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Abstract ─ An efficient multi-scale approach to 
meshless modeling of three-dimensional guided 
wave problems is realized by hybridization of the 
radial point interpolation method (RPIM) and the 
unconditionally stable leapfrog alternating-
direction implicit (ADI-) RPIM scheme. In it, the 
solution domain is regionalized; the leapfrog ADI-
RPIM is applied to regions with coarse nodal 
distributions while the original RPIM is applied to 
the rest of the dense nodal solution domain. With 
application of the leapfrog ADI scheme, a uniform 
time-step can now be applied to the entire solution 
domain without temporal and spatial interpolation 
between different computational regions. 
Furthermore, in the proposed scheme, implicit 
updating of field variables is confined only within 
the regions of densely-distributed nodes, yielding 
a significant saving in memory overhead and a 
further reduction in CPU time in comparison with 
leapfrog ADI-RPIM and original RPIM, 
respectively.  
  
Index Terms ─ Alternating-direction implicit 
scheme, finite-difference time-domain, hybrid 
methods, meshless methods, radial point 
interpolation method. 
 

I. INTRODUCTION 
With recent advances in modern electronic and 

electrical technologies, electromagnetic problems 
are becoming exceedingly complex; as a result, 
modern computer-aided tools based on 

conventional computational electromagnetic 
methods often experience difficulties in providing 
accurate modeling solutions within a reasonable 
time. To tackle the problem, higher-order basis 
functions along with mesh reduction techniques 
have been applied to the conventional methods to 
reduce memory and time consumption while 
maintaining the same level of modeling accuracy 
[1, 2]; or alternatively, novel numerical methods 
have been sought that can free constraints on 
numerical accuracy from the connectivity laws of 
grid nodes and shape and dimension of elementary 
cells that long exist in the conventional methods. 
One of the promising new numerical techniques is 
the meshless method. It utilizes a set of scattered 
nodes to represent a problem domain and 
associated boundaries, rather than a predefined 
mesh/grid as used in the conventional numerical 
methods.  

Among the meshless techniques that have 
been adapted for use in computational 
electromagnetics, the radial point interpolation 
method (RPIM) [3] gains significant attention due 
to its simplicity, accuracy, and consistency. Its 
applications have been seen in one dimensional 
wave propagation problems [4], two-dimensional 
H-plane bent waveguides [5, 6], and three-
dimensional cavity problems [7]. Recently, the 
method has been extended to electromagnetic 
radiation and scattering problems in open-region 
[8] and with material interfaces [9]. Although the 
method has been repeatedly reported to be much 
more robust than the conventional finite-difference 
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time-domain (FDTD) method, computational 
performance of the method is somehow limited by 
its stability constraint on time step; this is a 
drawback from the employment of explicit finite-
difference scheme to approximate the time 
derivatives in Maxwell’s equations. Efforts were 
thus made in our previous work [10, 11] to further 
improve the computational efficiency of the 
method, with the implementation of leapfrog 
alternating-direction-implicit (ADI) scheme [12-
15] to remove the stability constraint; it leads to an 
unconditionally stable meshless ADI-RPIM 
method.  

Computational efficiency of the 
unconditionally stable meshless ADI-RPIM 
method has then been assessed with a large 
number of numerical experiments. It is observed 
that the used implicit meshless scheme is very 
attractive for the problems where nodes are highly 
irregularly distributed over an entire solution 
domain.  

However, when irregular nodal distributions 
are applied only in a small portion of the problem 
domain, the method appears to be less efficient. 
Further analysis of the computational expenditures 
leads to the explanation: since the method is based 
on the implicit updates of field variables, extra 
computational cost is required for matrix assembly 
of extra off-diagonal terms in coefficient matrix 
and the associated matrix computation during the 
time-marching; depending on the average number 
of nodes that are enclosed in the support domain 
for interpolation, this process can sometimes 
become time-consuming and compromise the 
overall computational efficiency of the 
unconditional meshless scheme.  

 Therefore, it is desirable to develop a smart 
hybrid approach that applies the unconditionally 
stable meshless method intelligently. To this end, 
in this paper, we propose the approach that applies 
the efficient leapfrog ADI-RPIM only to 
computational sub-regions with dense nodal 
distributions and the original RPIM to the rest of 
the problem domain.  In such a way, the extra 
memory required to store the off-diagonal terms of 
the matrix equations and the additional CPU time 
for matrix computations can be minimized. 
Thanks to the multi-scale modeling capability of 
the meshless RPIM, such a hybridization can be 
realized easily without need of sub-gridding and 
additional spatial interpolation. Moreover, due to 

the alternating nature of the field variables in 
leapfrog ADI-RPIM, temporal interpolation is not 
needed either.  

In the next section, we will first briefly 
describe the RPIM method in three dimensions 
and then present a set of RPIM equations with the 
convolutional perfectly matched layer (CPML) 
absorbing boundary conditions. In Section 3, we 
will present the unconditional stable RPIM method 
with the corresponding leap-frog ADI-RPIM 
equations and then combine it with the original 
explicit RPIM to formulate the hybrid approach; 
In Section 4, we will numerically validate the 
effectiveness of the proposed approach; the 
comparison between the proposed hybrid approach, 
the original RPIM method, the leapfrog ADI-
RPIM, and the conventional FDTD in terms of 
computational cost is shown. 
 

II. THE MESHLESS RPIM METHOD 
The formulation of the meshless RPIM in 

computing electromagnetic fields comprises three 
key steps: representation of field variables with the 
point interpolation scheme, construction of shape 
functions, and discretization of Maxwell’s time-
dependent equations. 

 
A. The Local Point Interpolation Scheme and 

Shape Function 
The node-based RPIM method discretizes a 

solution domain using a set of spatial nodes. As 
seen in Fig.1, an arbitrary solution domain is filled 
with scattered nodes; whereas, the boundary of the 
domain is precisely represented with lying-on 
nodes. The underlying point interpolation scheme 
interpolates the field variable u  at point q locally 
with and only with its values at surrounding nodes. 
A support domain S is defined for each q to 
enclose N points that are used for interpolation. 
The values of parameter N in the range of 4-12 are 
used throughout this work. Mathematically, such 
interpolation can be expressed as: 

1 1

( ) ( ) ( )
N M

n n m m
n m

u X r X a p X b
= =

= +∑ ∑ , (1) 

where X=(xq, yq, zq) is the coordinate of point q, 
rn(X) is the radial basis function, pm(X) is the 
monomial basis function, and an and bm are the 
associated interpolation coefficients.  

The radial basis function in a Gaussian form is 
deployed in our work to weight the contributions 
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from surrounding nodes when interpolating the 
field value at point q. It is expressed as.  

2( / )( ) sc r d
nr X e−= ,       (2) 

where 2 2 2( ) ( ) ( )n n nq q qr x x y y z z= − + − −+ ,

( , ),n n nx y z are the coordinates of the nth node 
surrounding the point of interest q, ds is the radius 
that defines the area of  the support domain S, and 
shape parameter c controls the decay rate of the 
function over the space.  AD is the average nodal 
spacing between two nodes in the domain. 

A linear combination of four (M =4) 
monomial basis functions in the form of [ ]1, , ,x y z  
is used to construct the polynomial in eqn. (1). 

 
Fig. 1. Support domain of the point q (dashed line) 
and its surrounding nodes. 

The interpolation coefficients an and bm are 
solved locally with a matrix equation that relates 
true field values at nodes within the support 
domain at their relative spatial positions [3, 7]. 
Equation (1) can thus be rewritten as 

( )u X = + =  
T T

a b s sR (X)S P (X)S U Φ(X)U  ,   (3) 

where [ ]1 2( ), ( ), , ( )NX X X= Φ Φ ΦΦ(X)  is a 
vector of shape functions associated with N nodes 
in the support domain of q. Us is the vector holding 
the considered field component values at the N 
nodes, and the entries of constant matrices Sa and 
Sb can be found in [7]. 
 
B. RPIM Equations with CPML Absorbing 

Boundary Condition 
By substituting the spatial derivatives of field 

variables in Maxwell’s time-dependent equations 
with corresponding derivatives of (3) and applying 
the central difference scheme to approximate the 
time-derivatives, the leap-frog RPIM equations for 
time-marching of field variables can be formulated 
[7]. As this work addresses unbounded radiation 
and scattering problems, the CPML absorbing 
boundary conditions [16, 17] are deployed. Due to 
limited space, only the update equation for the x-

directed electric field component and z-directed 
magnetic field component are presented below. 
The update equations for other field components 
can be produced by a cyclical exchange of x, y, 
and z indices. For detailed implementation of PML 
in meshless methods, please refer to [8, 11].  
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(12) 
τδ and ,iτρ are the thickness of the PML and the 

depth of node i across the interior-PML interface 
along the x, y or z directions, respectively; power n 
is the order of scaling; κτ,i and στ,i are the stretched 
coordinate metric and electric conductivities 
evaluated at each E-field node i in the CPML 
region; ατ,i is the shifting parameter, and m

τκ and m
τσ  

are the maximum values of  κτ,i and στ,i. 
 
III. THE UNCONDITIONALLY STABLE 

MESHLESS ADI-RPIM METHOD 
In the original meshless RPIM method, there 

exists an upper limit for the time-step that can be 
applied to update field variables; when the time-
step exceeds the limit, the time-marching scheme 
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will become unstable and give rise to divergent 
numerical results. The stability limit on the time-
steps used in the original meshless RPIM method 
is extracted from [7] and listed here for 
completeness.  

max

2 ,
( ( )

t
sqrt λ

∆ ≤
Q

                  (13)          

where max ( )λ Q is the largest eigenvalue of matrix Q 
in terms of magnitude; and Q=CB+DA, where A, 
B, C, and D are the coefficient matrices associated 
with the right-hand-side of the meshless RPIM 
formulation. 

The conditional stability expressed by (16) is 
due to employment of the explicit finite-difference 
approximation to the time derivatives in 
Maxwell’s equations. In order to eliminate the 
stability constraint and consequently improve the 
computational efficiency with a larger step, a 
leapfrog version of the ADI scheme is 
incorporated into the RPIM method in [10], 
leading to an unconditionally stable leapfrog ADI-
RPIM meshless method. The resultant scheme is 
implicit that requires solving a band matrix at each 
time iteration. The formulations for the implicit 
update of field components Ex and Hz are extracted 
from [10] and are listed below for simplicity and 
completeness.  
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 (15) 

 Here the range of values that correspond to 
indices k and j depends on the number of 
neighboring nodes enclosed in the local support 
domain of the node i. For instance, when N=4, the 
values of k and j are in the range of 1- 4, and the 
ith row of resultant band coefficient matrix will 
have 9 nonzero elements. 
 

IV. THE PROPOSED HYBRID 
MESHLESS ADI-RPIM SCHEME 

In the proposed hybrid scheme, a solution 
domain is divided into a number of sub-domains 
that are categorized into dense node regions and 
coarse node regions. A node i is considered to be 
in a dense node region when ratio of the average 
nodal spacing ‘AD’ in the local support domain of 
node i to the average distance between two 
adjacent nodes over the entire solution domain 
falls below a pre-determined threshold; an 
optimized search routine is developed and applied 
to decide appropriate boundaries of those sub-
regions.  

The leapfrog ADI-RPIM is then applied to the 
dense node sub-regions; whereas, the original 
RPIM is applied to the remaining coarse node 
regions. For nodes lying at a region interface, field 
values are computed with the ADI-RPIM scheme. 
As can been seen from (15)-(16), E-field, and H-
field in the leapfrog ADI-RPIM are staggered in 
time in the same manner as RPIM; 
synchronization of the time steps of dense regions 
and outer coarse regions can thus be realized 
without temporal interpolation. As for any node 
with a support domain intercepting with a region 
interface, update of field values needs to access 
the current field values at some of the nodes that 
fall into the another region; in this case, it is more 
convenient to recast the explicit RPIM update 
equations into a format of matrix equation and 
combine it with the matrix equation derived from 
the implicit leapfrog ADI-RPIM scheme. More 
specifically, combination of (4) with (15), and (5) 
with (16) yields two new matrix equations 
expressed as  

1 1
2 2

n n

x x
n n
z y E

+ −
= + − +AE AE BH CH Ψ ,      (16) 

and     1
1 1
2 2n n

z z

n n

x y H
+

+ +
= + − +MH MH DE GE Ψ ,  (17) 

where entries of coefficient matrices A, B, C, M, 
D and G, and auxiliary vector ψ due to the CPML 
can be found from (4) to (16). 

 
V. NUMERICAL EXPERIMENTS 

A. 5-Pole H-Plane Iris Filter 
The return loss of a bandpass waveguide iris 

filter was computed to illustrate the numerical 
efficiency of the hybrid meshless method 
presented here.  The filter was based on a WR-28 
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rectangular waveguide for millimeter-wave 
applications. It consists of 5 cavities formed with 6 
sets of thin perpendicular conductive walls. To 
evaluate performance of the filter under single-
mode propagation, a plane source with TE10 field 
distribution was used to excite TE10 mode. The 
sensor nodes were placed at a short distance from 
the sources to record electric field component Ez.  
The geometry and solution domain setup of the 
problem are shown in Fig. 2, whereas the 
dimension of the filter is given in Table 1. 

 

 
Fig. 2. A 5-pole H-plane iris filter (WR-28 
waveguide). 
 
Table 1: Dimension of the iris filter (inches) 

a t L1 L2 L3 L4 L5 
0.28 0.008 0.169 0.187 0.192 0.187 0.169 
d1 d2 d3 d4 d5 d6  

0.127 0.082 0.077 0.077 0.082 0.127  
 
Here a is the width of the WR-28 rectangular 
waveguide, t is the thickness of the irises, Li 
specifies the space between two adjacent irises, 
and di defines the gap between a set of irises.    

Due to the small dimension of the thin iris, a 
very fine uniform grid will be needed to discretize 
the entire problem when the conventional FDTD is 
used; this yields a significant number of unknowns 
to be solved with large computational effort. 
However, with the multi-scale modeling capability 
of the meshless RPIM, a set of densely distributed 
nodes can now be placed in the regions around 
thin walls for refined solutions; the rest of the 
problem domain remains represented with 
uniformly distributed coarse nodes, as shown in 
Fig. 2.  

Then, a computational sub-domain is defined 
to enclose those densely distributed nodes where 
the field values are updated with unconditionally 

stable ADI-RPIM scheme. The rest of the domain 
is still solved with the original RPIM method.  

To accurately assess the S11 values of the iris 
filter shown in Fig. 2, a reference problem with the 
same nodal discretization but with the irises 
removed and top/bottom PECs replaced by CPML 
layers is also simulated. The total electric field 
recorded at the sensor point due to the iris walls is 
Fourier transformed to the frequency domain and 
compared with the incident field computed from 
the reference problem to determine the reflected 
field and thus the numerical reflection at port1.  

 

 
Fig. 3. Computed S11 parameters of 5-pole H-
plane iris filter. 
 

Figure 3 shows the computed S11 values for 
the frequency sweep from 22 GHz to 45 GHz. As 
can be seen, the results solved with the proposed 
hybrid meshless scheme agree well with the 
reference solution from the conventional FDTD 
with a fine grid; both indicate a good performance 
of the filter design with the center frequency of 
35.2GHz and the bandwidth of 3.2GHz; the  
reflection in the pass band is lower than -10dB.  

 
Fig. 4. E-field distributions at different frequencies 
(after 20000 time-steps), (a) at 30 GHz (below the 
low end of the pass band); (b) 35.5 GHz (inside 
the pass band); (c) 40 GHz (beyond the pass band). 
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Figure 4 presents the graphical displays of E-
field distribution along the waveguide filter after 
20000 time iterations at different frequencies. As 
clearly seen, within the pass-band, the steady-state 
TE10 mode propagation is established with little 
reflection, whereas outside the pass-band, the E-
field attenuates and eventually vanishes as it 
propagates away from the sources.  
 
B. Substrate Integrated Waveguide (SIW) 

The second example was the simulation of the 
steady-state transmission mode of a single-layer 
substrate integrated waveguide (SIW). Figure 5 
shows the geometrical design and fundamental 
parameters of the SIW under study.  For 
illustration purposes, a standard substrate for high 
speed digital applications, N-4000-13, with εr = 
3.6 and height h = 16 mil, was used.   

 

 
Fig. 5. A 2D substrate integrated waveguide. 

In principle, the substrate integrated 
waveguide emulates a dielectric-filled waveguide 
with lateral walls formed by rows of vias that are 
sufficiently close to each other. If properly 
designed, the behavior of a SIW is similar to that 
of a conventional rectangular waveguide. The 
theoretical cutoff frequency of the SIW shown in 
Fig. 5 was found to be around 10GHz with the 
following formulae from [18]: 

2 2

,  and  0.1
0.952c d s

sd r

c d df W W
p WW ε

= = − + (18) 

where c is the speed of light, εr is the dielectric 
constant, Ws is the width of the waveguide, Wd is 
the effective width of the guide, d the diameter of 
the via, and p is distance between the vias. 

Since the SIW can only support TEm0 modes 
due to dielectric gaps created by the via 
separations, a vertically oriented probe was used to 
excite the waveguide.  The uniform current density 
along the probe was expressed with a ramped 
sinusoidal function (20). The duration of the ramp 

function was set to be six cycles of the sinusoidal 
pulse to eliminate the switch-on noise. The long-
time response of the waveguide to such an 
excitation was approximately monochromatic. 

0 0 0 ˆ( ) ( 2 ) sin(2 ( 2 ))zzJ t R t T f t Tπ= − ⋅ − .   (19) 
The ratio of voltages at port 1 and port 2 

indicates the transmission behavior of the SIW 
under study and it was firstly examined. The time-
domain profiles of electric field along the two 
ports were recorded up to 30000 time iterations 
and Fourier-transformed to obtain the 
corresponding frequency responses; and then line-
integrations were performed along the ports to 
obtain the voltage values at the two ports.  As can 
be seen from Fig. 6, the results computed with the 
hybrid approach are in good agreement with the 
reference solution from the FDTD, both indicating 
a cut-off frequency of 10GHz for the dominant 
mode (TE10) of the SIW.  

 

 
Fig. 6. Ratio of voltages across two ports (1-40 
GHz). 

 
Fig. 7. Normalized electric field along the line of 
observation points. 
 

The steady-state field distribution over the 
SIW for higher TE modes was also examined. To 
launch a TE20 propagating mode along the SIW, 
the waveguide was excited with two probes, which 
were positioned at 1/4 and 3/4 of the width of the 
waveguide, in an anti-phase manner. Figure 7 

Vias 
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shows the normalized electric field along the line 
of observation points depicted in Fig. 6 for 
different TE modes. The computed results are 
compared with the ones from the FDTD of a fine 
uniform grid, the original RPIM and the analytical 
values from an equivalent dielectric filled 
rectangular waveguide. Good agreements are 
observed. 

Figure 8 presents snapshots of steady-state E 
field distribution over the SIW for other TE modes, 
computed with proposed hybrid ADI-RPIM 
approach after 500,000 time steps. As can been 
seen, the results do not suffer from late-time 
instability and there are no noticeable reflections 
from the dense/coarse region interface that often 
exist in a conventional sub-gridding scheme with 
additional interpolation at the region interface.  

 

 

 

 
Fig. 8. Steady-state TE mode propagation over the 
substrate integrated waveguide, (a) TE10 mode at 
16 GHz; (b) TE20 mode at 25 GHz; (c) TE20 mode 
at 30 GHz. 

 
VI. COMPUTATIONAL EXPENDITURE 

To quantify the numerical performance of the 
proposed hybrid ADI-RPIM meshless approach, 
computational expenditure of the first numerical 
example is monitored and tabulated in Table 2.  

The original RPIM, the ADI-RPIM, along with the 
orthogonal FDTD are included for comparison. As 
clearly seen, all three meshless methods 
outperform the conventional FDTD in CPU time 
as expected; with the FDTD method, a very fine 
uniform grid is needed to discretize the entire 
solution domain due to the small dimension of the 
thin iris; this yields a very large number of total 
number of unknowns to be solved.  

Among the three meshless methods, it is 
interesting to observe that the pure non-hybrid 
leapfrog ADI-RPIM does not significantly reduce 
the CPU run-time and the efficiency gained from 
its unconditionally stability is compromised by the 
additional computational cost required for matrix 
assembly of extra off-diagonal terms and matrix 
computation during the time-marching. However,  
the proposed hybrid approach not only saves more 
than 50% of the memory required by a pure non-
hybrid unconditionally stable ADI-RPIM but also 
runs 100% faster. 

 
Table 2: Computational expenditure of example A 

 FDTD RPIM ADI- Hybrid 
Unknowns 176562 34581 34581 34581 
CPU time  

(sec.) 512 125 121 56 

Memory (Mbs) 364 111 319 152 
CPU gain  1 3.0 3.2 8.1 

 
VII. CONCLUSION 

The presented hybrid ADI-RPIM approach 
further improves the computational efficiency of 
the meshless RPIM technique for solving 
problems with fine geometric features. With the 
unconditionally stable ADI-RPIM method only 
applied to the computational regions that require 
fine discretization (to describe abrupt changes in 
field values or geometrical details), CPU, and 
memory overhead due to implicit updates of field 
variables are minimized, which in turn renders a 
CPU gain over the original RPIM meshless 
method. In addition, time-steps at different 
computational regions can be synchronized 
without temporal interpolation; as well, the 
underlying point interpolating nature of the RPIM 
method obviates the need of additional spatial 
interpolation at region interfaces.  The numerical 
experiments show the proposed hybrid meshless 
approach remains numerically stable after half a 
million time iterations.  
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