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Abstract � In this work we examined how the variability 
in the brain morphology and the tissue properties affect 
the assessment of the homogeneous human brain 
exposed to high frequency electromagnetic (EM) field. 
Using the deterministic EM-thermal modeling and the 
stochastic theoretical basis we have studied the effects of 
these uncertainties on the maximum induced electric 
field, maximum local Specific Absorption Rate (SAR), 
average SAR, maximum temperature and the maximum 
temperature increase, respectively. The results show a 
good convergence of stochastic technique and an 
assessment of mean and variance of outputs for the 
incident plane wave of 900 MHz.

Index Terms� Bioelectromagnetism, electromagnetic-
thermal model, sensitivity analysis, statistical dosimetry, 
stochastic collocation, surface integral equation approach.

I. INTRODUCTION
The exposure of a modern man to electromagnetic 

(EM) fields has raised some questions regarding the 
potentially harmful effects on the human health. This is, 
in particular, the case for the human head and brain 
exposed to high frequency (HF) radiation. The HF 
exposure assessment is based on the calculation of SAR 
distribution and the related temperature rise. As 
measurement of induced fields is not possible, human 
exposure assessment is carried out by using appropriate 
computational models. One difficulty of the modeling 
lies in the fact that values of the various model 
parameters can vary considerably due to, e.g., possible 
difference in individual size, but also due to different age 
(morphology) [1], or the general variability of electrical 
parameters such as permittivity and electrical 
conductivity [2], again, due to difference in age or sex. 
This uncertainty of the input parameters can result in the 
uncertainty of the dosimetric model outputs such as 

induced electric field and SAR. Thus, one of the key 
challenges that numerical dosimetry faces today is 
management of these uncertainties [3]. A novel approach 
to this problem, that is attracting more and more attention 
[4]-[7] is the so called stochastic dosimetry, combining 
deterministic electromagnetic techniques with the 
statistical methods.

The uncertainties that are discussed in this paper 
cover only a small subset of a huge variability apparent 
in the dosimetry literature due to variations in the 
exposure parameters and the anatomic variability of 
people [8], [9]. Review in [8] classified these differences 
due to the age dependent tissue dielectric properties, 
anatomically based models from children and adults of 
varying age and race, effects of pinna on SAR, 
distributions of SAR within the brain, and the effects of 
variability among models on SAR, respectively.

This paper presents the deterministic electromagnetic-
thermal model coupled with the stochastic theoretical 
basis. The model is used to examine the effects of the 
variability in the brain morphology and the tissue 
properties on the dosimetric assessment in case of 
homogeneous human brain exposed to high frequency 
EM field. The sensitivity analysis of various parameters 
in this simplified model could thus aid in better 
formulation of a more realistic and computationally 
much more demanding models.

The paper is organized as follows. In the first part, 
description of the electromagnetic-thermal model 
proposed to compute SAR and temperature outputs is 
given. The following part gives details about the 
stochastic technique used jointly with previous model to 
propagate uncertainties. Finally, the numerical results 
for the case of brain exposed to radiation of vertically 
and horizontally polarized 900 MHz plane wave, 
respectively, are given with the corresponding statistical 
outputs.
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II. DETERMINISTIC MODEL

A. Electromagnetic dosimetry model
The electromagnetic model is based on the 

surface integral equation (SIE) formulation [10], and, 
methodologically, represents a fresh perspective in the 
bioelectromagnetics area dominated mostly by the 
differential equation based methods such as FDTD (finite 
difference time domain). In addition to high accuracy, the 
advantages of the SIE formulation include: discretization 
of only boundary of the problem, hence reducing the 
dimensionality of the problem, it is suitable for open 
boundary problems (such as human head exposed to EM 
field), it gives exact solution to open boundary problem 
(no need to artificially limit the domain), does not suffer 
from staricasing errors related to FDTD, etc. Regardless 
of all these advantages, the integral equation approach has 
only recently begun its revival in the bioelectromagnetics 
community [11], [12].

It must be noted that the SIE formulation is only one 
way of transforming the original boundary value 
problem of Maxwell's equations into an integral equation 
form. The same problem could also be formulated using 
the volume integral equation (VIE), but then one loses 
the dimensionality reduction, in addition to having to 
deal with tensor-type integral equation and dyadic 
Green's functions. The choice of the particular integral 
technique will be primarily dependent on the domain 
problem type. Interested reader could find more details 
in [13], [14].

To set up the EM model, the human brain is 
considered as a lossy homogeneous dielectric material 
with complex permittivity and permeability (�,�), placed 
in a free space. The complex permittivity of the brain is 
given by:

� = ���� � � �
	, (1)

while the value for the permeability of the brain is taken 
to be ��, i.e., the free space permeability, due to the fact 
that biological tissues do not posses magnetic properties. 
It is important to mention that human tissues have chiral 
characteristics, the property intrinsic to many biological 
molecules as well as human cells [15], meaning that the 
magnetic field will affect the electric flux and the electric 
field will affect the magnetic flux through material 
properties. But to the best of authors knowledge, there are 
no relevant study on this property for the human brain, 
hence, it was not taken into account.

The brain is exposed to a radiation of plane 900 MHz 
EM wave of power density of P=5 mW/cm2. Using the 
equivalence theorem, two equivalent problems are 
formulated in terms of the equivalent electric and 
magnetic current densities placed on the surface of the 
brain. After the application of boundary condition at the 
surface 
 being interface of the two equivalent problems, 
the coupled set of integral equations is obtained:

��� � ��(���)���� �� � �
���

� � ��� � ��(���)���� �� + � ×
� ����(���)������ =  !" × #���$%;  ' = 1

0             ;  ' = 2, (2)

where *���,-. is the known incident field, /� and 3���� represent 
the unknown surface currents, while i is index of medium. 
The equivalent electric and magnetic currents /� and 3���� are 
expressed by the linear combination of RWG and 
-4 ×RWG basis functions, respectively, defined on a pair 
of triangles.

The numerical solution of Eq. (2) is done via an 
efficient scheme of a method of moments (MoM) leading 
to a matrix type equation whose solution is a vector 
containing the unknown coefficients /- and 3-. From 
these coefficients, the equivalent currents /� and 3���� can be 
determined from:

/�(���) = 5 /-6-�����(���)7-89 , (3)
3����(���) = 5 3-:-������(���)7-89 , (4)

where 6-����� and :-������ are known basis functions.
Subsequently, the electric field can be determined at 

an arbitrary point in brain using the following:

*���(���) = ��	� � /�(���<)>(���, ���@)A
@

 � �

	� � B@C �

/�(���<)>(���, ���@)A
@ � � 3����(���<) × B>(���, ���@)A
@


 . (5)
From the electric field distribution inside the brain, 

the specific absorption rate (SAR) is readily found using:


DE = �
FG H*���HF

, (6)

where G is the brain tissue density given in kg/m3. SAR 
is latter used as input to the thermal part of the model.

B. Thermal dosimetry model
The experimental measurements of brain thermal 

response due to EM radiation is not possible in healthy 
humans. As indirect methods such as magnetic resonance 
imaging (MRI) lack sufficient resolution, and using 
animals as surrogate models raises the question of 
interspecies difference, the computational modeling 
seems to be the only alternative. It should be noted that the 
bioheat equation used for the kind of application presented 
here, has not been validated experimentally, and hence, 
presents forward only model.

The problem of determining the temperature 
distribution in the human brain is addressed using 
the finite element method (FEM). The steady-state 
temperature distribution in the brain, exposed to an 
incident time harmonic electromagnetic (EM) field, is 
governed by the stationary form of the Pennes' bioheat 
Equation [16]:

B � (IBJ) + KL.L(JM � J) + NO + NPQR = �, (7)
where the heat generated due to metabolic processes is 
given by NO, KL and .L are the volumetric perfusion rate 
and the specific heat capacity of blood, respectively, I is 
the thermal conductivity of the tissue, and JM is the arterial 
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blood temperature. The last term in (7) represents the 
amount of heat generated due to absorption of EM energy 
in the tissue, and can be calculated from:

NPQR = G � 
DE. (8)
The equation (7) is supplemented by the Robin 

boundary condition, while the heat loss due to radiation, 
and the forced convection are neglected. The finite 
element formulation of (7) is based on the weighted 
residual approach. The approximate solution of (7) is 
expanded in terms of the known basis functions and the 
unknown coefficients. After multiplying (7) by a set of 
weighting functions and integrating over the domain, after 
some work, we arrive to a suitable expression for the finite 
element method implementation:

S IBJ � B7�AT + S KLJ7�AT +TT
 U VWXYZAC = [T S (KLJM + NO + NPQR)7�AT +T

               U VWX\]^YZAC[T . (9)
The processing part of the electromagnetic and the 

thermal dosimetry models was carried out using authors 
developed code.

C. The homogeneous human brain
Although the presented formulation could be used on 

a more detailed brain surface model built from an MRI, 
the source of the brain model was a freely available 
template from a Google Sketchup library. Assuming the 
dimensions of the average adult human brain are: 
width 131.8 mm, length 161.1 mm, height 139 mm, the 
frequency dependent parameters of the human brain are 
taken from [17]. The value for the relative permittivity and 
the electrical conductivity of the brain are given by 
��=45.805 and �=0.766 S/m, respectively, taken as the 
average values between white and gray matter at 900 MHz.
Assuming each of the previous parameter may be 
impacted by random variations uniformly distributed, 
the following part will be dedicated to the propagation of 
uncertainties and discussion about numerical results.

III. STOCHASTIC MODELING
Complementary to solid deterministic modeling, 

stochastic techniques [1], [18] are helpful to precisely 
assess statistics of a given mapping and provide its 
sensitivity analysis.

A. Propagation of uncertainties
First, five random variables (RVs) are solely 

considered and devoted to the representation of 
parameters assumed as uncertain ones: brain's width 
(RV1), length (RV2), height (RV3), relative dielectric 
permittivity _` (RV4) and conductivity a (RV5). At this 
stage, and for the sake of simplicity, the RVs are loosely 
assumed to be independent and identically distributed 
(iid) following Uniform laws. Even though this point 
may be criticized, particularly related to morphing of 

geometrical parameters, we may consider this as the 
first-order assumption. Indeed, there are solutions that 
easily integrate dependencies in stochastic collocation 
(SC) methods and the following methodology will still 
be valuable with iid-RVs. Assuming each RVk (k=1,...,5) 
is uniformly distributed around values from part II-C
with common coefficient of variation (CV) equal to 
5.77% [19], this first approach may offer a rapid 
estimation of potential importance of RVs. On the other 
hand, the study of a complete RV set is necessary, taking 
into account their interdependence, as is the case for 
morphological parameters [1].

B. Stochastic collocation theoretical basis
Among the different stochastic techniques available 

in the literature, the non-intrusive stochastic collocation 
(SC) method [18] was used in this dosimetric 
framework. The method is part of spectral approaches 
[20]. Similarly to strategies developed for Monte Carlo 
(MC) methods [21], the aim of these sampling 
techniques is to lead efficient experimental design (e.g.,
by decreasing the number of input samples needed). The 
basis of spectral techniques relies on a polynomial 
expansion of the considered output (e.g., u-th statistical 
moment of electric field, [#]d) for given random 
parameters (ef, eg, … , eh) where each ei (j = 1, … , k)
is defined from one given RV lmias:

ei = ein + lmi, (10)
where ein is the initial (mean) value and lmi is RV with 
assigned statistical distribution.

By assuming random parameter ei, the random 
output of interest #(# o [#]d) is expanded over the 
stochastic space using the Lagrangian bases set [18]:

#(ein; p) = 5 #�(ein)q�(p)$�8n , (11)
where q�(p) is Lagrange polynomial given by:

q�(p) = r (stsu)
(suts�)

$�8f,�v� . (12)

Utilizing the property of Lagrangian basis, yields:
#�(ein) = #(ein; p�). (13)

Applying the rules for the assessment of statistical 
moments on equation (10), the mean and the variance are 
easily derived, respectively:

[#(ein; p)]f = 5 ��#�(ein)$�8n , (14)
[#(ein; p)]g = 5 ��{#�(ein) � [#(ein); p]f}g$�8n , (15)

where �� is given by integral:

�� = � q�(p)w(p)�px , (16)
where w(p) denotes the probability density function of 
RVlmi.

The order of approximation of the output #, i.e., the 
convergence, depends on number of collocation pointsp�.
The computation of integral (16) is carried out using 
Gaussian quadrature.

In a more general case, when extending the relations 
(14) and (15) to multi-RVs (e.g., case with N RVs), 
Lagrangian basis is used to approximate mapping [#]d
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as follows:
[#]d(y) = 5 …$z|z8n 5 ~|z…|�

d ��$�|�8n (y), (17)
where y = (lmf, lmg, … , lmh)� is called random vector 
(i.e., vector containing the N random parameters of the 
problem), ��(y) is related to the chosen polynomial 
expansion, and ~|z,…,|�

d are the weights dedicated to SC 
points, respectively. Relation (17) implies !� + 1 (� =
1, … , k) SC points (SC !� order expansion) to compute 
random component l�in a straightforward manner.

For the interested reader, the developments and 
choice of Lagrangian polynomial basis are explained in 
[18], [22]. It is to be noticed that previous approach is 
proposed assuming the independence of random 
parameters. Similarly to alternative Unscented Transform
(UT) sampling technique [23], taking into account 
correlation of RVs is possible throughout covariance 
matrix, and finally transform initial sigma points, 
keeping the same strategy as previously exposed. 
Computing statistical moments will be straightforward 
as depicted in relation (17).

C. Numerical results from 1-RV mean contributions
Using our deterministic EM model, the distribution 

of the electric field in our human brain model is 
determined, as shown in Fig. 1.

Fig. 1. Distribution of electric field on the brain surface. 
Horizontally polarized plane wave of frequency 900 MHz,
power density P=5 mW/cm2.

From the distribution of the electric field inside the 
brain, the SAR is determined next. The resulting SAR 
will cause a certain temperature increase, ��,
determined using our thermal dosimetry model. As the 
incident wave's polarization presents an important role in 
the assessment of the electric field and the related SAR, 
all calculations were carried out for two polarizations of 
the incident plane wave: vertical and horizontal. Figures 
2 and 3 show the results for the temperature rise in the 
human brain, due to horizontally and vertically polarized 
wave, respectively.

Fig. 2. Temperature rise in the human brain model due 
to incident 900 MHz horizontally polarized plane wave, 
power density P=5 mW/cm2.

Fig. 3. Temperature rise in the human brain model due 
to incident 900 MHz vertically polarized plane wave, 
power density P=5 mW/cm2.
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Figure 4 shows the SC convergence of maximum 
electric field mean value for different RVs (lmi; j =
1, … ,5) by taking into account the increasing number of 
points in SC experimental design (e.g., 3, 5, 7 points). 
Although the output (maximum SAR) is highly non 
linear, SC offers a precise assessment of its first 
statistical moment with 5 multi-physics simulations. It 
can be observed that the mean of the maximum E-field 
is between 48.8 and 49.8 V/m, indicating the importance 
of modeling RVs at the same time.

Fig. 4. Mean of maximum electric field in function of 
number of SC points (3, 5, 7) at frequency 900 MHz. 

On the other hand, Fig. 5 shows the potential 
influence the individual random variables have on the 
variance of the maximum E-field. Similar to the case of 
mean assessment, the SC technique provides trustworthy 
results even with only 3 simulations.

Fig. 5. Variance of maximum electric field in function of 
number of SC points (3, 5, 7) at frequency 900 MHz.

Similar to Figs. 4 and 5, the SC efficiency and 
convergence is assessed in Figs. 6 and 7 where mean and 
variance of a non-linear thermal parameter (temperature 
rise in brain) is given. A trustworthy result is obtained 
regarding independently each RV with only 3 full-wave 

simulations.

Fig. 6. Mean of temperature rise in function of number 
of SC points (3, 5, 7) at frequency 900 MHz. 

Fig. 7. Variance of temperature rise in function of 
number of SC points (3, 5, 7) at frequency 900 MHz.  

In order to complement the preliminary results 
obtained with only 1-RV modeling, Tables 1 and 2 give
an overview of the statistics obtained from a stochastic 
model including all RVs for both polarizations. Mean 
and variances obtained for each of the given outputs 
(maximum E-field, maximum SAR, averaged SAR, 
maximum temperature, temperature rise), considering a 
whole model including 5 RVs are presented. As 
expected, there are differences between the entire 
stochastic approach and 1-RV modeling. The 
experimental design chosen in this example is based 
upon 243 simulations (approaching each statistical 
moments using only 3 SC points for each RV, leading to 
35=243 simulations). Of course, some alternative 
approaches are practicable but the crude tensor product 
(i.e. full-tensorized SC) given by relation (17) offers 
confidence related to the accuracy of the computed data. 
It should be noticed that the convergence of results has 
been checked (data not shown here) by using full-
tensorized model with 5 SC points for each RV.
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Table 1: SC results (mean/variance, var.) for given 
outputs (one may notice units are given for means; 1: 
maximum electric field in V/m, 2: maximum SAR in 
W/kg, 3: mean SAR in W/kg, 4: temperature in Celsius 
degrees, 5: temperature rise in Celsius degrees) for 
vertical (VV) polarization

Output 1 2 3 4 5

Output� ����� 0.9 0.16 37.1 6.1E-3

Var.(× 10�)� ����	� 61.5 0.7 1.3 2.0E-3

Table 2: SC results (mean/variance, var.) for given 
outputs (one may notice units are given for means; 1: 
maximum electric field in V/m, 2: maximum SAR in 
W/kg, 3: mean SAR in W/kg, 4: temperature in Celsius 
degrees, 5: temperature rise in Celsius degrees) for 
horizontal (HH) polarization

Output 1 2 3 4 5

Output� �
��� 0.9 0.17 37.0 7.3E-3

Var.(× 10�)� ������ 21.3 0.7 1.2 1.9E-3

D. Sensitivity analysis
A large diversity of techniques are available in [24]

to assess the sensitivity analysis of various models.  In 
the following, variance-based criteria are defined from 
SC data to assess the sensitivity of each random 
parameter (similarly to Sobol's first indices [24] but 
restricted to a qualitative evaluation). Indeed, for each 
given physical output � (where � = 1, … ,5 stands 
respectively for maximum E-field, maximum SAR, 
mean SAR, maximum temperature, and temperature 
rise): 

��
� = ��

u

�u, (18)

with ' the RV indice (i.e., ' = 1, … ,5), m�
� variance 

relative to RV ' and output�, m� represents variance of 
output � computed from 5-RVs stochastic model, and ��

�
is the aforementioned influence criterion. It should be 
noticed here that, assuming extension to dependent 
random variables (see Section III), the relation (18) is 
still valuable to assess RV “global” sensitivity.

Figures 8 and 9 show the influence of the different 
random parameters relative to the variance obtained 
from the entire (e.g., 5-RVs) stochastic model following 
relation (18), for both polarizations. Close to global 
sensitivity analysis [24], this offers a qualitative 
overview of the impact of different RVs over various 
outputs. As expected, the results are highly problem-
dependent, implying the choice of the output may 
influence the SC experimental design needed for a 
complete stochastic modeling of the problem. In this 

framework, Tables 3 and 4 provide a ranking of the most 
influential parameters depending on the output, for 
vertical and horizontal polarization, respectively.

Fig. 8. Influence criterion ��
� in function of outputs 

(1: E-field, 2: maximum SAR, 3: mean SAR, 4:max 
temperature, 5: temperature rise) and RV (brain's length, 
brain's width, brain's height, relative permittivity (_`)
brain, conductivity (a) brain) for vertical polarization.

Table 3: RV ranking from most (A) to least (E) 
influential parameters and given outputs (in relation with 
results in Fig. 8)

Output 1 2 3 4 5 Total

RV1: brain’s length� C D C C E D

RV2: brain’s width B C D B C B

RV3: brain’s height A A E A A A

RV4: _`brain D E B D D E

RV5: a brain� E B A E B C

Fig. 9. Influence criterion ��
� in function of outputs 

(1: E-field, 2: maximum SAR, 3: mean SAR, 4:max 
temperature, 5: temperature rise) and RV (brain's length, 
brain's width, brain's height, relative permittivity (_`)
brain, conductivity (a) brain) for horizontal polarization.  
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Table 4: RV ranking from most (A) to least (E) 
influential parameters and given outputs (in relation with 
results in Figure 9)

Output 1 2 3 4 5 Total
RV1: brain’s length� E E B C E E
RV2: brain’s width D C E B A C
RV3: brain’s height B A D A C A

RV4: _`brain C B C D D D
RV5: a brain� A D A E B B

E. Discussion
Due to the multi-physics of the problem (thermal 

and electromagnetic), the sensitivity of the statistical 
model is different from a given output to another.

As expected, conductivity a seems to play a key role 
for SAR assessment (especially regarding mean value) 
(Tables 3 and 4). Contrary to a, relative permittivity 
seems to produce weaker effects both considering EM 
and thermal outputs. Regarding geometrical parameters, 
brain's height seems to play a major role both 
considering thermal outputs and maximum electric ones 
(out of averaged SAR); this might be expected due to 
chosen EM sources (plane wave's orientation); brain's 
length and width are less influential in that case.

Similarly to thermal differences due to horizontal 
(Fig. 2) and vertical (Fig. 3) polarizations, EM sources 
involve various results when considering influence 
of each random parameter. Vertical polarization 
strengthens the importance of geometrical brain's 
parameters comparatively to geometrical ones except for 
averaged SAR since _` and a are key parameters. The 
relative influence of materials is high for horizontal 
polarized wave regarding EM outputs. This validates the 
interest of the proposed methodology as a framework for 
sensitivity analysis combining deterministic and 
stochastic models. 

From past discussions, an adaptation of the 
experimental design is possible. Thus, the least 
influential variables may be considered with a restricted 
number of points (e.g., changing some parameters to 
deterministic ones or withdrawing some inputs in the 
initial experimental design [25]), whereas the most effort 
may be put on the most influential ones.

Although the focus of presented paper was on the 
proposed methodology as a framework for sensitivity 
analysis combining deterministic and stochastic models, 
some limitations regarding the deterministic model 
should be addressed at this point. The homogeneous 
brain model insulated in free space does not represent a 
realistic scenario. As the actual brain is surrounded by 
various other tissues, such as e.g. cerebrospinal fluid, fat, 
skull and scalp, the overall electric field distribution and 
the related SAR will be affected due to these tissues. The 
work related to the inclusion of the surrounding tissues 
such as skull and scalp is currently under way. In order 

to take into account this type of scenario, it will 
be necessary to use a different integral equation 
formulation, such as a tensor-type volume integral 
equation approach.

Furthermore, the low number of triangular elements 
used to represent the surface of our model results in the 
less smooth appearance of the electric field. The brain 
surface model presented in this paper is smoothed out 
neglecting the detailed cortical structures, although the 
proposed integral equation formulation is applicable to 
an arbitrarily shaped biological tissue, including a more 
detailed brain model taking into account the cortex 
foldings. The downside of the detailed description of 
the brain is the total number of elements required 
to accurately represent the geometry. This would 
consequently lead to a very large matrix system whose 
solution would require the use of advanced techniques 
such as multilevel fast multipole algorithm and hence 
prevents our model at present stage in doing so.

Finally, the presented framework did not take into 
account the variability of thermal parameters such as the 
heat generated due to metabolic processes ��, the 
volumetric perfusion rate and the specific heat capacity 
of blood, �� and ��, respectively, the thermal 
conductivity of the tissue �, and the arterial blood 
temperature ��.The influence of these thermophysiological 
parameters on the induced SAR and the related 
temperature distribution related to the thermal dosimetry 
model is required due to their variability as well as 
general uncertainty [26], [27].

IV. CONCLUSION
One of the challenges the electromagnetic-thermal 

dosimetry models face is related to the uncertainty of the 
various input parameters. To overcome this, the 
stochastic dosimetry approach will be necessary, where 
both stochastic and deterministic models are used. Based 
upon a deterministic model coupling EM and thermal 
dosimetry, this contribution proposes to integrate 
uncertain variations around input parameters. The 
expansion of statistical outputs (e.g., mean and variance) 
over a polynomial basis (via SC) showed robustness and
efficiency (limited size of experimental design) both for 
EM and temperature quantities.

The quantitative computing of statistical first and 
second order moments enables a qualitative sensitivity 
study in order to focus on the most influential 
parameters. From this analysis, a competitive and 
efficient model may be defined for instance in order to 
perform a more demanding computing (e.g., in order to 
provide probability density function, assess reliability 
analysis, and put the focus on extreme values). From an 
optimized statistical model, we may also achieve richer 
EM and thermal description of the brain's behavior by 
increasing the number of random variables and their 
complexity.
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