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Abstract ─ Adaptive cross approximation 
algorithm with singular value decomposition 
postcompression (ACA-SVD) is introduced into 
the marching-on-in-degree solver of time domain 
integral equation for the analysis of transient 
electromagnetic scattering from perfect electric 
conductor (PEC). The computational domain is 
divided into multilevel groups based on octree. 
ACA-SVD algorithm is utilized to compute the 
impedance matrices associated with the well-
separated groups at each level. Whereas, the 
impedance matrices formed by self and 
neighboring groups are calculated entirely in the 
traditional manner. Numerical results demonstrate 
that the proposed method can greatly reduce the 
memory requirement and matrix-vector product 
(MVP) time per iteration.  
  

Index Terms ─ Time domain integral equation, 
marching-on-in-degree, transient scattering, 
adaptive cross approximation algorithm, singular 
value decomposition.  
 

I. INTRODUCTION 
In recent years, the direct time domain 

methods has attracted extensive attention in 
calculating transient electromagnetic problems, 
which is due to the increasing interest in target 
identification, short pulse radar design, or other 
related applications. Several common time domain 
methods are finite-difference time domain (FDTD) 
method, time domain finite-element (TDFE) 
method, finite-volume time domain (FVTD) 
method and time domain integral equation (TDIE) 
method, among which the TDIE method is more 
suitable for analysis of electromagnetic scattering 

and radiation problems in homogeneous medium 
because it only needs surface meshing and does 
not need absorbing boundary condition. There are 
two popular approaches to solve TDIE. One is the 
marching-on-in-time (MOT) method [1], [2], and 
the other is the marching-on-in-degree (MOD) 
method [3]-[6]. The proposed method in this paper 
is based on the MOD solver of TDIE.  

The MOD method uses causal weighted 
Laguerre polynomials as temporal basis and 
testing functions. Due to the property of weighted 
Laguerre polynomials [7], [8], this method does 
not involve late-time instability. However, the 
conventional MOD method requires much more 
memory and CPU time than that of MOT method 
[9], which precludes its application in large scale 
problems. Moreover, the plane wave time domain 
(PWTD) algorithm, developed at Michelssen’s 
group at Urbana-Champaign, can reduce the CPU 
time and memory requirements of MOT to 
O(NtNslog2Ns) and O(NtNs) respectively [10]. In 
order to improve the capability of MOD method, 
several accelerating techniques have been applied, 
such as fast Fourier transform (FFT) [11], UV 
method [12], and so on. The FFT-based MOD 
utilizes the spatial translational invariance nature 
of the Green’s function and reduces the 
computational cost and the storage requirements 
respectively to O(Nt

2NslogNs) and O(NtNs), where 
Ns and Nt denote the number of spatial and 
temporal basis functions. But the FFT method 
applied in [11] requires uniform mesh of the 
object. The UV method is utilized in [12] to 
reduce both the memory requirement and CPU 
time per interaction to O(Ns

4/3logNs).  
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The adaptive cross approximation (ACA) 
algorithm was developed by Bebendorf [13] and is 
widely used to solve electromagnetic wave 
problems with moderate electric size [14-16]. It is 
a purely algebraic and therefore, kernel 
independent algorithm.  In this paper, ACA 
algorithm with singular value decomposition 
(SVD) postcompression [17] is applied to the 
MOD solver of TDIE. Numerical results show that 
the proposed method can greatly reduce the 
memory requirement and matrix-vector product 
(MVP) time per iteration.  

The remainder of this paper is organized as 
follows. Section II describes the marching-on-in-
degree solver of time domain combined field 
integral equation (TD-CFIE). Section III gives the 
details about the acceleration of MOD with ACA-
SVD algorithm. Section IV presents validations 
and numerical experiments. Section V gives some 
conclusions. 
 

II. MARCHING-ON-IN-DEGREE 
SOLVER OF TD-CFIE 

A. TD-CFIE 
Considering that a PEC scatterer is illuminated 

by a transient electromagnetic field. The induced 
current on the conducting surface is denoted as 

( ), tJ r , which satisfies the time domain electric 
field integral equation (TD-EFIE) and magnetic 
field integral equation (TD-MFIE): 
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where t R ct = −  is the retarded time, R = −r r' ,   
r  and r'  refer to the position vectors of 
observation and source point respectively,  0S  
denotes the surface without the singularity point at 

=r r' , n̂  is the unit normal vector outward to the 
conducting surface S .  

Using a combination factor α  ranging from 0 
to 1, we can get the TD-CFIE: 

( ) ( )- (1 ) - ,TD EFIE TD MFIEα α η+ -              (3) 
where η  is the wave impedance of free space. 

B. Spatial and temporal discretization of TD-
CFIE 

For the expanding of TD-CFIE, we choose 
RWG basis functions [18] and weighted Laguerre 
polynomials as spatial and temporal basis functions, 
respectively. Thus, the surface current density can 
be discretized as 
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n j n j
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= ∑∑J r S r                  (4) 

where ( )nS r  represents the nth RWG basis 
function, ( )j tϕ  is the jth degree weighted 
Laguerre polynomial 

( )/ 2( ) ,t
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t st= , s is the temporal scaling factor and jL  is 
the jth degree Laguerre polynomial 
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Ns is the number of spatial basis functions, Nt is 
the number of temporal basis functions and it is 
related to time duration T and frequency 
bandwidth B of the incident wave [3] 

2 1.tN BT> +                              (7) 
Taking (4) into (3) and making the spatial and 

temporal testing with Galerkin’s method, we can 
obtain 
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Making the i=j terms at left and the i<j terms 
at right, we can rewrite (8) in matrix form 
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Equation (17) is a recursion equation and can 

be solved degree by degree to obtain the current 
coefficients{ },n iJ . 

 
III. ACCELERATION OF MOD WITH 

ACA-SVD ALGORITHM 
Based on the knowledge of Section II, it can 

be discovered that four kinds of matrices 1M , 2M , 
3M , 4M  need to be constructed and stored for the 

implementation of MOD-TDCFIE, where 
2

1,
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(25) 

1M  refers to the impedance matrix at present 
degree. 2M , 3M , 4M represent the differential, 
integral and normal term of each degree, 
respectively. There are totally 

( )s s 1 3 1 tN N N× × + × +    matrices to be stored. 
Because each of these matrices is handled in the 
same manner, we only take 1,mnM  as an example in 

the rest of this section to introduce the 
combination of ACA-SVD with MOD method. 

The ACA-SVD algorithm needs a multilevel 
grouping of the computational domain. The 
grouping pattern based on octree, which is 
popularly used in the multilevel fast multipole 
algorithm [19-21] is adopted in this paper. The 
coupling of self and neighboring groups at some 
level are computed directly and the whole 
submatrices with elements (21) are stored. 
Whereas, the submatrices associated with two 
well-separated groups are evaluated and stored 
with ACA-SVD algorithm. Considering two well-
separated groups, the interaction between them 
will lead to a rank-deficient submatrix 1

p q×M , 
where p and q are the number of basis functions in 
the two groups, the superscript p q×  represents 
the size of the submatrix, the digit 1 of the 
subscript refers to the kind of matrix 1M . We 
firstly use ACA algorithm to approximate 
submatrix 1

p q×M  with 1 1
1 1

Tp r q r× ×      U W , where 1r  is 
the rank of matrix 1

p q×M , [ ]  notation is used to 
represent a column matrix. With moderately 
grouping in the application, the rank 1r  is always 
smaller than p and q [14]. Because the columns of 
the matrices 1

1
p r×  U and 1

1
q r×  W  generated by 

ACA are usually not orthogonal, we can use SVD 
algorithm to further remove the redundancies 
contained in them. Assume that the QR 
decompositions of them are 

1 1 1 1
1 = ,p r p r r r

u u
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Discarding the columns of 1 1r r×  U  and 
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Tr r×  V corresponding to negligible singular 
values, we can obtain 
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where the upper horizontal bar denotes an 
approximate version of the corresponding matrix. 

Finally, the decomposition of matrix 1
p q×  M  

can be rewritten as 
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1 1 1 1 1 1
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T Tr q r r q r× × ×          Y V Q                (32) 
Because 1 1r r< , the storage requirement of 

1
1
p r×  X  and 1

1
r q×  Y  is smaller than 1

1
p r×  U  and 

1
1

Tq r×  W .  
It is obvious that if we compute the 

submatrices 1M , 2M , 3M , 4M of two well-
separated groups directly at each degree, we will 
need to store ( )p q 1 3 1 tN× × + × +    elements. 
However, if we evaluate the submatrix degree by 
degree with ACA-SVD algorithm, we only need to 

store 
4

1 m,
=2 0

( ) + ( )
tN

k
m k

p q r p q r
=

+ +∑∑  elements. m,kr  is 

usually smaller than p and q, so the application of 
ACA-SVD to MOD can greatly reduce the 
memory requirement. 

 
IV. NUMERICAL RESULTS 

Several numerical experiments are carried out 
to validate the accuracy and efficiency of the 
proposed method. The combination factor α  of 
TD-CFIE is set to be 0.5 for closed bodies. ACA 
terminating tolerance is set to be 310−  unless noted 
otherwise. The temporal scaling factor of the 
weighted Laguerre polynomials is 91.2 10× . All 
experiments are performed on 2.67GHz CPU and 
48 GB RAM. 

The incident pulse used in all the following 
examples is a modulated Gaussian pulse which is 
defined as 
   ( ) ( ) ( )2 2

0, cos 2 exp 2 ,i
x pt e f tπ t t σ = − −  

E r    (33) 

where 0f  is the central frequency, ˆt k ct = − r ,   
k̂  refers to the propagation direction of incident 
wave and is along z  direction in our examples,   

xe  is the unit vector along x  axis and represents 
the polarization of the incident wave, 3.5pt σ= , 

( )6 2 bwfσ π= , bwf  denotes the bandwidth of the 
incident pulse.  

A. Accuracy 
Three examples are given to show the 

accuracy of the proposed method. As the first 
example, we consider a PEC plate with 1.4m side 
length, which lies in the xoy plane and is centered 
at the origin. The problem is discretized into 1044 
edges. 50 temporal basis functions and single level 
ACA-SVD are used. The modulated Gaussian 
pulse parameter is chosen as 0f = 150MHz and 

bwf = 300MHz. Based on the proposed method, 
equation (17) is solved to obtain the current 
coefficients{ },n iJ . Then, the current at the nth edge 
in time domain can be calculated as 

( ) ( ),
0

J J .
tN

n n j j
j

t tϕ
=

= ∑                     (34) 

Finally, current at a randomly chosen inner edge is 
compared with the results obtained by inverse 
discrete Fourier transform (IDFT) of the frequency 
domain data as shown in Fig. 1. The frequency 
domain data is computed by method of moments 
(MoM). The two endpoints of the inner edge are 
(0.1499, -0.0037, 0) and (0.1531, -0.0856, 0). 

A PEC cylinder with radius of 0.5m and 
height of 3m is analyzed as the second example. 
The problem is discretized into 5856 edges. 90 
temporal basis functions and two levels ACA-
SVD are adopted. The modulated Gaussian pulse 
parameter is the same as that of the first example. 
After the current coefficients are obtained, the 
time domain far-field data is computed and 
transformed into frequency domain. Then it is 
normalized by the incident wave. Finally, the 
wideband bistatic RCS can be obtained. Results at 
several frequencies are given and compared with 
that of MoM. It can be observed in Fig. 2 that RCS 
data obtained from MOD-ACA-SVD agrees well 
with that of MoM. In order to present the influence 
of terminating tolerance to the accuracy of 
proposed method, the relative error of wideband 
bistatic RCS with the terminating tolerance of 10-1, 
10-2, 10-3 is shown in Fig. 3. The relative error of 
RCS at certain observation angle is defined as 

Re f

Re f 100%Relative er ,ror
MOD ACA SVDRCS RCS

RCS

− − −
×=   

where MOD ACA SVDRCS − −  is the RCS obtained by the 
proposed method and Re fRCS  is the reference 
results obtained by traditional MOD method. It is 
acceptable to set the terminating tolerance to be 
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10-3 where the maximum relative error is below 
5%.  

The third example is a PEC ogive modeled 
with 8463 edges. The maximum size in the x, y 
and z directions are 3.81m, 0.76m and 0.76m. 
Please refer to [22] for detail information about 
this model. 125 temporal basis functions and three 
levels ACA-SVD are employed. The modulated 
Gaussian pulse parameter is chosen as 0f =
225MHz and bwf = 450MHz in this example. 
Results at several frequencies are given and 
compared with that of MoM. Good agreement can 
be achieved as shown in Fig. 4. 

The memory requirement of the proposed 
method is given in Table 1 and compared with that 
of the traditional MOD method, which is 
computed directly by using the formula

( ) 3
s s 1 3 1 4 /1024tN N N× × + × + ×   . The total 

solution time of the proposed method and MOD 
method are shown in Table 2. For the example of 
PEC ogive, the memory requirement of MOD 
exceeds the available memory and the total 
solution time can not be obtained. But it can still 
be computed by the proposed method. So it can be 
concluded that the traditional MOD method is less 
useful for large problems though it spends less 
time than proposed method for small problems. 
 

 
Fig. 1. The current at a randomly chosen inner 
edge compared with the results obtained by IDFT 
of the frequency domain data. The unit lm 
represents light meter and 1 (lm) = 1/light speed in 
free space (s). 
 
 

 
Fig. 2. Bistatic RCS results of a PEC cylinder 
when Φ = 0: (a) f = 40MHz, (b) f = 110MHz, (c) f 
= 180MHz, (d) f = 260MHz. 

 
Fig. 3. Relative error of Bistatic RCS with three 
sets of terminating tolerance when Φ = 0, θ = 0. 

 
Fig. 4. Bistatic RCS results of a PEC ogive when 
Φ = 0: (a) f = 45MHz, (b) f = 150MHz, (c) f = 
300MHz, (d) f = 390MHz. 
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Table 1: Memory requirement of three examples 

Examples 
Memory Requirement (GB) 
MOD-ACA-SVD MOD 

Plate 0.288 0.428 
Cylinder 14.85 35.84 

Ogive 32.66 103.55 
 
Table 2: Total solution time of three examples 

Examples 
Total Solution Time (s) 

MOD-ACA-SVD MOD 
Plate 410 39 

Cylinder 46,040 5,242 
Ogive 148,737 − 

 

 
(a) 

 

 
(b) 

Fig. 5. Complexity of MOD-ACA-SVD algorithm 
for a PEC sphere example: (a) memory, (b) MVP 
time per iteration. 
 

B. Efficiency 
In this section, the numerical complexity of 

the proposed method is explored. A metallic 
sphere of radius 1 meter centered at the origin and 
is meshed with different number of edges 
according to different frequency band of the 
modulated Gaussian pulse. The highest frequency 
of the frequency band is increased from 200MHz 
to 667MHz. The degree of temporal basis 
functions is chosen to be 0th to 3th for the sake of 
available memory. Both the memory requirement 
and MVP time per iteration with 1692, 6102, 7989, 
10998, 15918, and 19674 unknowns are shown in 
Fig. 5. It can be observed that the complexity of 
proposed method scales as 4/3 logs sN N  for 
moderate sized problems. 
 

V. CONCLUSION 
The combination of marching-on-in-degree 

solver of time domain integral equation and 
adaptive cross approximation algorithm with 
singular value decomposition postcompression is 
achieved in this paper. The impedance matrices of 
each degree related to well-separated groups are 
compressed by ACA-SVD algorithm. Numerical 
results show that the method proposed in this 
paper is very stable and accurate. Moreover, it can 
greatly reduce the memory requirement and 
matrix-vector product (MVP) time per iteration of 
MOD method.  
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