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Abstract ─ A novel method is introduced for calculating 

fringe currents and fringe waves around the tip of a 

perfectly reflecting wedge under line source illumination. 

The time-domain fringe (non-uniform) currents are 

extracted with the finite-difference time-domain (FDTD) 

method. These currents are then fed into a free-space 

FDTD and fringe waves are excited. Alternatively, fringe 

waves are also obtained using the Green’s function 

approach. The validation of the proposed method and the 

verification of the results are done against the physical 

theory of diffraction (PTD) as well as the method of 

moments (MoM). The factors affecting the accuracy are 

also discussed. 

 

Index Terms ─ Finite difference time domain (FDTD), 

fringe waves, method of moments (MoM), nonuniform 

currents, physical theory of diffraction, PTD, uniform 

currents, wedge. 

 

I. INTRODUCTION 
Physical optics (PO), introduced by Macdonald in 

1912, is a high frequency asymptotic (HFA) technique 

used for the calculations of scattered fields from 

perfectly electrical conducting (PEC) objects [1]. PO is 

a source-based technique where currents are assumed to 

be induced on an infinite PEC plane tangent to the object. 

PO source induced currents, which are nonzero only on 

the illuminated side of object’s surface (away from any 

discontinuity), are named as uniform currents. PO-based 

scattered fields, which consist of reflected and diffracted 

fields, yield inaccurate results for the objects having 

discontinuities such as sharp edges and/or tips. This is 

because the magnitude of the induced currents near a 

discontinuity is not uniformly distributed. In other 

words, diffraction is not modeled properly with PO’s 

uniform current approximation. Physical theory of 

diffraction (PTD) extends PO by introducing fringe 

(non-uniform) currents. The PTD scattered fields contain 

contributions of both uniform (PO) currents and non-

uniform (fringe) currents [2]. The fields radiated from 

fringe currents are called fringe waves.  

The understanding and investigation of fringe waves 

are critical in broad range of electromagnetic (EM) 

problems, such as radar cross-section, propagation, 

electromagnetic compatibility modeling and simulation. 

The canonical wedge structure has long been used  

for this purpose. For example, exact and asymptotic 

formulations of fringe currents are given for a PEC 

wedge illuminated by a plane wave in [3] and for the line 

source illumination in [4]. A novel method of moments 

(MoM)-based approach is also introduced recently [5]. 

Finite difference time domain (FDTD) is a numerical 

method used in solving Maxwell’s equations in time 

domain. It has been widely used in variety of EM 

problems including radiation, propagation, and scattering. 

The FDTD method has also been used in the calculation 

of diffraction coefficients and there are many studies  

in modeling diffraction from various wedges [6]–[9]. 

Recently, double tip diffraction has also been modeled 

with FDTD [10]. Here, we propose a novel FDTD 

method for the extraction of fringe currents and fringe 

waves on the canonical PEC wedge structure. The fringe 

fields are also computed via Green’s function based on 

FDTD-extracted fringe currents.  

The paper is organized as follows. In Section 2,  

we describe the problem and summarize PTD fringe 

wave expressions. Then, the FDTD-based fringe currents 

extraction procedure is outlined in Section 3. Section 4 

presents examples and numerical comparisons against 

the PTD and MoM data. Conclusions are given in Section 

5. 

 

II. GEOMETRY OF THE PROBLEM 
The geometry of the problem is shown in Fig. 1. 
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Here, a PEC wedge with apex angle  2  is 

illuminated by a line source located at  00 , . The tip 

of the wedge is at the origin. The receiver is at  , . 

The incident EM wave hits the wedge and induces 

surface currents. This induced current consists of uniform 

(PO) and non-uniform (fringe) parts [2]. Non-uniform 

currents cause fringe waves. 

 

 
 

Fig. 1. Geometry of the problem under SSI illumination. 

 

PTD fringe fields are obtained by subtracting PO 

diffracted fields from total/exact diffracted fields: 

 POdExactdfringe uuu ,,  . (1) 

Exact diffracted fields can be obtained from both integral 

and series summation representations [2, 3, 11]. Below, 

the integral solution is given for the sake of completeness 

for both soft (TM) and hard (TE) boundary condition 

(BC), respectively:  
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diffracted fields are given as [4]: 
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with  0
22 cos2   rrrr . The term 

refld
hu ,

 

is used for hard BC and expressed by the opposite of (7). 

Numerical computation of this integral representation is 

discussed in [12]. 

 

III. FDTD MODELING OF FRINGE WAVES 
FDTD is a numerical method which is based on 

discretization of Maxwell’s equations in both space and 

time. The first and most popular (staircase) discretization 

scheme was proposed by Yee in 1966 [13]. In this 

scheme, field components are assumed to be located  

in space as shown in Figs. 2 and 3. Besides the spatial 

difference, electric and magnetic fields are also assumed 

to be separated in the time domain by a half-time step. 

The 2D FDTD equations, for the scenario in Fig. 1, 

corresponding to soft (TMz) and hard (TEz) BC problems 

contain (Hx, Hy, Ez) and (Ex, Ey, Hz) components, 

respectively. 
 

 
 

Fig. 2. A FDTD model of the problem in the TMz 

configuration. The magnetic field components used for 

calculation of surface currents are circled. 
 

 
 

Fig. 3. A FDTD model of the problem in the TEz 

configuration. The magnetic field components used for 

calculation of surface currents are circled. 
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The PEC wedge in TMz configuration is modeled by 

setting all electric field components to zero for the cells 

lying inside. For TEz configuration, the electric field 

components lying inside are set to zero and the magnetic 

fields are updated in the usual way. 

The source-induced surface currents are modeled 

using the tangential magnetic fields. On the top surface 

and for the TMz mode, this is expressed by: 

 
xzy

top
s HaHaJ ˆˆ 


. (8) 

The field components are not collocated because of the 

staggered nature of FDTD grid. Hence, spatial averaging 

can be applied to magnetic fields for approximating  

their values on the boundaries. As shown in Fig. 2, Hx 

components are positioned a half-cell ( 2/y ) above and 

below of top surface; these are used in averaging source-

induced surface currents. The bottom surface is not that 

simple because the normal direction changes according 

to the position of the E-field. For example, the surface 

normal is directed along xâ  for the boundary between 

nodes  ji ,1  and  1,1  ji . Hence, source-induced 

surface current is obtained by averaging four Hy located 

around the boundary, i.e.: 
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where n is time index. For TEz mode, Hz is used in 

obtaining source-induced surface currents on both top 

and bottom surfaces. As seen in Fig. 3, spatial averaging 

is also required for this mode. 

The novel multi-step FDTD approach used for the 

calculation of fringe currents and fringe waves in the 

time domain is as follows: 

 Run the FDTD simulation for the PEC wedge 

structure and record surface currents in the time 

domain. On the top surface, recorded currents contain 

both uniform and non-uniform parts; on the bottom 

surface it contains only non-uniform currents. 

 Make the wedge angle 180 (i.e., replace wedge with 

the half-plane), run the FDTD simulation again, and 

record surface currents only on the top surface of the 

wedge. Recorded data contains only uniform (PO) 

currents. 

 Subtract data recorded in Step 2 from Step 1 and 

obtain only non-uniform currents on the top surface. 

 Remove the wedge from the FDTD space, use 

discrete form of JtEH


 /0  equation and 

feed the time-domain fringe current using J


 to the 

related E-field component(s) and run the FDTD 

program. The FDTD simulation directly yields the 

fringe waves.  

Note that, this procedure is for single side 

illumination (SSI) as shown in Fig. 1. For the double- 

side illumination (DSI), where both faces of wedge are 

illuminated by the incident field, uniform currents are 

also induced on the bottom surface; hence one additional 

step, which is similar to Step 2, needs to be performed. 

In this step, the bottom surface of the wedge is extended 

to infinity and the time domain currents are recorded. 

The recorded currents are formed by only uniform 

currents and they need to be subtracted from the total 

currents obtained in step 1 on bottom surface.  

Note also that, frequency domain fringe currents (at 

a specified frequency) may also be obtained using FFT. 

Fringe waves may then be calculated analytically using 

the Green’s function representations, for example, as  

in (6a) and (6b) in [10] for the TE and TM modes, 

respectively. 
 

IV. EXAMPLES AND COMPARISONS 
The proposed approach is validated and verified 

against PTD and MoM through the examples presented 

in Figs. 4-11. Here, different wedge angles (0, 45, and 

90) and different angle of illuminations are used. The 

frequency is 30 MHz. 

In Fig. 4, TMz fringe fields around a 90 PEC wedge, 

illuminated by a line source at ρ0=60 m, φ0=70 recorded 

on a circle with a radius 20 m (2) from the tip are 

shown. Note that, Fig. 4 (a) shows angular variation of 

the fringe fields in the frequency domain, while Fig. 4 

(b) shows a snapshot during the FDTD simulations (i.e., 

time-domain pulsed fringe fields). 
Time domain characteristics of PO and fringe 

currents, recorded on the top surface of this wedge at  

a point 1.5 m away from the tip, are shown in Fig. 5. 

Normalized frequency domain variations of the same 

point are also shown in Fig. 6 with source’s FFT. 

The total (uniform + non-uniform) and non-uniform 

currents induced on this PEC wedge are shown in Fig. 7. 

As observed, non-uniform currents concentrate in the 

vicinity of edge. Figures 8 and 9 belong to the same 

scenario but for the TEz polarization. 

The simulations are repeated for 0 and 45 PEC 

wedges and results are presented in Figs. 10 and 11. As 

observed, very good agreement among analytical and 

numerical methods are achieved. 

Note that, FDTD simulations are performed on a 

400400 cell area. The spatial resolution is 20/ yx

corresponds to 0.5 m cell size at 30 MHz. Temporal 

resolution is t 1.18 ns. Once-differentiated Gaussian 

pulse is used as the excitation     22
0 /

0 /2
 ttn

ettne


 . 

Here, n is time-step,  0/3.2 f 0.16 ns is the 

characteristics-half width and 5.40 t  is temporal delay. 

The discretization of the PTD and MoM are as in [4] and 

[5], respectively. 
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Fig. 4. (a) Fringe fields around the tip of the wedge for 

TMz polarization (SSI), Dashed: MoM, Solid: FDTD, 

Dashed-dotted: PTD, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz; (b) a time-domain snapshot showing broad-

band fringe fields. 
 

 
 

Fig. 5. Time domain surface currents for TMz polarization 

of above scenario recorded on top surface at 1.5 m 

distance from the tip, (Top) PO currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz. 
 

 
 

Fig. 6. Normalized frequency domain surface currents 

for TMz polarization of above scenario recorded on top 

surface at 1.5 m distance from the tip, (Top) Source’s 

FFT, (Middle) FFT of PO currents, (Bottom) FFT of 

fringe (non-uniform) currents, α=270, ρ0=60 m, φ0=70, 

ρ=20 m, f=30 MHz. 

 
 

Fig. 7. Wedge surface currents for TMz polarization of 

above scenario, (Top) total currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz Solid: MoM, Dashed: FDTD (left and right 

portions belong to the bottom and top surfaces, 

respectively). 
 

 
 

Fig. 8. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dashed-dotted: PTD (TEz 

pol, SSI, α=270, ρ0=60 m, φ0=70, ρ=20 m, f=30 MHz); 

(b) a time-domain FDTD snapshot showing broad-band 

fringe fields. 
 

 
 

Fig. 9. Wedge surface currents for TEz polarization of 

above scenario, (Top) total currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz Solid: MoM, Dashed: FDTD (left and right 

portions belong to the bottom and top surfaces, 

respectively). 
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Fig. 10. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dashed-dotted: PTD (TMz 

pol, SSI, α=360, ρ0=70 m, φ0=45, ρ=20 m, f=30 MHz); 

(b) a time-domain FDTD snapshot. 
 

 
 

Fig. 11. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dash-dot: PTD (SSI, TMz 

pol, α=315, ρ0=60 m, φ0=70, ρ=5 m, f=30 MHz); (b) a 

time-domain FDTD snapshot. 
 

V. CONCLUSIONS 
For the first time in the literature, a novel, FDTD 

diffraction method is introduced for the simulation of 

fringe currents and fringe waves around a PEC wedge. 

Fringe currents and fringe waves are presented both in 

the frequency and time domains. The validity of the 

proposed method and the verification of the accuracy of 

the results are done using PTD and MoM generated 

fringe currents and fields.  

Note that, using geometric averaging yields better 

performance for collocating electric and magnetic fields 

[14] and the accuracy may be increased. Also, the 

rectangular grid used in the standard FDTD algorithm 

limits the accuracy, especially for the TE polarization 

[15]. This limitation can be removed by using FDTD 

algorithms based on conformal cells [16]. Note also that, 

the FDTD-extracted fringe currents and fringe waves 

further demonstrate the argument on the modified theory 

of physical optics (MTPO) in [17]. 
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