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Abstract ─ Parabolic equation (PE) has been widely 

used for EM propagating and scattering problems for its 

high efficiency. By using the finite differential (FD) 

method, the calculation can be taken in a series of 

transverse planes in a marching manner. In this paper, 

the alternating group explicit iterative (AGEI) method 

is applied to solve the alternating direction implicit 

based parabolic equation (ADI-PE). As a result, the 

CPU time can be further saved when compared with the 

CN-PE and ADI-PE methods. Numerical results are 

shown for demonstrating the accuracy and efficiency. 

 

Index Terms ─ Alternating group explicit iterative 

(AGEI) method, electromagnetic scattering, parabolic 

equation. 
 

I. INTRODUCTION 
The rigorous numerical methods, such as the Finite 

Difference Time Domain (FDTD), the Method of 

Moment (MoM) and the Finite Element Method (FEM) 

are widely used for electromagnetic analysis. However, 

a huge number of computational resources are needed 

with the number of unknowns increasing, thus the 

efficiency will become low. On the other hand, the  

high frequency methods have low accuracy with few 

computational resources. The parabolic equation (PE) 

[1-11] is an approximation of the wave equation,  

which can give encouraging accuracy with limited 

computational resources. Therefore, the PE method 

takes a bridge between rigorous numerical methods and 

high frequency methods.  

By using the finite differential (FD) method along 

the paraxial direction, the calculation can be taken 

plane by plane. As a result, the computational resources 

can be saved largely. There are several methods that 

have been used to solve the parabolic equation, such as 

the Split-Step Fourier Transform (SSFT) [1], the Crank-

Nicolson (CN) [2-4], the Alternate Direction Implicit 

(ADI) [5-7], and the Alternate Group Explicit (AGE) 

[8-9, 20]. Moreover, several kinds of high-order 

approximations have been introduced to get the wide-

angle prosperities [10-11, 19]. Furthermore, some other 

numerical algorithms, including the Method of Moment 

(MoM) [12-13], the Geometrical Theory of Diffraction 

(GTD) [14], and other techniques [15-16] are combined 

with the PE method, which broaden the application of 

the PE method. It should be noted here that the PE can 

only model the object does not undergo large changes 

in direction. Moreover, the objects, which are small 

compared to the wavelength, cannot be simulated by PE 

method. Since the creeping waves cannot be captured 

by the PE method.  

The implicit FD methods are widely used for their 

simplicity, stability and efficiency [2-7]. The CN scheme 

is one of the most popular implicit FD methods [2-4]. 

Nevertheless, a huge computer resource is required with 

the electrical size of the targets increasing. Then the 

ADI method is proposed to accelerate the calculation of 

the PE method [8-9]. By using the ADI scheme, the 

fields in any transverse plane can be calculated line by 

line, which reduce the computation complexity by 

solving the unknowns in one dimension. On the other 

hand, the explicit FD methods can achieve high 

computational efficiency, but may result in instability. 

Therefore, the development of methods with both the 

high efficiency and stability has a practical significance.  

In this paper, the ADI-based parabolic equations 

are derived firstly. In this way, a series of tridiagonal 

matrix equations are needed to be solved in each 

transverse plane. Then the alternating group explicit 

iterative (AGEI) method [17-18] is used to solve these 

equations. As a result, all the unknown fields in each 

transverse plane can be computed explicitly without 

solving any matrix equation. Therefore, the CPU time 

can be saved significantly than the traditional ADI-PE 

method. Several numerical examples are given to 

demonstrate the accuracy and efficiency of the proposed 

AGEI-PE method.  

 

II. THEORY AND FORMULATIONS 

A. ADI-PE method  

Considering a PEC object illuminated by a plane 

wave in free space, a reduced function associated with a 

field component is introduced as follows: 

 ( , , ) ( , , )ikxu x y z e E x y z , (1) 
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where k  is the wave number.  

The standard forward parabolic equation can be 

obtained via substituting Equation (1) into the wave 

equation and factorization, 

 (1 )
u

ik Q u
x





  , (2) 

where Q  is the pseudo-differential operator, which can 

be expressed as: 
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. (3) 

Equation (2) is one order differential along the x 

axis. The FD scheme along the paraxial direction can be 

easily applied, and the calculation can be taken plane by 

plane.  

The ADI-PE can be derived directly from the CN-

PE as indicated in [5-6]. The matrix form of the ADI-

PE is: 
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where 
2/ ,yr x y    2/ ,zr x z    ,

n

j ku  denotes the 

reduced scattered field at the point of ( , , ).n x j y k z    

As a result, there is an intermediate plane 

introduced between the n th  and n+1 th planes with 

less unknowns. Moreover the scattered fields can be 

calculated line by line. Finally, a series of tridiagonal 

matrices are to be solved by the ADI-PE method in 

each transverse plane.  

 
B. AGEI solution of ADI-PE 

Both the Equations (4) and (5) are tridiagonal 

matrix equations. Therefore, they can be solved by 

using the AGEI scheme. Suppose the impedance matrix 

can be written as: 
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It should be noted that =1 ,
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  for 

Equation (4), and =1 ,
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  for Equation (5). 

Then the impedance matrix is split into two parts, which 

can be expressed as: 
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Then the impedance matrix equation to be solved 

can be simplified as: 

 
1 2( ) .Au G G u f    (8) 

Furthermore, the following equivalent matrix 

equations can be obtained: 

    1 2 ,I G u I G u f      (9) 

or 

    2 1 .I G u I G u f      (10) 

At last, an alternating group explicit iterative 

(AGEI) method is applied to (8), 
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where 0,1,2...,k    is the Peaceman-Rachford constant. 

More specifically, the iterative method can be 

rewritten as: 
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. (12) 

Substitute 1kv   into the second matrix equation,  
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then the following result can be obtained: 
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For the first line of 
1ku 
, the calculation can be 

taken as: 
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For the second line of 
1ku 
, the calculation can be 

taken as: 
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Similarly, for i=3, 5, 7, 9, … , the solution can be 

expressed as: 
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It should be noted that the Peaceman-Rachford 

constant is set to be 0.5 for all the numerical results.  
 

C. Implementation aspects 

The three scalar parabolic equations of x, y, z, 

directions are coupled through the inhomogeneous 

boundary conditions. For the conducting targets, the 

tangential component of the total field equals zero on 

the surface of the scattering target. Moreover, the 

divergence-free condition is used for the unicity [2]. In 

each transverse plane, the perfectly matched layer 

(PML) is introduced to truncate the computational 

domain. The computation begins before the scattering 

target and stops beyond it. Finally, the scattering 

properties can be obtained by applying the near-far field 

conversion. Furthermore, the full bistatic RCS result are 

calculated by several rotating PE runs.  

Then the RCS in direction  ,   along polarization 

t can be written as: 
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where u is the reduced scattered fields in the last 

transverse plane for a specified frequency. 

 

III. NUMERICAL RESULTS 
At first, the electromagnetic scattering from a PEC 

cylinder with 5 m radius and 6 m height is considered at 

the frequency of 300 MHz. The paraxial direction is 

along the x axis and the incident angle is fixed at 

90inc  。, 0inc  。. There are totally 60 transverse planes 

to be calculated with 150 150  nodes in each transverse 

plane. The range steps are set to be 0.1 m. As shown in 

Fig. 1, the bistatic RCS results are compared between 

the MoM accelerated by the multilevel fast multipole 

method (MLFMM) and the proposed AGEI-PE method. 

There is a good agreement between them. Moreover, as 

shown in Table 1, both the comparisons of both the 

memory requirement and the CPU time are made among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods. It 

can be seen that higher efficiency can be achieved for 

the proposed AGEI-PE method when compared with 

other methods.  
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Fig. 1. Bistatic RCS result for the PEC cylinder.  

 

Table 1: Comparisons of computational resources among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods for 

the PEC cylinder 

 
Memory 

(MB) 

CPU Time 

(s) 

MoM 562 3958 

CN-PE 515 475 

ADI-PE 105 273 

AGEI-PE 91 120 

 
Secondly, the analysis is taken for a PEC block  

at the frequency of 300 MHz with the length of 8 m.  

The incident angle is fixed at 90inc  。, 0inc  。. In this 

example, the range steps are chosen to be 0.1 m. As a 

result, there are 40 transverse planes to be calculated 

with 150 150  nodes in each transverse plane. As 

shown in Fig. 2, the bistatic RCS curves of the PEC 

block are compared between the MoM accelerated by 

MLFMM and the proposed AGEI-PE method. There  

is a good agreement between them. Additionally, as 

shown in Table 2, the computational resources are 

compared among the MoM, CN-PE, ADI-PE and AGEI-

PE methods. 
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Fig. 2. Bistatic RCS result for the PEC block. 

 

Table 2: Comparisons of computational resources among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods for 

the PEC clock 

 
Memory 

(MB) 

CPU Time 

(s) 

MoM 667 7648 

CN 559 586 

ADI 127 348 

AGEI 119 147 

 
At last, a complicated model is considered, an 

aircraft at the frequency of 5 GHz. The incident angle  

is fixed at 90inc  。, 0inc  。
. There are 167 transverse 

planes to be calculated with the range steps of 0.06 m 

and 100 100  nodes in each transverse plane. As shown 

in Fig. 3, the full bistatic RCS results are given. It can 

be found that the proposed AGEI-PE method can be 

used as an efficient tool to analyze the electromagnetic 

scattering from arbitrary structures.  
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Fig. 3. Bistatic RCS result for the PEC aircraft. 

 

IV. CONCLUSION 
An AGEI solution of ADI-PE is proposed in the 

paper. By splitting the tridiagonal matrix into two parts 

and proper transformation, the matrix equations of 

ADI-PE method can be solved explicitly. Moreover, the 

proposed AGEI-PE method is easily to be paralleled. In 

this way, high computational efficiency can be achieved 

with encouraging accuracy. Numerical results are given 

to demonstrate the accuracy and efficiency of the 

proposed AGEI-PE scheme.  
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