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Abstract ─ Reflections from boundaries of the FDTD 

computational domain lead to inaccurate, even unstable 

codes when dealing with problems involving double 

negative (DNG) materials. Here, an efficient and simple 

algorithm is presented for terminating FDTD in DNG 

medium which is based on first and second order  

Mur’s absorbing boundary conditions (ABC). FDTD 

update equations for Mur’s ABC formulations are 

obtained from frequency domain one-way wave 

equations using piecewise linear recursive convolution 

(PLRC) method. Numerical examples are given both for 

1D and 2D scenarios to demonstrate the validity and 

stability of the proposed Mur formulations, and its 

advantages over uniaxial perfectly matched layer 

(UPML) in reducing computational time and memory 

requirements. 

 

Index Terms ─ Absorbing Boundary Conditions (ABC), 

Double Negative Media (DNG), Finite Difference Time 

Domain (FDTD), Lorentz model, MUR, one-way wave 

equation. 

 

I. INTRODUCTION 
FDTD formulation is a convenient tool for solution 

of electromagnetic wave problems. Often it becomes 

necessary to terminate computational domain at fictitious 

boundaries which ideally absorb all incident radiation 

without producing any reflection. The most widely used 

ABCs are Mur [1], perfectly matched layer (PML) [2-5] 

types and the recently proposed surface impedance 

ABCs [6,7]. Although PML performance is significantly 

better than Mur’s ABC particularly when dealing with  

a wider range of incident angles, Mur’s ABC may be 

preferred due to its computational efficiency and ease of 

implementation whenever the level of reflections can be 

tolerated. 

In the presence of DNG medium special care is 

required in implementing Mur or PML ABCs to ensure 

stability. In literature, one can find several studies on the 

use of PML in DNG media [8-11]. Kosmas et al. 

presented an ABC based on Mur’s approach using 

dispersive media with a single pole conductivity z-

transform model [12]. In this study, a novel formulation 

of first and second order Mur’s ABC has been developed 

for truncating the DNG media for 1D and 2D problems 

using PLRC-FDTD algorithm [13]. In the following 

sections, formulation of the proposed method is 

presented and its validity and stability as well as its 

computational advantages over UPML is demonstrated 

via numerical examples considering a domain filled 

entirely with Lorentz type DNG material.  

It should be noted two factors limit the applicability 

domain of the formulation presented in this paper. The 

first one is the assumption of identical dispersion  

models for electric and magnetic susceptibilities to 

enable the Fourier transform of the refractive index 

( ) ( ) ( )r rn       to be performed analytically. The 

second one is the approximation of the square root terms 

in the one-way split-operator form of the wave equation 

in 2nd order Mur formulation by two term Taylor series 

expansion. Thereby introduced limitations are discussed 

in the following sections. 
 

II. NUMERICAL METHOD 

A. Formulation of first-order DNG-Mur ABC 

In linear, isotropic, and homogenous DNG media 

the wave equation becomes: 

          2 2
0;E k E k n

c


        , (1) 

where E is a field component,  k   is the wave number 

and c is free space wave velocity. The frequency 

dependent refractive index  n   is written as: 

            1 1
r r e m

n             . (2) 

In numerical calculations single pole Lorentz model 

is used for electric and magnetic susceptibilities, 

   ,e m     as in [14]: 

ACES JOURNAL, Vol. 33, No. 6, June 2018

1054-4887 © ACES 

Submitted On: July 31, 2017 
Accepted On: April 27, 2018

569



 ,

,

,

,

( )


 
  


  

2

2 2

pe pm

oe om

e m

e mj
, (3) 

where 
,


pe pm

 is the plasma frequency, 
,


oe om

 is the 

resonance frequency, and 
,e m  is the damping 

coefficient, respectively. Considering a 1D case, where

0y z      , right and left going waves can be 

separated as: 

 
      

   

2
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2
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n n
xx
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cc
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E

c

  

 





 




 



    
 

 
 
 

. (4) 

The functional form of (2) complicates inverse 

Fourier transform of the operators in (4). A convenient 

way of avoiding this complication is to approximate 

geometric mean in (2) by its arithmetic mean. This 

approach is found to be rather effective when source 

spectrum is centered close to the intersection point of the

 e   and  m  . However, for purposes of brevity, in 

this letter we present the formulations for the case of 

identical models for  r
   and  r

   to write the 

refractive index as    1 en     . Then the left going 

waves in (4) yields: 

 
 

    0
E j j

E P
x c c

  
 


  


, (5) 

      
e

P E    . (6) 

Inverse Fourier transform of (5-6) yields: 

 
     1 1

0
E t E t P t

x c t c t

  
  

  
, (7) 

      
e

P t t E t  , (8) 

where ‘  ’ denotes convolution in time domain and 

electric susceptibility function in time domain  e
t  is 

obtained from (3) as: 

      e
t

e e e
t e sin t u t


  


 , (9) 

where 2e e /  , 
2 2

4
e oe e

    and 2

e pe e   . 

To derive an FDTD update equation for implementing 

one-way absorbing boundary condition, (7) is discretized 

using two-point centered difference approximation at 

mesh point i+1/2 and at time index n+1/2: 

1 1

1 1

1 1

1 1

n n n n

i i i i

n n n n

i i i i

c t x
E E E E

c t x

x
P P P P

c t x

 

 

 

 

            

            

. (10) 

Here, i and n are the indices of discrete space and 

time variables, x  and t  are spatial and temporal 

discretization step sizes, respectively. The discrete form  

of nP  is obtained by using PLRC method [13] where the 

multiplication in frequency domain corresponds to the 

convolution integral in time domain and discretized as a 

running sum. Imposing causality, the convolution term 

in (8) can be defined as:  

          
0

t

e eP t t E t E t d        . (11) 

The discretized convolution integral is then obtained by 

inserting t n t   into (11): 

    
0

n t
n

ei

i

P E n t d   



   . (12) 

Approximating the variation of E fields with a linear 

function in successive Δt interval  1q t q t     , 

one can write: 

    
1n q n q

n q E E
E n t E q t

t
 

  
 

     


. (13) 

Substitution of (13) into (12) yields: 

 
   

 

  

1 11

0

1
1

0

q t n q n qn
n n q

ei

q q t i

n
n q n q n qq q

e ei i i

q

E E
P E q t d

t

E E E

   

 

    


 


   




   



  

 
 
 

 



, 

 (14) 

where  

  
 1q t

q

e e

q t

d   

 



  , (15a) 

    
 1

1
q t

q

e e

q t

q t d
t

    

 



  
  , (15b) 

which can be evaluated using (9) and following the steps 

given in [13,14]. The P terms in the right side of (10) can 

then be expressed as: 

 

 

1 1 0

1 1 1

1 10 0

11

n n n n n n

ei i i i i i

n n n n

e e e i e ii i

P P P P E E

E E



   

 

  

 



    

    

 
 

 
 

, (16) 

where n

e  is known as the recursive accumulator and 

given by: 

  
1

1

0

n
n n q n qq q q

e e e ei i i

q

E E   


  



    
  , (17a) 

with 

 1 1q q q q q q

e e e e e e;            . (17b) 

Substituting (16) into (10) and rearranging the discrete 

equation, one obtains FDTD update equations for left 

(i=1) and right (i=K) side boundaries: 

 

1 1

1 2 3 41 2 2 1 2 1

1 1

1 2 3 41 1 1

n n n n n n

e e

n n n n n n

e eK K K K K K

E a E a E a E a

E a E a E a E a

 

 

 

 

  

    

    

  

  

, (18) 
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with 

 0 0 0

1 2 3 4

1 2 3 2 4 1 2 4 2

1 2 3 4

2 3 2 3 2 3 2 3

; ; ; ;

1
; ; ;

1 1 1 1

e e e

c t x x
c c c c

c t x c t x

c c c c c c c c c
a a a a

c c c c c c c c

  
     

       
        

         
          

          

. 

 

B. Formulation of second-order DNG-Mur ABC 

The first-order DNG-Mur’s boundary is suitable for 

1D problem, where the wave is propagating normal to 

boundaries. In more general problems, wave propagates 

toward boundaries at an arbitrary angle. In those cases, 

obviously, 2nd order approximation is superior to the  

1st order approximation in reducing reflections from 

boundaries of the computational domain. Considering 

2D case  0z    where only the Ez field components 

impinge on the left and right boundaries along x-direction 

(i.e., on x=0 and x=h), the wave equation is factored as 

in the following: 

        

       

2 2 2
2 22 2 2

2 2 2

2 21 1 0

x y

x x x x

n E D D D n E
x y c

D D n S D D n S E



 


   

  

  
     

  

     

, 

 (19) 

where 

 
 

2

2

2 2

y

x

D
S

n D
 , (20a) 

 
2 2

2 2

2 2
, , ,x y

j
D D D D

x cy c
 

  
   
 

. (20b) 

Approximating the square root term with a two- 

term Taylor series expansion as 2 21 1 2x xS S    and 

substituting 2

xS  and  n   into (19) one can write the 

one-way wave equation which satisfies the backward 

wave condition along x-direction as: 

 
   

 
     

2

2 2

1
2

0
2

x

x

S
D D n E

E c
j E P R

x c c

  

  
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 


    



  
  
   , (21) 

where 

 

     

 
 

 

     

2

2

e

e

P E

E
R Q

y

Q R

  


 
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






 





. (22) 

Taking the inverse Fourier transform of (21) yields: 

 
     

 
2 2 2 2

2 2
0

2

E t E t P t c
c R t

t x t t

  
   
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, (23) 

where 

 

     

 
 

 

     
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e

e
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y
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



 


 



 

. (24) 

Similar to 1D formulation, discrete forms of P, Q 

and R are obtained using PLRC algorithm: 
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 
 
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. (25) 

Here, 
n

e
  and n

e  are known as the recursive 

accumulator and given by: 

  
   
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2
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,
,

,

q q n q
n

e en

e
q n q

q
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


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
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 
  

 , (26a) 

  
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 
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1
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,
,

,

q q n q
n

ee een

e
q n q

q
ee
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
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where 

 2 1 1
2

q q q q q q q

e e e e ee e e
;      

  
       , (27a) 

 2 1 1
2

q q q q q q q

e e e e ee e e
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  
       . (27b) 

Using central-difference expressions for the space 

and time derivatives in (23) and substituting discrete 

form of P, Q and R from (25) one obtains: 
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with 
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Analogous FDTD expressions for the 2nd order 

DNG-Mur ABC on the other boundaries can be derived 

in the same manner.  

 

III. NUMERICAL RESULTS 
In this section, first numerical results are presented 

both for 1D and 2D cases where the problem space is 

filled entirely with DNG medium modelled by identical 

Lorentz parameters for  r
  ,  r

   and boundaries  

on both sides are terminated with proposed DNG-Mur 

ABCs. In all simulations, a tapered sinusoidal pulse  

(5-10-5 pulse described in [15]) is used as excitation with 

a center frequency of 7.5 GHz
s

f  , and inserted at  

the center of the FDTD grid. The Lorentz type  

medium parameters are chosen as 48 25pe pm s    , 

5oe om s     and 200e m s   , which yields  
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a refractive index about -1 at the center frequency

 2
s s

f  . FDTD grid parameters are 0.067x  cm 

for 1D case and 0.2x y   cm for 2D case with a time 

step of 0.5 times the Courant limit. Total FDTD domain 

is chosen as 1000 grid and 400x400 grid for 1D and 2D 

scenarios, respectively. 

Absorbing performance of the proposed formulations 

are illustrated via reflections from the DNG-Mur 

boundaries. The reflection coefficient at an observation 

point is determined by calculating the test and reference 

field strength versus time using proposed FDTD 

formulations in two steps [10]. In the first step, the test 

field Etest is calculated at an observation point 2-cells 

away from the DNG-Mur boundary. In the second step, 

incident field Einc is obtained by repeating the same 

calculations, but now considering a larger domain so that 

boundary reflected fields cannot reach the observation 

point during the time window of step one. The reflected 

field can then be obtained as Eref (t)=Etest(t)-Einc(t). Then, 

the reflection coefficient at each frequency is calculated 

by dividing the discrete Fourier transforms (DFT) of 

reflected field and incident fields. 

In Fig. 1, frequency spectrum of the incident field  

is shown together with reflection coefficients obtained 

using DNG-Mur ABCs in 1D and 2D scenarios. For 

comparison purposes the reflection coefficients obtained 

using 10-cell thick DNG-UPML ABCs are also plotted. 

The computation time and memory requirements for 

both approaches are listed in Table 1. Our numerical 

results show that 1D and 2D DNG-Mur ABCs reduce 

reflections to about -60dB and -50dB level over the 

7.1−7.9 GHz band under the main lobe and require  

less memory and computational time than DNG-UPML 

simulations.  

 

 
 

Fig. 1. Frequency spectrum of incident field, and 

reflection coefficients both for DNG-Mur and DNG-

UPML for 1D and 2D scenarios. 

 

We have also calculated the reflection coefficients 

performance of proposed DNG-Mur ABCs for the case 

of non-identical Lorentz models using arithmetic mean 

approach outlined in Sec. IIA. The results obtained with 

the same parameters for  
e
  , but pm s  , 2om s   

and 200m s   for  
m
   are found to differ less than 

±3 dB from those shown in Fig. 1, over the entire 

frequency range. 
 

 
    (a) 

 
    (b) 

 

Fig. 2. Snapshot of propagation through DNG slab using: 

(a) DNG-Mur and (b) standard Mur. 

 

As a second 2D test we consider a DNG slab with  

a thickness along y-direction about 100y imbedded  

in air, extending infinitely in x, z, and excited by a z-

directed line source. We have used 50-1000-50 cycle 

[15] source at 7.5 GHz
s

f  . This yields near-perfect 

match conditions as steady-state conditions set up, and 

the refractive index of the slab approaches to -1 (-0.9999-
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0.0104j). In order to demonstrate the effectiveness of the 

proposed extension of Mur formalism to DNG media we 

performed two simulation runs, one using DNG-Mur and 

the other using Standard-Mur at slab boundaries. For the 

first simulation, boundaries of the 400x400 grid size 

computational domain are terminated with standard 2D 

Mur ABC for air, and with 2D DNG-Mur ABC for the 

DNG slab boundaries at y-grid points between 150 and 

250 (See Fig. 2 (a)). For the second simulation, standard 

2D Mur ABC is used at all boundaries (both air and DNG 

slab, See Fig. 2 (b)). The line source is placed at a point 

where x=200x, y=100y, i.e., at a distance 50y from 

the DNG slab for both simulations, and typical outputs 

are depicted in Fig. 2 (a), Fig. 3 (a), and Fig. 2 (b), Fig. 

3 (b), respectively.  

 

 
   (a) 

 
   (b) 

 

Fig. 3. Time domain field recorded at an observation 

point while DNG slab is truncated with a) DNG-Mur and 

b) Standard Mur. 

 

The snapshot given in Fig. 2 (a) clearly shows the 

cylindrical wave fronts emanating from the source, as 

well as from the anticipated image locations [15,16] 

inside and behind the slab. In Fig. 3 (a) the time history 

of the E field at an observation point located between 

source and slab is given which demonstrates the stability 

of the code when terminating slab boundaries with DNG-

Mur. Figure 2 (b) and Fig. 3 (b) correspond to similar 

outputs obtained when, at slab boundaries, DNG-Mur  

is replaced with standard Mur. Figure 2 (b) and Fig. 3  

(b) show that reflections from improperly terminated 

boundaries of the DNG slab results in instability after 

about 10,000 time steps, and completely corrupts field 

distribution inside the computational domain by 14,950 

steps, as shown in Fig. 2 (b). 

 

Table 1: Memory usage and computation time in FDTD 

simulations for DNG-Mur and DNG-UPML ABCs 

FDTD Grid  
Time 

(s) 

Memory 

(MB) 

2D Case 

1000x1000 cells 

t=5000∆t 

Mur 1693.9 244.45 

UPML 3881.5 516.98 

1D Case 

1000 cells 

t=10000∆t 

Mur 1.73 0.72 

UPML 2.65 0.87 

 

IV. CONCLUSION 
Absorbing boundary conditions based on Mur’s 

approach have been developed for DNG media in 1D  

and 2D FDTD computational domain. In the presented 

formulations, DNG slab is modeled with identical Lorentz 

parameters for    ,r r    in frequency dependent 

one-way wave equations and PLRC method is used to 

derive FDTD update equations. 1D and 2D simulations 

demonstrate that the proposed implementations of Mur 

ABC for terminating DNG media provide stable results 

and effectively reduce boundary reflections by about  

50 dB, which may be acceptable in many applications. 

Comparison of computational requirements for DNG-

Mur and DNG-UPML as listed in Table 1 indicate that 

the DNG-Mur provides definite advantages both in 

memory and computation time. The formulations given 

in this paper are valid for any dispersive media and can 

be also applied for Drude model. 
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