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Abstract ─ With the implementation of the vector radial 

basis function (RBF), which is theoretically divergence 

free, we propose a meshless method for solving the 

transient vector wave equation. Unlike the conventional 

radial point interpolation meshless (RPIM) method 

based on the scalar RBF that solves electric field and 

magnetic field components separately with scalar wave 

equations, the proposed method solves the vector wave 

equation directly. Therefore, the long-existing technical 

challenge of the source in the traditional RPIM method 

is resolved due to the direct solution of the vector wave 

equation. In addition, the stability condition of the 

proposed method is presented. At last, several numerical 

experiments are conducted to validate the accuracy of the 

proposed solver. 

Index Terms ─ Divergence free, meshless, RPIM, vector 

radial basis function (RBF). 

I. INTRODUCTION
Compared with the conventional numerical methods 

such as the finite-difference time-domain (FDTD) 

method, the method of moment (MOM) and the finite-

element (FEM), the meshless methods have various 

intrinsic merits of conformal modeling, multi-scale 

adaptation and relatively easy node refinement. With 

these merits, many efforts have been made to develop 

various forms of the node-based meshless methods in the 

recent years. They include the element-free Galerkin 

method [1], the moving least square reproducing kernel 

method [2], the smoothed particle electromagnetic 

method [3], the radial point interpolation meshless 

(RPIM) method [4], the 3-D RPIM method [5] and 

its unconditional stable version [6]. In these meshless 

methods, only spatial node location information is needed 

to model electromagnetic problems. No connection 

information among nodes is required, which is the main 

difference between spatial nodes and discrete mesh. As 

a result, the re-arrangement of grid lines is no longer 

required when a structure is modified and refined 

partially. 

Another issue associated with the numerical 

methods, especially the time-domain based numerical 

solvers, is the divergence property: in a continuous 

domain, magnetic fields are always divergence-free and 

so are electric fields in charge free regions. When we 

develop numerical methods for solving electromagnetic 

problems, this divergence property may or may not be 

preserved. Somehow this issue has been ignored in most 

literatures. If the divergence property is not preserved, 

spurious numerical solutions may emerge and lead to 

incorrect results [7]. Indeed, it has been found that the 

conventional radial point interpolation meshless (RPIM) 

method does not always retain this divergence-free 

property and spurious solutions do show up in the 

solutions [8]. 

Towards this end, the divergence-free vector-based 

RBFs were developed for non-electromagnetic or 

non-electrical applications. A matrix-valued vector RBF, 

which is different from the scalar RBF, was developed 

and proven theoretically divergence free [9]. More work 

was presented in [9-13]. In particular, the divergence-

free vector RBF was successfully developed for Navier-

Stokes equation [11,12] and astrophysical magneto-

hydrodynamics (MHD) [13]. We successfully applied 

vector RBFs to solve Maxwell’s equations with detailed 

discussion of the properties of the vector RBFs [14]. 

However, like the conventional RPIM method where all 

six field components are solved, the method presented 

in [14] still requires dual sets of the nodes (E- and 

H-nodes). This increases computational cost compared

with other methods directly solving the wave equations.

In this paper, we propose a meshless method which 

is incorporated with the vector RBF for solving the 

full vector wave equations. We have reported our initial 

results in [15]. In the proposed method, only one set of 

field quantities (either E- or H-fields) needs to be dealt 

with. Therefore, it is easier to implement than the method 
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proposed in [14]. Since we solve the vector wave 

equation like the vector FEM, only E or H fields are 

available. For most applications, it is enough to extract 

the interested parameters. However, if we indeed need 

to another type fields, it could be quite easy to obtain 

through the Maxwell’s equations without any troubles.  

The paper is organized in the following manner. 

In Section II, detailed formulations of the proposed 

meshless method for the solutions of vector wave 

equation are described. In Section III, the stability 

condition of the proposed method is presented. In 

Section IV, accuracy of the proposed method is verified 

with numerical examples. Finally, the conclusion is 

drawn in Section V. 

II. THEORY
Without losing the generality, we consider the 

general second-order vector wave equation for the 

electrical field in a lossless medium: 
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where E(r,t) is the electric field, J(r,t) is the current 

density,   is permittivity of the medium, 0 is the 

permeability of the free space, r is the relative

permeability of the medium. 

To obtain the numerical solution of (1), a solution 

domain is first discretized with spatial nodes pre-defined 

by users. Then electric field E(r,t) is approximated in 

expansion with the following node-based vector shape 

functions: 
N

i i
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E Φ E , (2) 

where N is the number of the scatting nodes in the 

local support domain, 
iΦ is the vector shape function 

associated with the node i with dimension of 3×3, iE is 

the corresponding expansion coefficient in vector (field 

vector) with respect to node i and it is of the dimension 

of 3×1. By using (2) to approximate the electric field, we 

need to properly define the vector shape functions that 

embody the divergence-free property mentioned before. 

Mathematically, a divergence free field, denoted as 

u, can always be expressed as the curl of another vector 

field with the definition of Coulomb gauge [11,12]:  
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,   is a preselected scalar 

basis function,  , ,
T

j xj yj zjA A AA  is the unknown vector 

expansion coefficient to be determined, I is 3×3 identity 

matrix and   is the Laplace operator, which can be 

expressed as: 
2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

.

x y z

x y z

x y z

   
  

  
 
   

    
   

   
  

    

(4) 

The scalar Gaussian radial basis function (RBF) is 

selected as the scalar basis function in this paper which 

is expressed as 
2 2| |j r

j e e
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r r
, ( , , )x y zr  is the 

position vector of the observation point, ( , , )j j j jx y zr

is the position vector of node j, | |jr  r r is the

distance between observation node r and node 
jr , and

 is called the shape parameter which controls the

decaying rate of the RBF.

By substituting 
2 2| |j r

j e e
 
   

r r
 into (3), we 

can find the vector RBF 
jΨ related to node j, which is 

defined on node j, and shape function Φ  as: 
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vB includes the vector RBFs, which could be expressed

as: 
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The dimension of vA is 3N×3N and vB 3×3N. The 

dimension of the interpolation matrix for the conventional 

RPIM method is N×N. Therefore, the time- and memory-

consumption for the construction of the vector shape 

function are larger than that with the conventional RPIM 

method for a single node. Since local RBF is usually 

selected so that N is relatively small. Therefore, the 

computational cost to construct the shape function from 

(5b) is relatively small compared with that of overall 

simulation time. In addition, only one set of electric 

ACES JOURNAL, Vol. 34, No. 6, June 2019836



nodes needs to be solved and the computational efficiency 

of the proposed method remains reasonably high.  

After expanding the (5a), we obtain the vector RBFs 

in terms of the scalar RBFs in reference to node j: 
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Ψ . (6) 

The detailed properties of the vector RBF and 

theoretical proof of their divergence properties can be 

found in [11]. To better understand the vector RBFs, a 

two dimensional vector RBF at rj= [0 0]T with α = 5 [13] 

is plotted in two dimension in Fig. 1. It is easy to find 

that the first two rows of the vector RBF present two 

mutually orthogonal dipole modes: Fig. 1 (a) is the 

horizontal dipole mode and Fig. 1 (b) is the vertical 

dipole mode; rotation of one dipole leads to another. 

Obviously, both dipole modes are divergence free. 

Therefore, the field expanded by them is divergence free. 

(a) The first vector (b) The second vector

Fig. 1. Vector RBF visualization with = 5. 

Because of the vector nature of the proposed shape 

function, the curl operation upon the expanded fields can 

easily be obtained after applying the curl operator to 

the vector shape function. Then, we have the following 

results: 
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When the variables in the z direction remain 

constant, (7) reduce to the two-dimensional cases and 

it is significantly simplified. We obtain the following 

formulations:  
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With the well-defined vector shape function and 

spatial placement of the nodes in the solution domain, we 

can solve the vector wave equation (1) with the proposed

vector-based meshless method. By substituting (2) into 

(1), we get the semi-discretized vector wave equation: 
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To make (9) practical for computation, the 

collocation approach is applied to (9), which means that 

we test (9) with Dirac Delta function associated centered 

at node i. Due to the Kroneckor’s delta property of 

the shape function [14], we obtain the semi-discretized 

formulation: 
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By applying the central finite difference in the 

time domain to (9), we reach the final time-marching 

formulation: 
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To make (11) more compact, we split and compute 

(11) in two steps:
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where Q is the intermediate vector introduced to speed 

up the computation. (11) is a vector form that can be 

directly solved without the need to expand the Maxwell’s 

equations into six scalar partial derivative equations 

for six field components (unlike what is done with the 

conventional methods).  

With the conventional RPIM method and the FDTD 

method, the vector field equations are expanded into

separate scalar wave equations and numerical methods 

are adopted and applied to solve each of the scalar 

equations, respectively; this poses a technical challenge 

when the current source or charges are encountered: field 

components need to be coupled and computed with 

nonzero divergence at source points or charge locations. 

However, now with the proposed meshless method 

based on the divergence-free vector RBFs, the issue no 

longer exists since a source term is incorporated into (11) 

and the wave equations are solved in a coupled vector 

manner. 

When compared with the conventional time-domain 
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finite-element method, the proposed meshless method is 

a node-based solver where only the spatial locations of 

the nodes that discretize the solution domain need to be 

known; in other words, the node-based property of the 

meshless methods is preserved including its capability of 

conforming and multiscale modeling. 

III. STABILITY CONDITION
Since the proposed meshless method deploys 

explicit time-marching scheme, it is conditionally stable. 

We can obtain its stability condition based on the result 

presented in [16] for the proposed vector meshless 

method, 

 
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where   is the eigenvalue of matrix 
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Φ . We could find that Tij

is a function of the vector RBF corresponding to the 

corresponding node and material parameters, more 

specific, relative permeability. Therefore, the node 

location and material information are embodied into T. 

For homogeneous media, 
max

 = 4 can be obtained.

Therefore, all temporal steps in the proposed meshless 
method should satisfy the following condition: 
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2
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To determine the maximum time step allowed in the 

proposed method, we need to evaluate the eigenvalues 

of T. As stated in [5], those eigenvalues are related to 

the minimum node space. When a large number of 

nodes are involved, direct evaluation of (14) is quite 

time-consuming and another solution is to select an 

approximated time step through minimum nodal spacing 

in [5]. 

IV. NUMERICAL RESULTS
In this section, we choose several numerical 

experiments to validate the accuracy and convergence 

properties of the proposed meshless method for the 

vector wave equations. 

A. One dimensional structure

Due to the existence of the analytical solutions of the

one-dimensional cavity with perfect electric conductor 

(PEC), we select it for the initial verification of the 

proposed method. The length of the cavity is 1 meter. 

The initial condition of the electric field is given as 

 sin /zE k x L  and the region is source free. The

theoretical field distribution is given as: 

   cos / sin /zE k ct L k x L   , (15) 

where k is the mode number and L is the length of the 

cavity. 

The nodes are selected uniformly distributed in the 

cavity with the distance between two neighboring nodes 

being 1 mm. The shape parameter is selected as 10 and 

the average node number in each local support domain is 

7. For fair comparison, the cavity was also simulated

with the FDTD with the uniform of cell size of 1mm,

which implies that two method have the same number

of field points. To reduce the effect of the time step on

the accuracy, the time steps for the proposed meshless

method and the FDTD method are selected small so

that CFLN = 0.1, where CFLN is the ratio of the time

step to the maximum time step allowable with the

FDTD method and similar definition in two and three

dimensional cases.

Figure 2 shows the field value obtained with the 

FDTD method and the proposed solver at 10 ns. Good 

agreements between the results obtained with the 

proposed method, the FDTD method and the analytical 

solution are observed. However, we can find that at the 

peak the proposed method can achieve more accurate 

solution than that of the FDTD method. Figure 3 presents 

the absolute error between the numerical solutions and 

the analytical results. At the peak the error of the proposed 

method is three times smaller than that of the FDTD 

method. It confirms that the proposed solver can obtain 

more accurate results than those of the FDTD method.  

Fig. 2. The Ez field value at 10 ns. 
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Fig. 3. The absolute solution difference between the 

proposed method and the FDTD method. 

 

Figure 4 illustrates the relative L2 error; the L2 error 

is computed with the equation below: 
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A
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E E

E
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where 
N

E  is the numerical electrical field obtained with 

the FDTD method or the proposed method and 
A

E  is the 

analytical field solution. The error of the two methods 

goes up as k increases. This is because that the dispersion 

errors increase with the mode number when the spatial 

discretization remains unchanged. However, the accuracy 

of the proposed method is about two order higher than 

that of the FDTD method. The reason is that the meshless 

method is essentially a high order method and more 

nodes are involved in the support domain than that of the 

FDTD method for each time step updating. 
 

 
 

Fig. 4. The relative L2 error of the proposed solver and 

the FDTD method. 
 

B. Two-dimensional structure 
We also considered an air-filled perfect electric 

conducting (PEC) cavity with PEC boundary conditions. 

The cavity is a good structure for numerical validation 

since it embodies multiple incidences and reflections of 

electromagnetic waves. The dimensions of the cavity under 

consideration are 1 m × 1 m with uniform discretization 

of cell size 2 cm. The initial condition is given as: 

    sin sinzE m x n y  , (17) 

where m and n are the mode numbers in the x and y 

directions, respectively. The theoretical electric field 

inside the cavity can be expressed as: 

      sin sin coszE m x n y t   , (18) 

where 2 2

0c m n   . 

A small time step, CFLN=0.1, is selected again for 

the FDTD method and the proposed method to decrease 

the numerical error. The average number of the nodes 

considered in the local support domain is 9 and the shape 

parameter is selected to be 5 for Gaussian radial basis 

function (RBF). The distance between two nearest nodes 

is 0.02 m. The cell size is also 0.02m for the FDTD 

method. Therefore, the spatial resolutions for the proposed 

method and the FDTD are the same to make fair 

comparison. 

Figure 5 shows Ez field obtained with the proposed 

method at 10 ns with m = 2, and n = 2 for TM22. Figure 

6 presents the absolute error of the results obtained with 

the two methods at 10 ns. The error pattern distribution 

of the proposed method is the same as that of the FDTD 

method. However, the magnitudes are smaller than those 

of the FDTD method. It means that the proposed method 

can obtain more accurate results than the FDTD method. 

Again, this is because the proposed meshless method is 

essentially a higher-order method. 

 

 
  (a)  (b) 

 

Fig. 5. The analytical field (a) and numerical value 

obtained from the method (b) at 10 ns. 

 

 
 (a) (b) 

 

Fig. 6. The absolute error for the proposed method (a) 

and the FDTD method (b) at 10 ns. 
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Figure 7 illustrates the relative L2 error changing with 

m with fixed n. It can be found that the errors of the 

proposed method are smaller than those of the FDTD 

method for all the m modes with n = 1 and n = 3. Another 

interesting observation is that as m increases, the L2 

errors of the two methods level off to the same value. 

This is because the spatial sampling density is not 

sufficient to capture highly-varied field distributions of 

the higher modes with large m and n. 

Fig. 7. The L2 error of the proposed method and the 

FDTD method verse m with n=1 and n=3 at 10 ns. 

C. Three-dimensional structure

In a three-dimensional case, an air-filled PEC

cavity with PEC boundary condition and dimensions of 

1 m × 1 m × 1 m is considered. Again the cavity is a good 

structure for numerical validation since it embodies 

multiple incidences and reflections of electromagnetic 

waves. The cavity is discretized with uniform 

discretization of cell size 0.1 m. When the same initial 

condition for the two-dimensional case is chosen, the 

exactly same analytical solution is obtained. We choose 

a quite small time step (CFLN=0.1) for the FDTD method 

and the proposed method to decrease the numerical error. 

Average number of the nodes in the local support domain 

is 16 and the shape parameter is 0.5. The distance 

between two nearest nodes is 0.1 m. The cell size is also 

0.1m for the FDTD method to make fair comparison. 

Figure 8 presents Ez field obtained from the proposed 

solver at 10.5 ns with m = 2, and n = 2. The field 

distribution is TM22 mode. As shown in Fig. 9, the error 

pattern of the proposed method is exactly the same as 

that of the FDTD method. However, its magnitudes are 

smaller than those of the FDTD method, which means 

that the proposed method can obtain more accurate 

results than the FDTD method. Again, the reason is that 

the proposed meshless method is a high order method. 

Figure 10 presents the relative L2 error changing 

with m. It can be found that the error of the proposed 

method is smaller than that of the FDTD method for all 

the m modes with n = 1 and n = 2. The relative L2 errors 

of the two methods increase as m goes up. To obtain 

more accurate results for higher-order modes, denser 

nodes are required for the two methods. Another 

interesting observation is that for the FDTD method, the 

error of TM11 is larger than that of TM12 at 10. 5 ns; so 

is for the proposed method. 

Fig. 8. The field value obtained from the proposed method 

at 10.5 ns. 

 (a)   (b) 

Fig. 9. The absolute error for the proposed method (a) 

and the FDTD method (b) at 10.5 ns. 

Fig. 10. The L2 error of the proposed solver and the 

FDTD method verse m with n=1 and n=2 at 10.5 ns. 

Figure 11 shows the charge density in dB, at z = 0.4 m, 

obtained from the proposed method with m = 2 and n = 2 

at 10.5 ns. The charge density level is about -15 dB 

which is at the level of numerical noise. In other words, 

we can safely consider no artificial charge accumulation 

for the proposed method like other divergence-free 

methods, such as the FDTD method.  

The FDTD method takes 0.42 s and 5 Mb memory 

to complete the simulation, however, the proposed 

method, takes 1.18 s and 5 Mb memory. This is because 
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in the proposed method more nodes are involved for 

field updating. However, it could be mitigated to further 

explore the conformal modelling and coefficient reuse 

when regular node distribution is used. We will explore 

those possibilities in the future.  

Fig. 11. The charge density at z = 0.4 m plane of the 

proposed solver with n=2 and m=2 at 10.5 ns. Note: 

charge density is in dB scale. 

Some further remarks upon the proposed vector 

meshless method are made here: (a) as we have shown 

in the numerical experiments, the proposed method show 

the promising potential to serve as a general numerical 

method, like the FDTD method, but with more accurate 

results with the same level of discretization. (b) When 

certain applications, such as electron emission [17], 

in which the divergence properties are of significant 

importance are considered, the proposed method could 

be a better option than the traditional RPIM [5]; since 

the proposed method is divergence-preserved without 

introducing any artificial charges. (c) Another issue 

is how to define a good node distribution in the 

computational domain. Some early researches have been 

done in [18]. Interested readers are referred to them for 

more details.  

Currently, we are working on development of the 

perfectly matched layer so that the proposed method 

could solve practical complex problems. 

V. CONCLUSION
A vector-based meshless method is proposed for the 

transient electromagnetic analysis. The proposed method 

is based on the vector RBF and is proven to be divergence 

free. It solves the vector wave equation directly rather 

than the corresponding scalar wave equations separately. 

Therefore, only one set of field quantities (either E- or 

H-fields) needs to be solved. Its numerical accuracy

and convergence properties are investigated through

numerical experiments and compared with the analytical

solutions. The numerical results reveal that the proposed

method offers higher numerical accuracy than the FDTD

method with the same level of discretization density.

VI. APPENDIX
The fourth order partial derivative of the Gausses 

RBF is expressed as: 

   2 3 2 4 4 2 2 212 40 16 expxxxx a a x a x a x y z        
 

, (A1) 

   2 3 3 2 2 22 12 8 expxxxy ay a x a x a x y z        
 

, (A2) 

    2 2 2 2 2 2 24 2 4 2 expxxyy a x a a y a a x y z        
 

, (A3)

   2 3 3 2 2 22 12 8 expxxxz az a x a x a x y z        
 

, (A4) 

   2 2 2 2 2 24 4 2 expxxyz a yz a x a a x y z       
 

, (A5) 

    2 2 2 2 2 2 24 2 4 2 expxxzz a x a a z a a x y z        
 

, (A6)

where  2 2 2exp a x y z     
 

. 

Other entities can be achieved by cyclic permutation 

of x,y,z.  

Let 
j Μ Ψ , the entities of M are shown

below: 

 2 2 2 2 2 2 4 4 2 2

11 x y x z z y z y y z j          Μ , (A7) 

 3 2 3

12 x y z x y x y j        Μ , (A8) 

 3 3 2

13 x z x z x z y j        Μ , (A9) 

 2 2 2 2 2 2 4 4 2 2

22 y x x z z x x z y z j          Μ , (A10) 

 3 3 2

23 z y z y z y x j        Μ , (A11) 

31 13Μ Μ , (A12) 

32 32Μ Μ , (A13) 

 2 2 2 2 2 2 4 4 2 2

33 x y y x z x x y z y j          Μ . (A14) 
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