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Abstract ─ In this work, an efficient domain 

decomposition scheme is introduced into the 

unconditionally stable finite-difference time-domain 

(FDTD) method based on the Newmark-Beta algorithm. 

The entire computational domain is decomposed into 

several subdomains, and thus the large sparse matrix 

equation produced by the implicit FDTD method can be 

divided into some independent small ones, resulting in a 

fast speed lower-upper decomposition and backward 

substitution. The domain decomposition scheme with 

different subdomain schemes and different subdomain 

numbers is studied. With a generalized auxiliary 

differential equation (ADE) technique, the extraordinary 

optical transmission through a periodic metallic grating 

with bumps and cuts is investigated with the domain 

decomposition Newmark-Beta-FDTD. Compared with 

the traditional ADE-FDTD method and the ADE-

Newmark-Beta-FDTD method, the results from the 

proposed method show its accuracy and efficiency. 

 

Index Terms ─ Domain decomposition, extraordinary 

optical transmission (EOT), Newmark-Beta-FDTD, 

surface plasmons. 
 

I. INTRODUCTION 
Enhanced transmission through subwavelength 

metallic openings has inspired great attention since  

the observation of extraordinary optical transmission 

(EOT) through a thick metal film perforated with a two-

dimensional (2-D) array of subwavelength holes was 

reported [1]. Due to the vast potential applications of 

EOT, such as photolithography, optical data storage, 

organic light-emitting diodes, and photodetectors,  

many theoretical and experimental studies have been 

performed in understanding the interaction of light with 

metals in various subwavelength structures [2]-[4].  

In general, the finite-difference time-domain (FDTD) 

method is used for the analysis of periodic metallic 

gratings. However, the surface plasmon polaritons (SPPs) 

are highly localized along the metal-dielectric interface. 

To simulate the effect of SPPs accurately, fine spatial 

mesh should be used in this interface region. This  

result in an extremely small time step by the Courant-

Friedrich-Levy (CFL) constraint [5], causing a long 

computing time. To remove this limitation in simulation, 

some unconditionally stable FDTD methods were 

introduced [6]-[9]. Recently, a new unconditionally stable 

FDTD method based on the Newmark-Beta algorithm 

has been proposed [10]. For large or multiscale problems 

with a tremendous number of unknowns, however, the 

calculation of its large and sparse linear equations leads 

to a heavy computation burden. 

A promising solution for the calculation of large-

scale matrices is the domain decomposition (DD) 

scheme [11-13]. In this paper, an efficient DD scheme is 

originally introduced into Newmark-Beta-FDTD for the 

analysis of two-dimensional (2-D) dispersive metallic 

gratings. As SPPs are highly localized near the metal-

dielectric interfaces, graded grids with the fine spatial 

size are used for accuracy. A number of FDTD-based 

algorithms for the analysis of dispersive materials have 

already been proposed in literature, such as the auxiliary 

differential equation (ADE) method [5], the Z-transform 

method [14], and the method based on the discrete 

convolution of the dispersion relation [15]. Since the 

ADE method offers a more general representation for  

the dispersion relation, it is employed to simulate the 

dispersion effect caused by SPPs. The DD-Newmark-

Beta-FDTD method decomposes the whole computational 

domain into several small subdomains. With the theory 

of Schur complement system, the solution of the large-

scale matrix can be converted to the solutions of some 

small independent ones. With the reverse Cuthill-Mckee 

(RCM) technique to preprocess the coefficient matrix in 

each subsystem before performing the lower-upper (LU) 

decomposition, the small linear systems can be solved 

efficiently. The EOT through a periodic metallic grating 

is investigated, and the results verify the efficiency and 

accuracy of the proposed method. 

 

II. NUMERICAL FORMULATION 
The formulation of the Newmark-Beta-FDTD 
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method based on the ADE technique has been presented 

in [16]. The dispersion relation of the Drude medium is 

given by: 
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where ωp is the plasma frequency, γ is the absorption 

coefficient, and ω is the angular frequency of the wave. 

Here, the implementation process of ADE-

Newmark-Beta-FDTD in domain decomposition will  

be elaborated in detail. Without loss of generality, the 

whole computational domain is decomposed into four 

subdomains, marked as D1, D2, D3, and D4, and the 

interfaces between neighboring subdomains are named 

as Γ12, Γ14, Γ23, and Γ34, as shown in Fig. 1. For a specific 

simulated structure, different size grids can be adopted 

in different subdomains. For simplicity, the uniform 

mesh is used for all subdomains in Fig. 1, and the 

information in adjacent subdomains can be directly 

coupled by the interfaces. 
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Fig. 1. Four subdomains in a 2-D computational domain. 

 

For the original system, the implicit updated matrix 

equation in Newmark-Beta-FDTD can be written as: 

 1n n

z

 AH b , (2) 

where A is a large banded-sparse matrix. After the whole 

computational domain is divided into four subdomains, 

the unknowns, namely the magnetic field variables on 

the grids, are reordered starting with those in D1, 

followed by those in D2, D3, and D4, and ending with 

those on interfaces. We use ni (i = 1, 2, 3, and 4) to 

represent the number of unknowns in each subdomain 

and nΓ to represent the number of unknowns on the 

interfaces, where Γ = Γ12∪Γ14∪Γ23∪Γ34. Thus, the new 

matrix system is written as: 
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where Aii corresponds to the interior-to-interior system, 

AiΓ corresponds to the interior-to-interface coupling 

between Di and Γ, AΓi corresponds to the interface-to-

interior coupling between Γ and Di, and AΓΓ corresponds 

to the interface-to-interface contribution. The vectors of 

Hzi and HzΓ represent the magnetic field components 

corresponding to the subdomain Di and interface Γ, 

respectively. And the vectors bi and bΓ are known terms 

in accordance with Hzi and HzΓ. The orders of Aii and AiΓ 

are ni × ni and ni × nΓ, respectively. To elaborate the 

matrix generation in each subdomain, the implicit 

updated equation of Hz in [16] is rewritten here: 
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where 
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ε and ε0 are the electric permittivity of the medium and 

free space, respectively, μ0 is the magnetic permeability, 

γ is the absorption coefficient, and ωp is the plasma 

frequency. 

Since the magnetic field is updated in an implicit 

way, the interface between difference subdomains is 

placed on the location of Hz. Taking A22 and A2Γ in (3) 

for example, the interface Γ23 located at x = i+5/2 

between D2 and D3 is placed on the middle of the grids 

due to the sample location of magnetic fields, as shown 

in Fig. 2. As we know, the central difference scheme is 

adopted in spatial derivatives. For the region x ≤ (i+1/2), 

the five magnetic fields in (4) are located in the interior  
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of D2 and there is only interior-to-interior coupling 

between them. So the elements in A22 can be filled in  

the same way as the original implicit matrix. For the 

magnetic field component Hz (i+3/2, j+1/2), from (4) and 

Fig. 2, its three neighboring components of Hz (i+3/2,  

j-1/2), Hz (i+3/2, j+3/2), and Hz (i+1/2, j+1/2) are located 

in D2, and their coefficients are loaded in A22 normally. 

However, the component Hz (i+5/2, j+1/2) is located on 

the interface of Γ23, and its coefficient should be loaded 

in A2Γ. The other sub-matrices can be filled in the same 

way. Moreover, there is no direct coupling between the 

interior unknowns of any two isolated subdomains due 

to the center difference scheme in space domain, so the 

elements in Aij (i ≠ j) are equal to zero. Besides, it is 

worth noting that AΓi = AiΓ
T.  
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Fig. 2. Local mesh between D2 and D3.  

 

While the matrices are filled, we rewrite (3) into 

several small equations as: 

 11 1 1 1z z  A H A H b , (6a) 

 22 2 2 2z z  A H A H b , (6b) 

 33 3 3 3z z  A H A H b , (6c) 

 44 4 4 4z z  A H A H b , (6d) 
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From (6a)-(6e), we obtain the updated equation of HzΓ as: 
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It is called as the Schur complement system [17] and 

the coefficient matrix on the left side and the vector on 

the right side are known. Once the magnetic fields on the 

interface have been solved from (7), the other magnetic 

fields in the subdomains can be solved from (6a)-(6d).  

It should be noted that (6a)-(6d) are independent 

from each other, and then, they can be solved in a parallel 

manner. In order to solve those equations efficiently, the 

RCM technique is used to reduce the bandwidth of  

the coefficient matrix, resulting in an efficient LU 

decomposition. More importantly, the LU decomposition 

needs to be performed only once at the beginning of the 

calculation since the coefficient matrix keeps unchanged 

in the whole time-marching process. 

When several small matrix equations are solved 

independently, much less time and memory are required 

than solving a large one. Furthermore, if the 

electromagnetic fields on an interface or in a subdomain 

are to be obtained, there is no need to solve all the 

subdomain systems. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 
To validate the accuracy and efficiency of the 

proposed DD-Newmark-Beta-FDTD method for solving 

the multiscale problem with dispersive materials, the 

transmission resonances of periodic metallic grating 

structures are investigated in the visible and near infrared 

regions in this section.  
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Fig. 3. Schematic of a unit cell of the periodic metallic 

grating with bumps and cuts. 

 

The unit cell of the periodic metallic grating with 

bumps and cuts is investigated, as shown in Fig. 3. The 

computational domain is truncated by the perfectly 

matched layer (PML) on the left and right sides and 

periodic boundary condition (PBC) on the top and 

bottom. A modulated Gaussian pulse is used as the 

source excitation, and its time variation is given by: 

    
2 2

0 /

0( ) sin 2 e
t t

F t f t



 

  , (8) 

where the center frequency f0 = 215 THz, τ = 1/(2f0) and 

t0 = 3τ. The metal loaded on the grating is gold and the 

considered wavelength range is from 700 nm to 2500 nm. 

Hence, the corresponding parameters are ωp = 1.37×1016 

rad/s and γ = 4.08×1013 rad/s [18]. To simulate the effect 

of SPPs around the bumps and cuts accurately, graded 

cells are used in both x- and y-directions. The minimum 

cell size is 1 × 0.1 nm2 and the total cell number of the 

computational domain is 129 × 176. The traditional 

FDTD method, the Newmark-Beta-FDTD method, and 

the proposed DD-Newmark-Beta-FDTD method are 

employed for this simulation, where ∆tFDTD = 1.6667×10-4 

fs is chosen for FDTD according to the CFL constraint, 

while ∆tNewmark = 1100∆tFDTD = 1.8333×10-1fs (CFLN = 

∆tNewmark /∆tFDTD = 1100) is chosen for Newmark-Beta-
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FDTD and DD-Newmark-Beta-FDTD. Figure 4 shows 

that the results of the transmission and reflection 

spectrums of this grating structure from the three 

methods, in which the whole computational domain is 

decomposed into four subdomains for DD-Newmark-

Beta-FDTD. From this figure, it can be seen that the 

results from DD-Newmark-Beta-FDTD are in good 

agreement with those from FDTD and Newmark-Beta-

FDTD. In addition, the transmission spectrum shows the 

transmission peaks of four waveguide resonances which 

are associated with different standing wave modes of  

the slit acting as the Fabry-Pérot (F-P) cavity [19]. 

Furthermore, compared with the grating without bumps 

and cuts [16], the transmission peaks for the four 

resonance modes in the F-P cavity exhibit a red shift. 

This transmission behavior can be explained by the 

localized waveguide resonance mode [19]. The resonant 

wavelength of the F-P mode in a smooth slit array is 

given by 2kLFP+θ = 2Nπ, where k = 2nπ/λ is the wave 

number (λ is the wavelength of the Nth order mode, and 

n is the effective refractive index of the fundamental 

Bloch mode propagating in the slit), LFP is the length of 

the cavity, and θ, an N-dependent value, is the total phase 

reflected at the ends of the slits. The loading of the 

perpendicular bumps and cuts enlarges the effective 

length of F-P cavity for both odd and even modes. Hence, 

the resonance wavelengths of all modes become large 

and show a red shift. This method can be used to 

minimize the volume of the light-wave devices. 
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Fig. 4. Transmission and reflection spectrums of the 

grating with bumps and cuts from FDTD, Newmark-

Beta-FDTD (CFLN = 1100), and DD-Newmark-Beta-

FDTD (CFLN = 1100 and four subdomains). 

 

In order to evaluate the computational accuracy  

of those methods, the mean absolute percentage error 

(MAPE) of the four resonance wavelengths is written as: 

 
4

peak peak-FDTD

1 peak-FDTD

1
MAPE= 100%

4 n

 




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where λpeak-FDTD is the transmission peaks from FDTD 

and it acts as the referenced result. Table 1 presents  

the computational efforts for the three methods, where 

CFLN = 1100 (MAPE < 1%) of Newmark-Beta-FDTD 

and DD-Newmark-Beta-FDTD is chosen to guarantee 

simulation precision. Since the time step of Newmark-

Beta-FDTD is chosen 1100 times of FDTD, its CPU time 

can be reduced to about 1.18% of FDTD, but its memory 

requirement is about 4.68 times of FDTD. Applying  

the DD scheme to Newmark-Beta-FDTD with four 

subdomains, almost 40% of the CPU time and 65% of 

the memory requirement is saved.   

 

Table 1: Comparison of the computational efforts for the 

three methods  

Method CFLN MAPE 
CPU  

Time (s) 

Memory 

(Mb) 

FDTD 1 - 51913 33.14 

Newmark- 

Beta-FDTD 
1100 0.90% 611 155.24 

DD-Newmark- 

Beta-FDTD 

(4 subdomains) 

1100 0.90% 381 54.64 

 

Table 2: Comparison of the computational efforts for 

DD-Newmark-Beta-FDTD and Newmark-Beta-FDTD  

Method 
Domain 

Number 
MAPE 

CPU 

Time (s) 

Memory 

(Mb) 

Newmark-

Beta-FDTD 
1 0.90% 611.46 155.24 

DD-

Newmark-

Beta-FDTD 

2 0.90% 467.65 74.59 

3 0.90% 420.62 62.03 

4 0.90% 381.27 54.64 

5 0.90% 347.79 50.43 

6 0.90% 314.80 47.95 

 

Furthermore, the whole computational domain is 

sequentially decomposed into two to six subdomains 

along the x-direction for DD-Newmark-Beta-FDTD 

simulations. With CFLN = 1100, the computational 

efforts of DD-Newmark-Beta-FDTD and Newmark-

Beta-FDTD are compared in Table 2. From this Table, 

both the CPU time and memory requirement are reduced 

by using the domain decomposition scheme, and a larger 

subdomain number results in higher efficiency both in 

CPU time and memory requirement. The reason is that 

the LU decomposition of several small matrices costs 

much less time and memory than a huge one. In addition, 

it can also be seen from Table 2 that MAPE of DD-

Newmark-Beta-FDTDs remains unchanged when the 

whole computational domain is divided into different 

subdomains. This is because the DD scheme based on 

the Schur complement system does not involve any 

approximation in the calculation process. 
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Fig. 5. Two different decomposition structures for four 

subdomains: (a) Case 1 and (b) Case 2. 

 

Finally, the different spatial structures of the DD 

scheme are investigated. In the first case, the 

computational domain of the grating is decomposed into 

four subdomains with the same number of unknowns 

along the x-direction, as shown in Fig. 5 (a). In the 

second case, the whole domain is decomposed into four 

subdomains along the x- and y-directions, as shown in 

Fig. 5 (b). Table 3 shows that the computational accuracy 

and memory requirement of the two cases are the same. 

However, since the bandwidth of the matrix AiΓ in Case 

1 is smaller than that in Case 2, Case 1 costs less time  

in preconditioning coefficient matrices and solving 

equations.  

 

Table 3: Comparison of the computational efforts for 

different decomposition structures 

Case 
Domain 

Number 
MAPE 

CPU 

Time (s) 

Memory 

(Mb) 

Case 1 4 0.90% 381.27 54.64 

Case 2 4 0.90% 416.59 54.64 

 

IV. CONCLUSION 
This work introduces an efficient domain 

decomposition scheme to the unconditionally stable 

Newmark-Beta-FDTD method for periodic metallic 

grating analysis. Since the original computational domain 

can be decomposed into several small subdomains, the 

huge matrix equation can be transformed into several 

small independent ones. With the preconditioning RCM 

technique to the LU decomposition, which is executed 

only once at the beginning of the calculation, those small 

updated equations can be solved independently. The 

accuracy and efficiency of the proposed method are 

verified from the numerical example of the periodic 

metallic grating. The effects of different decomposition 

structures are also investigated. It has been proved  

that the DD-Newmark-Beta-FDTD method has high 

efficiency and low memory requirement while remaining 

high accuracy. This method is very suitable for the 

simulation in electrically large size structures involving 

multiscale grid division, such as photonic gratings, 

photonic crystals, microwave devices and antennas.  

 

ACKNOWLEDGMENT 
This work was supported by the National Natural 

Science Foundation of China (No. 61471105 and 6133107). 

REFERENCES 
[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, 

and P. A. Wolff, “Extraodinary optical transmission 

through sub-wavelength hole arrays,” Nature, vol. 

391, no. 6668, pp. 667-669, Feb. 1998. 

[2] C. Genet and T. W. Ebbesen, “Light in tiny holes,” 

Nature, vol. 445, no. 7123, pp. 39-46, Jan. 2007. 

[3] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 

“Transmission resonance on metallic gratings with 

very narrow slits,” Phy. Rev. Lett., vol. 83, no. 14, 

pp. 2845-2848, Oct. 1999. 

[4] H. J. Lezec and T. Thio, “Diffracted evanescent 

wave model for enhanced and suppressed optical 

transmission through subwavelength hole arrays,” 

Opt. Exp., vol. 12, no. 16, pp. 3629-3651, Aug. 

2004. 

[5] A. Taflove and S.C. Hagness, Computational 

Electrodynamics: The Finite-Difference Time-

Domain Method. Norwood, MA: Artech House, 

2000. 

[6] T. Namiki, “A new FDTD algorithm based on 

alternating-direction implicit method,” IEEE Trans. 

Microw. Theory Techn., vol. 47, no. 10, pp. 2003-

2007, Oct. 1999. 

[7] L. Gao, B. Zhang, and D. Liang, “The splitting 

finite difference time-domain methods for 

Maxwell’s equations in two dimensions,” J. 

Comput. Appl. Math., vol. 205, no. 1, pp. 207-230, 

Aug. 2007. 

[8] E. L. Tan, “Unconditionally stable LOD-FDTD 

method for 3-D Maxwell’s equations,” IEEE 

Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 

85-87, Feb. 2007. 

[9] G. Sun and C. W. Truneman, “Efficient imple-

mentations of the Crank-Nicolson scheme for  

the finite-difference time-domain method,” IEEE 

Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 

2275-2284, May 2006. 

[10] S. B. Shi, W. Shao, X. K. Wei, X. S. Yang, and B. 

Z. Wang, “A new unconditionally stable FDTD 

method based on the Newmark-Beta algorithm,” 

IEEE Microw. Theory Techn., vol. 64, no. 12, pp. 

4082-4090, Dec. 2016. 

[11] M. N. Vouvakis, Z. Cendes, and J. F. Lee, “A FEM 

domain decomposition method for photonic and 

electromagnetic band gap structures,” IEEE Trans. 

Antennas Propag., vol. 54, no. 2, pp. 721-733, Feb. 

2006. 

[12] B. Z. Wang, R. Mittra, and W. Shao, “A domain 

decomposition finite-difference utilizing charac-

teristic basis functions for solving electrostatic 

problems,” IEEE Trans. Electromagn. Compat., 

vol. 50, no. 4, pp. 946-952, Nov. 2008. 

[13] G. Q. He, W. Shao, X. H. Wang, and B. Z. Wang, 

“An efficient domain decomposition Laguerre-

FDTD method for two-dimensional scattering 

SHI, SHAO, WANG: DOMAIN DECOMPOSITION SCHEME IN NEWMARK-BETA-FDTD 722



problems,” IEEE Trans. Antennas Propag., vol. 

64, no. 5, pp. 2639-2645, May 2013. 

[14] D. Sullivan, “Nonlinear FDTD formulations using 

Z transforms,” IEEE Trans. Microw. Theory 

Techn., vol. 43, no. 3, pp. 676-682, Mar. 1995. 

[15] R. J. Luebbers and F. Hunsberger, “FDTD for Nth-

order dispersive media,” IEEE Trans. Antennas 

Propag., vol. 40, no. 11, pp. 1297-1301, Nov. 1992. 

[16] S. B. Shi, W. Shao, T. L. Liang, L. Y. Xiao, X. S. 

Yang, and H. Ou, “Efficient frequency-dependent 

Newmark-Beta-FDTD method for periodic grating 

calculation,” IEEE Photonics J., vol. 8, no. 6, pp. 

1-9, Dec. 2016. 

[17] T. N. Phillips, “Preconditioned iterative methods 

for elliptic problems on decomposed domains,” Int. 

J. Comput. Math., vol. 44, pp. 5-18, 1992. 

[18] E. D. Palik, Handbook of Optical Constants in 

Solids. Academic, 1982. 

[19] A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, 

“The resonant electromagnetic fields of an array of 

metallic slits acting as Fabry-Pérot cavities,” J. 

Appl. Phys., vol. 99, no. 12, pp. 1-5, June 2006. 

 

 

 

 

Sheng-Bing Shi was born in Hubei, 

China, in 1990. He received the B.S. 

degree in Physics from the Yangtze 

University, Jingzhou, China, in 2013. 

In 2015, he received the M.S. degree 

in Radio Physics at University of 

Electronic Science and Technology 

of China (UESTC). Currently, he is 

working toward the Ph.D. degree in Radio Physics at 

UESTC. 

His research interest is computational electro-

magnetics. 

 

Wei Shao received the B.E. degree 

in Electrical Engineering, and the 

M.Sc. and Ph.D. degrees in Radio 

Physics from the University of 

Electronic Science and Technology 

of China (UESTC), Chengdu, in 

1998, 2004, and 2006, respectively. 

He joined the UESTC in 2007. 

From 2010 to 2011, he was a Visiting Scholar with the 

Electromagnetic Communication Laboratory, Pennsyl-

vania State University, State College, PA, USA. He is 

currently a Professor with UESTC.  

His current research interests include computational 

electromagnetics and antenna design. 

 

Kai Wang was born in Sichuan, 

China, in 1992. He received his B.E. 

degree in Electronic Information 

Science and Technology from the 

University of Electronic Science 

and Technology of China (UESTC) 

in 2015. He is working toward the 

M.S. degree in Radio Physics at 

UESTC. His research interest is computational electro-

magnetics. 

 

ACES JOURNAL, Vol. 33, No. 7, July 2018723



 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     TL
     
     718
     TR
     1
     0
     629
     187
     0
     8.0000
            
                
         Even
         104
         1
         AllDoc
              

       CurrentAVDoc
          

     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     104
     103
     52
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     TR
     
     718
     TR
     1
     0
     629
     187
    
     0
     8.0000
            
                
         Odd
         104
         1
         AllDoc
              

       CurrentAVDoc
          

     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     104
     102
     52
      

   1
  

 HistoryList_V1
 qi2base





