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Abstract ─ This paper presents an efficient explicit 

leapfrog implementation of the split-field (SF) finite-

difference time-domain (FDTD) method for solving 

problems of the oblique incident plane wave on periodic 

structures. Firstly, by splitting only one field component, 

the additional time derivative terms of transformed 

Maxwell’s equations can be eliminated. Then, by applying 

Peaceman–Rachford scheme, one-step leapfrog scheme 

and Sherman-Morrison formula, the proposed SF method 

is implemented in a much simpler explicit scheme than 

traditional SF FDTD method and some unconditionally 

stable methods. Furthermore, the stability condition of 

the proposed method is weaker than traditional SF FDTD 

method. The accuracy and efficiency of this method are 

verified by numerical results. 

Index Terms ─ Finite-difference time-domain (FDTD) 

algorithm, modified split-field (SF) method, one-step 

leapfrog scheme, periodic structure. 

I. INTRODUCTION

Many electromagnetic applications possess a 

periodicity in one or more dimensions, such as dielectric 

frequency selective surfaces (DFSS) [1], photonic bandgap 

(PBG) structures [2] and so on. The analyses of these 

structures using the conventional finite-difference 

time-domain (FDTD) method are time-consuming and 

memory-extensive because the periodic structures exist. 

The periodic boundary condition (PBC) provides a good 

choice to alleviate the computational burden in analyzing 

these structures’ scattering problems [3] because only 

one unit cell of the periodicity need to be modeled. 

However, PBC is difficult to implement at the oblique 

incident due to a cell-to-cell phase variation between 

two periodic boundaries [4]. The methods that have been 

proposed for oblique incident are divided into two main 

categories: direct field methods and field transformation 

methods [5]. The split-field (SF) FDTD method [4], 

which belongs to the second category, is widely used 

because it is very useful and robust. Unfortunately, 

the Courant Friedrichs Lewy (CFL) conditions of the 

SF FDTD method is strict and angle-dependent. To 

overcome the restriction, some unconditionally stable 

methods [6, 7] based on implicit scheme have been 

introduced into the analysis of periodic structures. 

However, those methods all need to solve several 

complex implicit equations and exhibit worse numerical 

dispersion errors along with the increment of the time-

step size. After that, Wang et al. present an explicit 

implementation of the 2-D SF FDTD method [8] by 

locally one-dimensional (LOD) scheme. 

In this paper, by adopting modified SF method [9], 

Peaceman–Rachford (PR) scheme [10] and one-step 

leapfrog scheme [11], an efficient explicit leapfrog SF 

FDTD method is proposed for analyzing the oblique 

incident plane wave problems in periodic structures. In 

comparisons with the traditional SF FDTD method [4] 

and LOD FDTD method [7], the proposed method has 

better numerical performance, which is validated by 

the numerical examples. The rest of this paper is 

arranged as follows, Section II presents the derivation of 

formulation. In Section III, the numerical performance 

of the proposed method is analyzed. In Section IV, 

two numerical examples are demonstrated to verify the 

computational accuracy, efficiency and memory storage 

of this method by comparing with traditional SF FDTD 

method and periodic LOD FDTD method [7], and the 

conclusions are drawn in Section V. 

II. FORMULATION

Supposing that an electromagnetic object has a 

periodic structure in y-direction, according to field 

transformation technique [3, 5], the transformed Maxwell’s 

equations for 2-D TM wave can be obtained as follows: 
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where Qx=η0Hxe jkyy, Qy=η0Hye jkyy, Pz=Eze jkyy and ky=ωsinθ/c. 

c is the speed of light in free space, θ is the angle of 

propagation for the incident field, εr and μr are relative 

permittivity and relative permeability, respectively. 

It can be seen from equations (1) and (3) that these 

equations cannot be implemented yet since the time 

derivative terms appear in both sides of equations. 

In our early work [9], a new SF method is proposed 

to eliminate the additional time derivative terms of 

equations (1)-(3) as follows: 
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where a1=c/μr, b1=εrμr-sin2θ, a2=cμr/b1, a3=2csinθ/b1. 

Equations (4)-(6) are self-consistent, which is 

simpler than the traditional SF FDTD method that need 

to calculate two other fields (Qxa and Pza). 

By applying the PR scheme [10], equations (4)-(6) 

can be split into two sub-steps as: 

(n)th-(n+1/2)th step:

1/2 1/2

1 5

n n n

xa z xaQ a a P Q
y

 
 


, (7) 

1/2 1/2

1 5

n n n

y z yQ a a P Q
x

 
 


, (8) 

1/2

3 5 5 2 21 n n n n

z xa y za a P a a Q a Q P
y y x

     
       

     
. (9) 

(n+1/2)th-(n+1)th step: 
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where a5=Δt/2 and Δt is the time step size. 

In order to achieve better computational efficiency, 

one-step leapfrog technique [11] is introduced into the 

proposed method. We suppose that Pz is updated at half 

time steps, while Qxa and Qy are updated at integer time 

steps. 

By substituting equations (7) and (8) into (10) and 

(11) respectively, the updating equations for Qxa and Qy

can be got easily:
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Then, substitute equation (12) in the previous time 

step into equation (9), the updating equation for Pz is 

obtained as: 
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To further simplify, an auxiliary field variable ρz is 

introduced as: 
1/2 1/2 -1/2=n n n

z z zP P    . (16) 

Then, the (15) can be rewritten as: 
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After that, the final implementation of the proposed

leapfrog SF FDTD method is: equations (17)-(13)-(14). 

The field components are computed in a full time step 

like the conventional FDTD method, where no substep 

computations are needed. It means that the real iterative 

time step of the proposed method is Δt. 

Updating ρz
n+1/2 from equation (17) with the PBC 

requires solving a perturbed bidiagonal system, which is: 
1/2
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where g1=1/2+a3/Δy, g2=1/2-a3/Δy, Ny is the maximum 

mesh number in y-direction. d is the right-hand-sides of 

equation (17), which is known.  

To implement equation (18) explicitly, the Sherman-

Morrison formula [12] can be applied as: 
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The perturbed bidiagonal system (equation (18)) is 

converted into two auxiliary linear systems (equations 

(19) and (20)) that can be solved explicitly.

Taking the equation (19) as an example:

    1,2 ,2
/

a i i
p d g , (23) 
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The realization of equation (20) can be handled 

similarly as the above-mentioned approach for equation 

(19). With the solution of ρz
n+1/2, the field components 

Pz
n+1/2, Qxa

n+1 and Qy
n+1can be calculated explicitly by 

using equations (16), (13) and (14), respectively. 

III. NUMERICAL PERFORMANCE

ANALYSIS 

A. Numerical stability analysis

The CFL condition of the proposed method can be

analyzed by the Fourier method [3, 12]. Assuming a 

plane wave propagating in the grid, the amplification 

factors in free space from (n)th to (n+1)th time step can 

be obtained as: 

 2

1 2,3 3 1 2 3 11, 4 2i           , (25) 

where 1i  , kx=ωcosθ/c, m1=cΔtsin(kxΔx/2)/Δx, 

m2=cΔtsin(kyΔy/2)/Δy, υ0=2im2sinθ/cos2θ, υ1=υ0-1, υ2=-

υ0-1 and υ3=2(2(m1
2+m2

2)/cos2θ-1).  

To make the difference scheme to be stable, the 

magnitude of amplification factors should be less than or 

equal to unity. Therefore, the CFL stability condition can 

be derived as: 

 2 2cost c x y      . (26) 

In contrast, the stability condition of the traditional 

split-field FDTD method for square cell is ∆t≤Δxcos2θ/ 

c 1+cos2θ [3], and its iterative time step is Δt/2. It can 

be seen easily that the stability condition of the proposed 

method is more relaxed, especially at the high incident 

angle.  

B. Memory and computational efficiency analysis

Meanwhile, in terms of the memory used, the amount

of the field components needs to be stored by the proposed 

method (pa, Pz
n+1/2, ρz

n+1/2, Qxa
n, Qy

n) is similar to the 

LOD FDTD method and less than that of the traditional 

SF FDTD method (Qxa
n-1/2, Qxa

n, Qx
n, Qy

n-1/2, Qy
n, Pza

n-1/2, 

Pza
n, Pz

n). In addition, it can be seen that the final 

implementation doesn’t need to solve implicit equations, 

which is more efficient than those unconditionally stable 

methods [6, 7] because those methods all need to solve 

more than two complex implicit equations. 

IV. NUMERICAL VALIDATION
For validating the accuracy and efficiency of the 

proposed method, the scattering properties of a PBG 

structure and a DFSS structure are presented, respectively. 

In the first example, a PBG structure in Fig. 1 

(same as [4, 7]) with four infinitely long dielectric rods 

is simulated. The computational domain is meshed by 

308×38 uniform grids (Δx=Δy=0.25mm) and truncated 

by the PBC and the perfectly matched layer (PML) 

absorbing boundary condition along the y-direction 

and x-direction, respectively. A total-field/scattered-field 

(TF/SF) connecting boundary is applied to excite a plane 

wave and the total simulation time is chosen as 8.3 ns. 

y 

θ 
xo

PML 

TF/SF 

PML 

r=2mm 

d=9mm 

εr=4.2 

d 

d 

2r 

Fig. 1. Geometry of a photonic bandgap. 

In this example, four different incident cases of 

(θ=30°, 45°, 60°and 75°) are calculated by the traditional 

SF FDTD method, the periodic LOD FDTD method 

[7] and the proposed method. The traditional SF FDTD

method is used as the benchmark to examine the

computational accuracy of other methods because its

numerical dispersion error is the smallest. To achieve

enough accuracy, the time-step sizes of the three methods

are: t1, 6×t1 and CFLN×t1, respectively. t1 is half of the

max time step size of traditional SF FDTD method from

[3]. CFLN indicates the largest integer ratio maximum

between the time-step size in proposed method from

equation (26) and t1.

The results of transmission coefficient and relative 

errors of the above-mentioned methods are plotted in 

Fig. 2. The information of the computational resources is 

listed in Table 1. Figure 2 shows that the numerical 

results calculated by the proposed method have a good 

agreement with traditional SF FDTD method (the 

relative error is below -45 dB), and the proposed method 

achieves better numerical dispersion performance than 

the LOD FDTD method. Table 1 manifests that the 

proposed method has high efficiency, especially at the 

high incident angle. Moreover, the memory storage of 

the proposed method is less than that of the other two 

methods from Table 1. 

Table 1: CPU times and memory cost of the simulation 

of the first example 

Method 
Memory 

(kB) 

CPU Time (s) (CFLN) 

θ=30° θ=45° θ=60° θ=75° 

The 

traditional 

SF FDTD 

method 

978 32.71 38.27 62.53 223.35 

The LOD 

method 
570 8.39 (6) 9.54 (6) 15.29 (6) 55.28 (6) 

The 

proposed 

method 

376 10.22 (2) 11.7 (2) 15.43 (3) 31.68 (5) 
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In the second example, to further validate the 

effectiveness, the proposed method is utilized to 

simulate the electromagnetic properties of a DFSS with 

two dielectric slabs (εr1=10, εr2=5) shown in Fig. 3. The 

computational domain is meshed by 200×20 uniform 

grids. The grid size, the time step size and the boundary 

conditions of the example are identical with the former. 

The total simulation time is chosen as 0.25 μs.  

(a) 

(b) 

(c) 

(d) 

Fig. 2. Transmission coefficient and relative errors 

calculated by three methods: (a) θ=30°, (b) θ=45°, (c) 

θ=60°, and (d) θ=75°. 

1r


2r


x 

z  

o 
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P
M

L

T
F

/S
F

1r

2r

PBC

PBC

P
M

L y

xo


7.5 mm

2
5
 m

m
2

5
 m

m

Fig. 3. Geometry of a dielectric frequency selective 

surfaces 

Figure 4 shows the transmission coefficient and the 

relative error of the traditional SF FDTD method and the 

propose method with θ=45° and θ=75°. Table 2 provides 

the computational resources of the numerical simulation. 

It can be observed from Fig. 4 that the results of the 

proposed method are agreeable with the traditional SF 

FDTD method. Table 2 shows that the proposed method 

can greatly reduce runtime and memory storage compared 

with the traditional SF FDTD method because of the 

bigger time step size. 

Table 2: CPU times and memory cost of the simulation 

of the second example  

Method 
Memory 

(kB) 

CPU Time (s) 

θ=45° θ=75° 

The traditional SF 

FDTD method 
346 73.64 298.45 

The proposed 

method 
100 23.43 38.66 
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(a) 

(b) 

Fig. 4. Transmission coefficient and relative errors 

calculated by the traditional SF FDTD method and the 

proposed method: (a) θ=45° and (b) θ=75°. 

V. CONCLUSIONS
In this paper, an efficient explicit leapfrog SF FDTD 

method for analyzing periodic structures’ scattering 

problems is deduced. In comparisons with the traditional 

SF FDTD method and some unconditionally stable 

methods, the proposed method has better numerical 

performance and more concise implementation. Two 

examples verified the performance of this method in 

analyzing a PBG and a DFSS structure. 
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