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Abstract ─ An efficient hybrid finite element-
boundary integral-characteristic basis function 
method (FE-BI-CBFM) is proposed to solve the 
problem of electromagnetic scattering by multiple 
three-dimensional (3-D) cavities embedded in a 
conducting plane. Specifically, the finite element 
method is used to obtain the solution of the vector 
wave equation inside each cavity and the boundary 
integral equation is applied on the apertures of all 
the cavities as a global boundary condition. The 
resultant coupling system of equations is solved by 
using an excitation independent characteristic 
basis function method. Some numerical results are 
included to illustrate the validity and capability of 
the proposed method.  
  
Index Terms ─ Boundary integral equation, 
characteristic basis function method, finite element 
method, multiple cavities.  
 

I. INTRODUCTION 
Electromagnetic scattering from various cavity 

structures has been intensively investigated by 
many researchers during the past few decades. 
Among the many methods applied to this class of 
problems, the hybrid finite element-boundary 
integral (FE-BI) method [1–7] has been widely 
proved to be a general, robust, and accurate 
numerical method to analyze the EM scattering 
from open cavities. It employs the finite element 
method (FEM) to handle the fields in the cavity 
volume, while the boundary integral equation 
(BIE) to handle the fields on the aperture of the 
cavity. This method has been first applied to 2-D 
scattering problems [1, 2] and later extended to 
more challenging 3-D scattering problems [3–5]. 
Recently, Alavikia and Ramahi further extended it 

to the solution of EM scattering problems 
involving multiple 2-D cavities [6].  
     More recently, we presented a domain 
decomposition of the FE-BI method for solving 
the problem of EM scattering by multiple 3-D 
cavities [7]. In the implementation of the method, 
the vector FEM was applied inside each cavity to 
derive a linear system of equations associated with 
unknown fields. The BIE was then applied on the 
apertures of all the cavities to truncate the 
computational domain and to connect the matrix 
subsystem generated from each cavity. By virtue 
of an iterative domain decomposition method, the 
coupling system of equations was reduced to a 
small one which only includes the unknowns on 
the apertures. The solution to the reduced system 
was obtained by an iterative solver, where the 
multilevel fast multipole algorithm (MLFMA) was 
employed to speed up the matrix-vector 
multiplication. However, the iterative solver is 
inefficient when one is interested in solving the 
reduced system for multiple excitation vectors, as 
the iterations need to be started anew for each 
right hand side. In practice, one is often interested 
in analyzing the monostatic scattering 
characteristics of the cavities and, in such a case, 
the resultant FE-BI matrix equation involves a 
number of excitation vectors. For the purpose of 
efficient analysis of monostatic scattering 
characteristics of multiple cavities in a conducting 
plane, we utilize the characteristic basis function 
method (CBFM) [8–12] to solve the resultant FE-
BI matrix equation. The use of CBFM has the 
advantages that it only utilizes direct solvers rather 
than iterative methods; hence it does not suffer 
from convergence problems and can solve 
multiple excitation problems efficiently. 
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In the following, Section 2 presents the 
formulation of the hybrid FE-BI-CBFM. Section 3 
illustrates some numerical examples and Section 4 
is the conclusion. 
 

II. FORMULATION  
As illustrated in Fig. 1, let us consider the 

problem of EM scattering by multiple 3-D cavities 
embedded in a perfectly conducting plane. For the 
sake of convenient description, the free space 
region above the cavities and conducting plane is 
denoted as 0Ω , the region occupied by the thi

cavity is denoted as ( )1, 2, ,i i mΩ =  , with m  
being the total number of the cavities, and the 
corresponding volume and area of the aperture are 
denoted as iV and iS , respectively. 
 

 
Fig. 1. Geometry of multiple 3-D cavities 
embedded in a perfectly conducting plane. 
  

The field in region ( )1,2, ,i i mΩ = 
can be 

formulated into an equivalent variational problem 
with the functional given by [13] 
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where S

iE and S

iH denote the electric and magnetic 

fields on iS , respectively, and in denotes the 
outward unit vector normal to iS . Using FEM with 
edge elements, the functional can be converted 
into a sparse matrix equation 
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where { }IiE is a vector containing the discrete 

electric fields inside iV , { }S
iE and { }S

iH are the 
vectors containing the discrete electric and 
magnetic fields on iS , respectively. Also, II

iK   , 

,IS SI
i iK K       and SS

iK   are contributed by the 

volume integral in (1), whereas[ ]iB is contributed 
by the surface integral.  

Since Eq. (2) is independent of the excitation, 
we can eliminate the interior unknowns to derive a 
matrix equation that only includes the unknowns 
on iS , as follows 

 [ ]{ } [ ]{ } { }0S S
i i i iS E B H+ =  (3) 

where 
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Before further proceeding, it should be noted 
that the above computation in each cavity is 
independent. Moreover, when the cavities are 
uniform, this computation can be significantly 
reduced. Since for this case, the coefficient 
matrices are the same for each cavity, only one 
cavity needs to be dealt with. 

For all the cavities, we can write the global 
linear system as follows 
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By invoking Huygens’s principle and image 
theory, the magnetic field in region 0Ω can be 
represented as 

 
1

m
inc ref sca

i
i=

= + +∑0H H H H  (6) 

492CUI, HAN: A HYBRID FINITE ELEMENT-BOUNDARY INTEGRAL-CHARACTERISTIC BASIS FUNCTION METHOD 



where incH is the incident field, refH is the reflected 
field from the conducting plane and sca

iH is the 
scattered field caused by the equivalent magnetic 
current S

ii i n= ×M E   on iS . Also, sca
iH is defined 

by [3] 
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Since the tangential magnetic field must be 
continuous across the apertures of all the cavities, 
we may enforce the boundary condition on iS to 
obtain the following BIE 
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Multiplying Eq. (8) by 0 0jk Z and discretizing the 
resulting BIE via Galerkin’s method yields 
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where [ ],ij iP B    and { }( ), 1, 2, ,ib i j m=  are the 
resultant impedance matrices and excitation 
vectors due to the discretization of BIE. 
Combining (5) and (9), we obtain 
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For the sake of convenient description, (10) is 

written in a more compact form as 
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The resultant FE-BI matrix equation can be 
efficiently solved by using an excitation 
independent CBFM presented in [10]. In 
accordance with the CBFM, we first characterize 
each aperture by using the so called primary 
characteristic basis functions (CBFs) that 
constructed by illuminating the aperture with plane 
waves incident from PWSN angles. To be more 
specific, we construct the CBFs by solving the 
following matrix equation 
 CBFs PWS

ii i i⋅ =Z J V  (12) 

where PWS
iV denotes the PWSN plane wave excitation. 

Since the dimension of each block-diagonal matrix
iiZ is relatively small, the above equation can be 

solved by using LU decomposition. This type of 
factorization is highly desirable because we have 
to solve Eq. (12) PWSN times, one for each incident 
plane wave, to compute the complete set of 
primary basis functions. 

Next, we use the singular value decomposition 
(SVD) to express the set of solutions CBFs

iJ as 

 CBFs T
i =J UDV  (13) 

and we retain the columns from the left singular 
value matrix U whose singular values are above a 
threshold. For simplicity, we assume that all of the 
apertures contain the same number K of CBFs 
after SVD, where K is always smaller than PWSN . 
For the thi aperture the solution can be written as 
 ii i=J Jα  (14) 

where ( )T1 2, , , K
i i i iα α α= α are the unknown 

expansion coefficients to be determined by solving 
the reduced matrix equation, and  iJ are the new 
CBFs after SVD. The elements of the reduced 
matrix take the form 
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Thus, the reduced matrix equation can be 
represented as 
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Obviously, the dimension of the reduced matrix 
is much smaller than that of the original 
impedance matrix and hence equation (16) can be 
solved directly. 

 
III. NUMERICAL RESULTS  

Based on the formulation described above, we 
have written a computer program to demonstrate 
the validity and capability of the proposed method. 
In this program, tetrahedral elements are used to 
discretize the solution domain and the density of 
meshes is 12 parts per wavelength. In what 
follows, all the computations are performed on a 
personal computer with 3.0 GHz CPU and 2 GB 
memory. 

To illustrate the validity of the proposed 
method, we first consider a 2 2× array of cavities 
embedded in a conducting plane. Each cavity of 
the array has a square 1.0 1.0λ λ×  aperture and is
0.6λ deep, withλ being the operating wavelength. 
The periodicity of the array is 2.0λ  in the x- and 
y-dimensions. For numerical solution, each cavity 
is subdivided into 4182 tetrahedral elements. As a 
result, a total of 17808 FEM unknowns and 1252 
BIE unknowns are generated. Figure 2 shows the 
computed radar cross sections (RCS) as a function 
of the angle of incidence. For comparison, the 
result obtained using the method of moments 
(MOM) is given in the same figure. Good 
agreements are observed between them. 
 

 
Fig. 2. Comparison of the monostatic RCS for a 
2 2× array of cavities from the FE-BI-CBFM and 
the MOM. 
 

Next, we examine the efficiency of the proposed 
method. For the problem described above, 

although the number of FEM unknowns is very 
large, only one fourth of those need to be dealt 
with since the cavities are uniform. Utilizing the 
frontal method to solve the FEM matrix equation, 
the memory requirement and the computational 
time are 5 Mb and 15 s, respectively. Furthermore, 
we only need to analyze a single cavity to 
construct the CBFs for the entire array. Using the 
CBFM to solve the resultant FE-BI matrix 
equation, the memory required is about 6 Mb and 
the computational time is 25 s. But when we use 
the iterative method in combination with MLFMA 
to solve the FE-BI equation, the memory 
requirement and the computational time are 8 Mb 
and 310 s, respectively. Thus the proposed FE-BI-
DDM is well suitable for the analysis of 
monostatic scattering characteristics of multiple 
cavities embedded in a conducting plane. 
 

 
                           (a) 

 
                              (b) 

Fig. 3. RCS and magnitude of electric field 
calculated for 5 5×  array of cavities: (a) 
monostatic RCS; (b) magnitude of electric field. 
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Now, we consider the scattering of a plane 
wave from a 5 5× array of cavities embedded in a 
conducting plane, as depicted in Fig. 1. The size of 
each cavity and the periodicity are the same as 
those of the first example. Figure 3(a) shows the 
monostatic RCS of the array, while Figure 3(b) 
shows the magnitude of electric field calculated at 
a plane located at a distance of 0.2z λ= above the 
apertures for the case of normal incidence. 

Finally, to demonstrate the capability of the FE-
BI-CBFM to handle large scale problems, we 
consider a 10 10×  array of cavities depicted in Fig. 
4 (a). The size of each cavity and the periodicity 
are also taken as 1.0 1.0 0.6λ λ λ× ×  and 2.0λ , 
respectively. For this example, although the 
number of the cavities is far more than that of the 
first example, the memory requirement basically 
remains the same. The computational time is 2200 
s, which can be significantly reduced by adopting 
the parallel computation because the CBFM is 
highly parallelizable. The computed RCS is given 
in Fig. 4 (b) as a function of the angle of 
incidence. 

 
IV. CONCLUSION 

In this paper, the hybrid FE-BI method in 
combination with the CBFM is proposed to 
analyze the EM scattering from multiple 3-D 
cavities in a conducting plane. In the proposed 
method, each cavity is efficiently modeled by the 
edge-based FEM. The holes are coupled to each 
other through the BIE based on the Green’s 
function. To reduce the computational burden, an 
excitation independent CBFM is used to solve the 
resultant FE-BI matrix equation. Since the CBFM 
only utilizes direct solvers rather than iterative 
methods, it does not suffer from convergence 
problems and can solve multiple excitation 
problems efficiently. Numerical results obtained 
show that the proposed method is suitable for this 
class of problems. 
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(a) 

 
                              (b) 

Fig. 4. A 10 10× array of rectangular cavities: (a) 
geometrical configuration; (b) monostatic 
scattering cross section. 
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