCG iterative solution

Element solution vector

Send data

Send data

CPU solution

GPU solution

Fig. 1. Flow of CPU+GPU heterogeneous computing

model of EBE-FEM.

In GPU solution, the EBE-J-PCG iterating solution

for all elements can be operated at the same time. The

calculations are performed by kernels with different

function on GPU. The parallel computation on CUDA

platform is realized by executing the kernel functions in

parallel through thousands of threads. The inner product

of vectors is executed parallelly for all elements by two

kernels are shown as Fig. 2.

γ=（r
1）T

h（1）

Kernel 1:

γ=（r
2）T

h（2） γ=（r
E）T

h（E）+ +...+

K1=1 K1=2 K1=E

Kernel 2:

b=（P1,AP1） b=（P2,AP2） b=（PE,APE）+ +...+

K2=1 K2=2 K2=E

Fig. 2. Kernel functions with reduction operations.

The iterative process of EBE-J-PCG method can be

given as:

(1) Initialization

(a) Set initial value,

 () () ()
0 00, .  x r b A x

e e e e e  (13)

(b) Jacobi precondition,

   .m A
e ediag , (14)

ACES JOURNAL, Vol. 35, No. 6, June 2020596

 ()

()

.


  m m m
e e j

j adj e

 (15)

(c) Solve equations,

 () .m h r
e e e (16)

(d) Calculate
0 (,) r h .

For e∈(1,2,...,E), use kernel 1 shown as Fig. 2.

(e) Calculate ()
p

e ,

 () ().p h
e e (17)

(2) Calculate  .

For e∈(1,2,...,E), use kernel 1 and kernel 2 shown

as Fig. 2,

  
 

1 1
.

,

,

 


P h

P AP

k k

k k

 (18)

(3) Update x
(e)

 and
e

r ,

 () () (). x x p
e e e , (19)

 (). r r A p
e e e e (20)

(4) Solve equations,

 () .m h r
e e e (21)

(5) Calculate (,) r hnew .

For e∈(1,2,...,E), use kernel 1 shown as Fig. 2.
(6) Judge convergence.

If 0new  , the calculation stops, else,

update ()
p

e ,

 () () ()
0(/ .) ,e e e

new new     p h p 0 (22)

Then, return to (2), where he is the element

preprocessing vector, me is the vector of the main

diagonal elements of each element.

Both of two kernels shown in Fig. 2 involve

reduction operation. In EBE-J-PCG method, lots of

reduction operations generate a large number of thread

branches, which eventually lead to a deterioration in

parallel efficiency. Although thousands of threads

execute the same kernel functions, their operations and

processed data may be different, which is due to the

different allocation methods of threads.

C. Branch optimization method of thread-data

remapping

Generally, threads are executed in parallel, however,

if different threads contain different control conditions,

threads that execute different condition paths can only

be executed serially. This is called thread branch, which

is one of the main factors affecting GPU parallel

efficiency.

Path vector is introduced to express thread branches

in a piece of code. V represents all possible thread path

sets, take a warp containing 4 threads as an example:

  [tid] p [tid] p [tid] p [tid] p [tid], , , ,V m n k l (23)

where p[tid] is the execution path, tid is the address of

the current thread, and m, n, k, l represent four possible

different paths respectively. When there is only one

element in V, such as  [tid] p [tid]=V m , thread branches

do not occur in a warp.

Data[i]

Thread ID[j]

i

j

0 1 2 3 4 6 75

0 1 2 3 4 6 75
warp1 warp2

Fig. 3. Original thread-data mapping.

Suppose there are four threads in a warp shown as

Fig. 3, squares in two different colors represent the data

to be processed differently. The mapping relationship in

warp1 is:

      Thread ID j j 0,1 Data1 i i 0,1 .  ,  (24)

      Thread ID j j 2,3 Data2 i i 2,3 .   (25)

The mapping relationship in warp2 is:

      Thread ID j j 4,5 Data2 i i 4,5 .  , (26)

      Thread ID j j 6,7 Data1 i i 6,7 .  (27)

A mapping relationship represents an execution

path. The path vector is  1 2[tid] p [tid], p [tid]V for both

warp1 and warp2. Two execution paths exist in both

warp1 and warp2, which results in thread branches.

To eliminate the threads branch, the mapping

between thread and data can be reset, switch threads that

execute the same code in different warp to the same warp

so that all threads in a warp will take the same path.

Data[i]

Thread ID[j]

i

j

0 1 2 3 4 6 75

0 1 2 3 4 6 75
warp1 warp2

Fig. 4. Redirected thread-data mapping.

As shown in Fig. 4, change the direction of thread

mapping, remap the threads in warp1 and warp2 so that

the same type of data will be processed in the same warp.

After remapping, the mapping relationship in warp1 is:

     Thread ID j j 0,1, 2,3 Data1 i i 0,1,6,7 .  (28)

The mapping relationship in warp2 is:

     Thread ID j j 4,5,6,7 Data2 i i 2,3, 4,5 , → (29)

therefore, path vector has been converted to

 1[tid] p [tid]V for warp1 and  2[tid] p [tid]V for

ZHANG, YAN, REN, WANG, WU, BAI: PARALLEL IMPLEMENTATION AND BRANCH OPTIMIZATION OF EBE-FEM 597

warp2, no thread branches exists in them.

D. Branch optimization of reduction operation in

EBE-FEM

Generally, reduction operation adopts adjacent

addressing mode, but this mode will generate many

thread branches when EBE-FEM is executed on CUDA

platform.

4

1 1 1 1 1 1 1 1

2 2 2 2

0 1 2 3 5 6 7

0 1 2 3 5 6 74

4 4

0 1 2 3 5 6 74

8

Global memory

Thread ID

Fig. 5. Adjacent addressing mode.

Figure 5 shows the thread-data mapping of

reduction program using adjacent addressing (Assume

the reduction operation generates the sum of eight

input data). Threads with even address execute addition

operation for two adjacent data, threads with odd address

do nothing except the parity checking of thread address.

Even if only one thread involved in reduction operation,

it needs to wait for the other seven threads to perform

parity.

All threads in the warp need to be determined the

parity, which will generate lots of thread branches.

Thread-data remapping method is applied to addressing

process to obtain better allocation of threads. Figure 6

shows the optimized addressing mode.

4

1 1 1 1 1 1 1 1

2 2 2 2

0 1 2 3 5 6 7

0 1 2 3 5 6 74

4 4

0 1 2 3 5 6 74

8

Global memory

Thread ID

Fig. 6. Optimized addressing mode.

Change the thread data mapping relationship of

adjacent addressing, the data involved in reduction

operation are divided into two groups on average. The

threads that execute addition operation are mapped

sequentially to two data from the first group and the

second group respectively. The threads in the second

group are not involved in any operation, so they can

be stopped by hardware, which will reduce useless

operations and waiting. After thread-data remapping,

the judgments for parity have been eliminated, thread

branches have been reduced, which would improve the

computational efficiency.

Branch optimization is an optimization method

to GPU parallel technology, which improves parallel

efficiency by reducing the number of logical judgments.

In a multi-GPU environment, the degree of parallelism

is higher and branch optimization is more critical, which

can improve parallel efficiency more effectively.

III. APPLICATION AND ANALYSIS
The proposed method has been applied to analyze

the magnetic field in an opening slot of motor and

the field produced by a single-phase power transformer.

All the programs have been developed in C++. The

computations have been carried out on the Intel Xeon

E5-2650 v2, 2.6GHz server with dual GPU (Nvidia

Quadro K2000) and 256GB memory.

The main computation in this paper is the inner

product of vectors, which is not complicated, and a

single GPU can meet the computing requirements. In the

subsequent research of multiphysics coupling problems,

if the kernel function involves intensive complex parallel

calculations, the multi-GPU method will be considered.

A. Magnetic field in an opening slot of motor

The opening slot of motor is shown as Fig. 7, it is an

example to illustrate the traditional FEM in a book [11].

Due to its very simple model, few meshes and very

regular mesh shapes, the magnetic potential on each

node can be determined accurately by traditional FEM,

and the results are given by the book.

A B F

C G

E D

1 2

3 4

5 6

7 8

9 10

Fig. 7. Model and mesh of opening slot of motor.

In the model, AE and FG are the center lines of

stator slot and tooth respectively, and AF is the center

line of the air gap. Assuming BC is a magnetic line,

rectangular ABDE can be taken as the solving region.

Taking scalar magnetic potential m as variable, the

first boundary condition exists on AB and CDE. Setting

0m  on CDE, and 700m  A on AB, the magnetic

potential on each node can be obtained.

ACES JOURNAL, Vol. 35, No. 6, June 2020598

Fig. 8. Comparison of calculation results.

Figure 8 shows the comparison of the results

calculated by parallel program of EBE-J-PCG method

and traditional FEM. The maximum local error is 0.83%,

which verifies the correctness of the EBE-J-PCG method

and program.

B. Magnetic field analysis of a single-phase

transformer

This method is applied to calculate the 2D quasi-

static magnetic field distribution of single-phase DSP-

241000kVA/500kV transformer which the secondary

side is opened and the primary side is excited by rated

current. Figure 9 shows the model and meshes of the

transformer. The distribution of the magnetic lines and

the magnetic flux density are shown in Figs. 10 and 11.

Fig. 9. The model and mesh of the transformer.

Fig. 10. Distribution of magnetic lines in transformer.

Fig. 11. Distribution of magnetic flux-density in

transformer.

To investigate the effect of branch optimization, the

transformer model has been divided into different mesh

size. Furthermore, the magnetic field in the transformer

is calculated by serial EBE-J-PCG, unoptimized parallel

EBE-J-PCG and optimized parallel EBE-J-PCG

respectively for comparison. The serial EBE-J-PCG

program runs on CPU only, while the two parallel

programs run on CUDA platform. The computation

accuracy of the three methods are the same under the

same mesh. Table 1 shows the calculation time of serial

EBE-J-PCG program and speedups of parallel EBE-J-

PCG program in different mesh size. Speedup is

obtained by dividing serial time by parallel time (All the

time in the table is in minutes).

Table 1: Calculation results of transformer model

Elements
Serial

Time

Parallel without

Optimization

Parallel with

Optimization

Time Speedup Time Speedup

  0.7 2.1 0.4 3.8

  1.2 2.2 0.6 4.3

  18.5 2.4 10.2 4.4

  593.7 2.6 174.5 8.8

It can be seen from Table 1, compared with serial

EBE-J-PCG method running on CPU only, parallel

implementation on CUDA platform can improve the

computation efficiency. However, thread branches in

parallel computing can degrade computational efficiency,

which can be seen from the similarity of speedup ratios

obtained by non-optimized programs in computing

different number of mesh. The proposed thread-data

remapping method can solve this problem, the speedup

ratios of parallel computation are improved obviously

after optimization. Moreover, the larger scale computation

is involved, the better acceleration can be obtained.

VI. CONCLUSION
In this paper, the EBE-J-PCG method has been

implemented in parallel on CUDA platform, and thread

branche in GPU kernel has been researched. The

ZHANG, YAN, REN, WANG, WU, BAI: PARALLEL IMPLEMENTATION AND BRANCH OPTIMIZATION OF EBE-FEM 599

proposed thread-data remapping method can solve the

problem of deterioration in parallel efficiency caused by

thread branches, and this optimization method can

improve the speedup ratio more obviously. Except the

reduction operations, any branching parts of parallel

programs based on CUDA platform can adopt the branch

optimization method to improve parallel efficiency.

ACKNOWLEDGMENT
This work is supported in part by the National

Natural Science Foundation under Grant 51577122 and

in part by the Natural Science Foundation of Liaoning

Province under Grant 20180550860.

REFERENCES
[1] D. M. Fernandez, M. M. Dehnavi, W. J. Gross, and

D. Giannacopoulos, “Alternate parallel processing

approach for FEM,” IEEE Trans. Magn., vol. 48,

no. 2, pp. 399-402, Feb. 2012.

[2] E. Barragy, G. Raham, and F. Carey, “Parallel

element-by-element solution scheme,” Int. J. Numer.

Methods Eng., vol. 26, no. 11, pp. 2367-2382, 1988.

[3] X. Yan, X. Han, D. Wu, D. Xie, B. Bai, and Z. Ren,

“Research on preconditioned conjugate gradient

method based on EBE-FEM and the application in

electromagnetic field analysis,” IEEE Trans. Magn.,

vol. 53, no. 6, pp. 1-4, June 2017.

[4] A. Capozzoli, O. Kilic, C. Curcio, and A. Liseno,

“The success of GPU computing in applied electro-

magnetics,” Applied Comp. Electromag. Soc.

Journal, vol. 33, no. 2, pp. 148-151, Feb. 2018.

[5] J. C. K. Wake and S. Watanabe, “Scalable GPU-

parallelized FDTD method for analysis of large-

scale electromagnetic dosimetry problems,” Applied

Comp. Electromag. Soc. Journal, vol. 31, no. 6, pp.

661-668, June 2016.

[6] D. Wu, X. Yan, R. Tang, and D. Xie, “Parallel

realization of element by element analysis of eddy

current field based on graphic processing unit,”

Applied Comp. Electromag. Soc. Journal, vol. 33,

no. 2, pp. 168-171, Feb. 2018.

[7] J. Nickolls, “GPU parallel computing architecture

and CUDA programming model,” IEEE Hot Chips

Symp., HCS, pp. 1-12, May 2007.

[8] I. Kiss, S. Gyimothy, Z. Badics and J. Pavo,

“Parallel realization of the element-by-element

FEM technique by CUDA,” IEEE Trans. Magn.,

vol. 48, no. 2, pp. 507-510, Feb. 2012.

[9] S. Wang, X. Yan, Y. Zhang, and D. Wu, “Research

on EBE-FEM realized by CUDA applying to

electromagnetic field analysis,” IEEE Stud. Conf.

Electric Mach. Syst., SCEMS, 2018.

[10] E. Zhang, Y. Jiang, and Z. Guo, “Streamlining GPU

applications on the fly: Thread branch elimination

through runtime thread-data remapping,” Proc. Int.

Conf. Supercomputing, pp. 115-125, 2010.

[11] Z. Hu, Analysis and Calculation of Motor Electro-

magnetic Fields. Beijing: China Machine Press,

1989.

Yan Zhang He received his B.S.

degree in Electrical Engineering and

Automation from Langfang Normal

University in 2017. He is currently

working towards M.S degree in

Shenyang University of Technology.

His research interests include

numerical analysis and parallel

calculation of electromagnetic fields on CUDA platform.

Xiuke Yan received her B.S. degree,

M.S. degree and Ph.D. degree

in Electrical Engineering from

Shenyang University of Technology,

China, in 1996, 1999 and 2005,

respectively. She is currently a

Professor in Shenyang University of

Technology. Her research interests

include numerical analysis of coupled field and

optimization design of electrical equipment, parallel

algorithm research of finite element method.

ACES JOURNAL, Vol. 35, No. 6, June 2020600

	Article 10.pdf
	I. INTRODUCTION
	II. ANTENNA CONFIGURATION AND DESIGN
	III. PARAMETRIC ANALYSIS ON THE PERFORMANCE OF ANTENNA

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20200617105926

 1
 1

 TR

 1
 1
 1
 0
 0
 595
 TR
 1
 0
 0
 334
 127
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 140
 138
 cefb7fb7-08a2-466b-9f4c-712f27c086d7
 70

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20200617105933

 1
 1

 TL

 1
 1
 1
 0
 0
 595
 TR
 1
 0
 0
 334
 127

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 140
 139
 5b31f31a-e046-49de-9f7c-c956c989aafd
 70

 1

 HistoryList_V1
 qi2base

