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Abstract ─The validity of the use of continuity condition 

(CC), combined with the volume-surface integral equation 

(VSIE), is studied when it is explicitly enforced on 

the closed perfect electric conductor (PEC)-electrical 

anisotropy interfaces. It is found that if the standard 

magnetic field integral equation (MFIE) is involved in 

the VSIE to model the closed PEC surfaces, the solution 

might be inaccurate, especially when the CC is enforced. 

The reason for this phenomenon is discussed, and two 

previously reported approaches are adopted to improve 

the accuracy of MFIE. Numerical results show that 

whether the CC is enforced or not, the improvement of 

the MFIE will result in more accurate VSIE solution. 

Index Terms ─ Continuity condition, electrical anisotropy, 

method of moments (MoM), volume-surface integral 

equation (VSIE). 

I. INTRODUCTION
Electromagnetic (EM) problems involving 

anisotropic dielectrics and perfect electric conductors 

(PECs) are of great interest in the field of EM simulation. 

The development of new materials has created an urgent 

need for accurate EM solvers for analyzing the EM 

radiation or scattering properties of composite PEC-

complex dielectric objects. Among the numerous 

numerical calculation methods, the volume-surface 

integral equation (VSIE) [1], in conjunction of the 

method of moments (MoM) [2], is one of the most 

competitive methods to analyze the general composite 

objects involving both PECs and dielectrics. In addition 

to its advantages, the VSIE suffers from large number 

of unknowns since three dimensional discretization 

of volumetric dielectrics is required to model the 

dielectrics. However, lots of the composite objects are 

composed of PECs and dielectrics in any arbitrarily 

contact. For these kinds of problems, the continuity 

condition (CC): 
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that relates the electric flux density and the surface 

electric current can be explicitly enforced on the PEC-

dielectric interfaces to eliminate the associated volume 

unknowns as well as to reduce the memory usage, and 

the larger the size of contact surface, the more saving 

of the memory is expected [1, 3-6]. In (1), j=√−1, ω 

is angular frequency, D⃗⃗  is the electric flux density in 

the dielectrics, and J S and ρs are the equivalent surface 

electric current and charge density on the PEC surfaces, 

respectively. Some previous articles have focus on the 

use of CC. In [1, 3, 4], how the CC is adopted in the VSIE 

was discussed. However, whether the PEC surfaces 

are open or closed was not considered, and the validity 

was not studied rigorously. In [5], for the higher-order 

Legendre basis functions with the property of 

orthogonality, the CC can be explicitly enforced on any 

PEC-electrical isotropy interfaces. Nevertheless, when 

the lower-order basis functions are adopted, whether the 

use of CC is still valid was not discussed. In [6], the 

validity of the use of CC was investigated. It is stated that 

if the involved PEC surfaces are open, J S is actually the 

summation of currents densities residing on both sides 

[12]. In other words, the single combined current J S only 

has mathematical significance but no physical meaning. 

In this case, the explicit enforcement of CC in the VSIE 

might lead to inaccurate results. Besides, [6] also 

provides a convenient way to embed it into the context 

of the multilevel fast multipole algorithm (MLFMA). 

Nevertheless, the previous articles focused on the 

objects involving electrical isotropic dielectrics. As we 

know, the properties of anisotropic dielectrics are very 

different from the isotropic ones: for inhomogeneous 

isotropic dielectrics, the constitutive relation between D⃗⃗  

and the electric field �⃗�  is D⃗⃗ (r )=ε(r )E⃗⃗ (r ).The equivalent 
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volume electric current is defined as J V(r )=[ε(r ) −

ε0]E⃗⃗ (r ), where the permittivity ε(r ) is a scalar value with

the free space permittivity ε0 [1]. On the contrary, for the 

inhomogeneous anisotropic dielectrics, the constitutive 

relation is changed into D⃗⃗ (r )=ε̿(r )∙E⃗⃗ (r )  with J V(r )= 

[ε̿(r ) − ε0I]̿∙E⃗⃗ (r ) , while 𝜀(̿r )  is a tensor, and I ̿  is the

identity tensor. From the above, although the use of CC 

in the VSIE for the composite PEC-electrical isotropy 

objects has been well verified, we still want to know 

whether the CC is valid when the involved dielectrics  

are electrical anisotropic. Because (1) conforms to the 

current continuity equation that is independent of the 

type of medium, the CC can also be adopted to the PEC-

electrical anisotropy interfaces. In addition, for the SIE 

part of VSIE, the electric field integral equation (EFIE) 

is commonly adopted since it can be used to model both 

the open and closed PEC surfaces. For the closed PEC 

surfaces of composite object, the magnetic field integral 

equation (MFIE) can be added to the EFIE to form a 

well-conditioned combined field integral equation (CFIE). 

But since the standard MFIE is inaccurate to some extent 

[7-9], the application of MFIE might have a negative 

effect on the accuracy of VSIE solution, especially when 

the CC is enforced. 

In this paper, the validity of explicit enforcement of 

CC for the objects containing PEC-electrical anisotropy 

interfaces is investigated. In addition, when the MFIE is 

involved in modeling the PEC surfaces, the calculation 

accuracy of the VSIE with or without enforcing the CC 

is discussed. Furthermore, both approaches shown in [8, 

9] are adopted to improve the accuracy of MFIE, and the

numerical results show that this improvement can

provide more accurate VSIE solution, especially when

the CC is enforced.

II. THEORY AND FOMULATIONS
Consider an arbitrary PEC surface S, wholly or 

partially covered by electrical anisotropic dielectrics 

with permittivity tensor 𝜀(̿r ) occupying a region V, as 

shown in Fig. 1. For the convenience of analysis, it is 

assumed that this composite object is suspended in 

free space with permittivity ε0 and permeability μ0, and 

illuminated by a plane EM wave [�⃗� i(r ), �⃗⃗� i(r )]  at an

arbitrary angle (θi, φi).The scattering field [�⃗� s(r ), �⃗⃗� s(r )]
is the superposition of fields produced by the equivalent 

surface electric current J S on S and the equivalent volume 

electric current J V in V as: 
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The vector potential A⃗⃗ T  and scalar potential φ
T

are expressed as the convolutions of equivalent electric 

current or its divergence and the Green’s function as: 
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On the PEC surfaces S, the EFIE is formed based on 

the PEC boundary condition that requires vanishing the 

tangential component of total electric field as: 

          0i sˆ ˆn r E r n r E r E r r S       
. (5)

Furthermore, for the closed PEC surfaces, the MFIE: 

         s i

S
ˆ ˆJ r n r H r n r H r r S     , (6) 

where r ∈S+ means that the field point r  approaches to S

from outside, can be added to the EFIE to form the well-

conditioned CFIE as: 

  01CFIE EFIE MFIE     . (7) 

In (7), α (0≤α≤1) is a real constant, and η0 is the 

intrinsic impedance in the free space. Obviously, when 

α=1 or 0, the CFIE degrades into EFIE or MFIE. 

The total electric field in the regions V is a 

superposition of the incident and scattering electric fields 

which can be written as the so-called volume integral 

equation (VIE): 

         
1 i sE r r D r E r E r r V


      . (8) 

Thus, (7) and (8) can be combined together to build 

the CFIE-VIE which is a second-kind VSIE form to 

solve EM problems of composite objects involving closed 

PEC surfaces and electrical anisotropic dielectrics. 

Using the Galerkin’s MoM, the VSIE is converted 

into a matrix equation. In the implementation of this 

paper, the lower-order RWG basis function [10] and 

SWG basis function [11] are used to disperse J S on the 

PEC surface and D⃗⃗  in the dielectric region as: 
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respectively. In (9), NS and NV are the numbers of the 

RWG basis functions 𝑓 i
S and SWG basis functions 𝑓 i

V,

while Ii
S and Ii

V are the corresponding unknown expansion

coefficients, respectively. Dispersing D⃗⃗  instead of J V 

can hold the continuity of normal component which is 

consistent with the boundary condition on dielectric 

interfaces [11]. In this case, 
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At the exterior boundary of dielectrics, since D⃗⃗   
is not necessarily zero, a “half” SWG basis function 

associated with only one tetrahedron needs to be defined 

[11]. However, if an exterior face of the only tetrahedron 

is terminated by a PEC triangular patch as well as this 

triangular patch exactly coincides with the exterior face, 

this “half” SWG function can be removed by using  

the CC. As mentioned in [3], according to (1) and (9), 

the coefficient Ip
V associated to the pth “half” SWG basis 

function 𝑓 p
S can be directly calculated by: 
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In (11), Ms is a set of RWG basis functions index 

defined on the corresponding PEC triangle. That is to 

say, when the CC is enforced, according to (11), the 

equivalent volume electric current associated to the 

PEC-electrical anisotropy interfaces (denoted by J VS ) 

can be directly calculated by the J S  defined on the 

corresponding PEC surface. It is worth to mention that 

for the numerator of (11), since 𝑓 k
S  is the RWG basis 

function defined over triangles, ∇∙𝑓 k
S is a constant over 

the whole triangle area [10]; while for the denominator, 

𝑓 p
V is the SWG basis function defined over tetrahedrons, 

so n̂∙𝑓 p
V is also a constant over the tetrahedron surface 

[11]. 
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Fig. 1 Composite PEC-electrical anisotropy object under 

plane EM wave illumination. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 
In this section, we will present the bistatic radar 

cross section (RCS) results of a PEC sphere coated with 

homogeneous electrical anisotropic dielectric, while the 

target residual error in iterative solvers is fixed to 0.001. 

The Gaussian quadrature rule with 4/5 sampling points  

is applied to the inner or outer triangle/tetrahedron 

integrations during calculating the interactions between 

the testing and basis functions. 

The radius of the PEC sphere is 0.5λ (λ is the 

wavelength in free space), the coating thickness is 

0.075λ, and the permittivity tensor of the electrical 

anisotropy is: 
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After discretization with an appropriate average 

mesh size, the total number of triangles, tetrahedrons  

and unknowns are 1,380, 5,955 and 15,565, respectively. 

The coated PEC sphere is illuminated by a θ-polarized 

plane wave with the incident angle θi=0, φi=0, and the 

observation range is 0≤θ≤180° and φ=0. Both the 

CFIE-VIE and that enforced the CC (CC-CFIE-VIE) 

with different α values are used during the calculation, 

while the results are shown in Fig. 2. The exact result 

from Mie series is also given in this figure as a reference. 

It is seen that the numerical results agree well with the 

exact result in most angles. However, over the valley 

range (in this case, 137~143°), the difference of these 

results is evident, as shown in Fig. 3. For α=1, the results 

with and without CC are in excellent agreement, and the 

average difference of the results obtained from the CFIE-

VIE and CC-CFIE-VIE over the valley range is about 

0.23 dB. However, for α=0.5, the average difference of 

the results over the valley range is about 0.80 dB. While 

for α=0, this difference extends to about 0.94 dB. On the 

other hand, if more sampling points are used over the 

outer triangular integrations in the MFIE (from 4 to 16) 

and keep other parameters unchanged, the average 

differences over the valley range for α=0.5 and α=0 are 

reduced to 0.31 dB and 0.61 dB, respectively, as shown 

in Fig. 4. This phenomenon is similar to that stated in [8]: 

for the type of the SIE part of the VSIE, the EFIE is 

known to give accurate J S with the use of RWG basis 

function for the PEC surfaces with arbitrary planar 

triangulations. On the contrary, for the MFIE, as 

mentioned in [7], two possible reasons may lead to  

the inaccuracy: 1) Overlooking the mild logarithmic 

singularity in the field integration with an insufficiently 

number of integration points inside the testing triangles; 

2) The section of improper solid angle expression for the 

observation points. Therefore, when MFIE is involved in 

the CFIE-VIE (i.e., α≠1), the obtained J S on the PEC 

surfaces may not be so accurate, leading to inaccurate 

J VS. Thus, when α≠0, the results from CFIE-VIE and 

CC-CFIE-VIE have a certain difference, and the greater 

proportion of MFIE occupied (i.e., the closer α is to 1), 

the larger the difference will be. 
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Fig. 2. Bistatic RCS for a PEC sphere of radius 0.5λ 

coated with 0.075λ thick homogeneous electrical 

anisotropic dielectric at φ=0°, illuminated by a θ-

polarized plane wave with the incident angle θi=0, φi=0. 
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Fig. 3. Enlarged Fig. 2 at 137°≤θ≤143°. 
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Fig. 4. Bistatic RCS of the coated PEC sphere at 137°≤

θ≤143° and φ=0°, with 16 sampling points over the 

outer triangular integrations in the MFIE. 

To verify the above conclusion, both of the two 

approaches stated in [8] and [9] are adopted to modify 

the standard MFIE (denoted by mMFIE): 1) extracting 

the logarithmic singularity during the computation of the 

outer integrals; 2) correcting the external solid angle of 

the surface at observation points. The detailed approaches 

can be found in [8, 9]. After the two modifications, when 

mMFIE is involved in the CFIE-VIE (denoted by mCFIE-

VIE), more accurate J S as well as J VS are expected, and 

so do the numerical results. The same coated PEC sphere 

is calculated while the results are shown in Fig. 5. During 

the calculation, the Gaussian quadrature rule with 4 

sampling points is applied to all the inner/outer triangular 

integrations. It is observed that compared to Fig. 3, the 

accuracy of the results have been greatly improved. In 

addition, the results with and without CC have a better 

agreement. The average differences of the results obtained 

from the CFIE-VIE and CC-CFIE-VIE over the valley 

range for α=0.5 and α=0 are reduced to 0.29 dB and 0.32 

dB, respectively. From this calculation, we may draw the 

conclusion that accurate evaluating the matrix elements 

related to the MFIE part can improve the accuracy of 

CFIE-VIE solution, especially when the CC is enforced. 

137 138 139 140 141 142 143
-21

-20

-19

-18

-17

-16

-15

-14

-13

B
iR

C
S

 (
d

B
s
w

)

 (deg)

 Mie series

 mCFIE-VIE (α=0.5)

 CC-mCFIE-VIE (α=0.5)

 mCFIE-VIE (α=0)

 CC-mCFIE-VIE (α=0)

Fig. 5. Bistatic RCS of the coated PEC sphere at 137°≤

θ≤143° and φ=0°, with the adoption of mMFIE. 

IV. CONCLUSION
In this paper, the validity of explicit enforcement 

of CC for PEC objects coated electrical anisotropic 

dielectrics is investigated. It is found that possible 

inaccuracy may arise if the standard MFIE to model 

closed PEC surfaces is involved in the VSIE used, 

especially when the CC is enforced on the PEC-electrical 

anisotropy interfaces. After modifying the standard MFIE 

using the previously reported approaches, when the CC 

is enforced, more accurate equivalent surface electric 

current and the volume electric current associated to the 

PEC-electrical anisotropy interfaces are obtained. 
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