
A GPU Implementation of a Shooting and Bouncing Ray Tracing Method for

Radio Wave Propagation

Dan Shi, Xiaohe Tang, Chu Wang, Ming Zhao, and Yougang Gao

School of Electronic Engineering

Beijing University of Posts and Telecommunications, Beijing, 100876, China

shidan@buptemc.com

Abstract ─ Shooting and bouncing ray tracing method

(SBR) is widely adopted in radio wave propagation

simulations. Compared with the center-ray tube model,

the lateral-ray tube model is more accurate but more time

consuming. As a result, we use graphics processing unit

(GPU) to accelerate the lateral-ray tube model. In this

paper, we proposed a GPU-Based shooting and bouncing

lateral-ray tube tracing method that is applied to predicting

the radio wave propagation. The numerical experiment

demonstrates that the GPU-based SBR can significantly

improve the computational efficiency of lateral-ray tube

model about 16 times faster, while providing the same

accuracy as the CPU-based SBR. The most efficient

mode of transferring the data of triangle faces is also

discussed.

Index Terms ─ Compute unified device architecture

(CUDA), graphics processing unit (GPU), radio wave

propagation, ray tracing, shooting and bouncing ray

(SBR).

I. INTRODUCTION
In the past few decades, electromagnetic environment

(EME) simulation technology has been growing in its

popularity, for it is significant both for military use

and for civil use. As a result, various computational

electromagnetic methods have been applied in this field.

Among all kinds of computational methods, the shooting

and bouncing ray (SBR) [1, 2] tracing method is a high

frequency asymptotic one for calculating the radio

wave propagation through environments with regions of

reflecting surfaces, diffracting edges and so on [3]. At

present, there are several models proposed, which have

their own characteristics. Tube creating can be categorized

into two different schemes using center-ray tubes (a ray

is shot from the center of the patch wavefront) or lateral-

ray tubes (rays are shot from vertices of the patch

wavefront), depending on the number of rays chosen to

build a tube. The ray cone is a kind of center-ray tube.

When the rays transmitted are treated as ray cones,

overlap and double counting are unavoidable because of

the spherical wavefront during the propagation process

[4-7]. But regular polygons such as triangles, squares and

hexagons can completely cover an area without leaving

gaps or existing overlaps. Using lateral-ray tube tracing

methods can get a more accurate result than using center-

ray tube tracing methods. However, the cost of tracing

lateral-ray tubes is much higher than tracing center-ray

tubes [8]. Therefore, we propose to use the graphics

processing unit (GPU) to accelerate the shooting and

bouncing lateral-ray tube method.

It is obvious that ray tracing is well suitable for

parallel processing due to the independence of rays [9].

Carr et al. first implemented the ray-triangle intersection

on the GPU in 2002 [10]. Tao used center-ray tube model

to trace the valid tubes in the radar cross section (RCS)

prediction on the GPU in 2010 [11]. In this paper,

abandoning the inaccurate center-ray tube model, we use

the lateral-ray tube model and fully implement the

shooting and bouncing lateral-ray tube tracing method

on the GPU.

This paper is organized as follows. Section II

discusses the method of GPU-Based shooting and

bouncing lateral-ray tube tracing. In Section III, modeling

and implementation details is introduced. In Section IV,

the results and discussion are given. Last section is the

conclusion.

II. GPU-BASED SBR
GPU is a specialized device that has many cores

working together. Typically, every 32 threads compose a

warp which is the basic executing unit of the GPU, and

the 32 threads execute the same instruction on different

data simultaneously [12]. This effectively reduces the

memory access delay by 32 times.

In software, a typical compute unified device

architecture (CUDA) program consists of two parts. One

part is the CPU codes that control the process of the

whole program, and the other part is the GPU part that

does the parallel work [13]. A function that executes on

the GPU is typically called a “kernel” [14].

The procedure of the GPU-Based shooting and

bouncing lateral-ray tube tracing method is divided into

three steps. They are, generating original ray tubes,

ACES JOURNAL, Vol. 32, No. 7, July 2017

Submitted On: November 27, 2016
Accepted On: June 9, 2017 1054-4887 © ACES

614

reflecting calculation, and diffracting calculation. Among

all the steps, reflecting calculation and diffracting

calculation executes their kernels separately. The details

of these steps are discussed in Section II-A through

Section II-C.

A. Generating lateral-ray tubes from a transmitter

The transmitter is modeled as a point source, and for

purpose of considering all possible angles of departure

of rays, a regular icosahedron is inscribed inside the unit

sphere. To achieve better resolution, each face of the

icosahedron is tessellated into N equal segments where

N is the tessellation. Rays are launched through

icosahedron vertices and at the intersection points of

tessellated triangle faces. Figure 1 shows an example

with N = 32, which is used in our model. This method of

launching the source rays provides wavefronts that

completely subdivide the surface of the unit sphere with

nearly equal shape and area [4]. An original ray tube is

composed of three adjacent rays as Fig. 1 illustrates.

Fig. 1. A regular icosahedron and tessellation of

icosahedron face.

B. Intersection tests and reflecting calculation

The CUDA program traces all original ray tubes

synchronously. Parallelism is introduced by running

main threads scheduling child thread that accomplishes

the calculation, and each child thread shows up as a

separate process.

The heart of the matter is to distribute the

computation to over ten thousand of individual,

controllable, and analogous threads. Since every thread is

supposed to perform almost the same task, the distribution

appears particularly significant, which signifies that we

should ensure every distributed computation process

resembles each other so that a universal kernel function

(consistent input and output, same calculation formula,

etc.) can be the template for every child thread.

Therefore, we assign a CUDA thread to a single ray tube.

A thread merely traces one single ray tube, which

ensures the independence and the similarity of different

CUDA threads.

The most time-consuming part is the intersection

tests of ray tubes as follows:

1) Calculating the reflection point

Any point on the ray can be represented as 𝑶⃗⃗ + 𝒕𝒓⃗

(where 𝑶⃗⃗ represents the original point of the ray, 𝒓⃗
represents the direction vector of the ray, 𝒕 represents

the distance coefficient, if 𝒕 > 𝟎, then it represents the

point is in the positive direction) as Fig. 2 shows, and

any point inside a triangle face can be represented as

𝒖𝑨𝑩⃗⃗⃗⃗⃗⃗ + 𝒗𝑨𝑪⃗⃗⃗⃗ ⃗ + 𝑨⃗⃗ (where 𝒖 and 𝒗 represent the distance

coefficient of 𝑨𝑩⃗⃗⃗⃗⃗⃗ and 𝑨𝑪⃗⃗⃗⃗ ⃗, if 𝟎 < 𝒖 < 𝟏, 𝟎 < 𝒗 < 𝟏,
𝟎 < 𝒖 + 𝒗 < 𝟏, then it represents the point is inside the

triangle ABC as Fig. 3 shows:

 𝑂⃗ + 𝑡𝑟 = 𝑢(𝐵⃗ − 𝐴) + 𝑣(𝐶 − 𝐴) + 𝐴 , (1)

 𝑡𝑟 − 𝑢(𝐵⃗ − 𝐴) − 𝑣(𝐶 − 𝐴) = 𝐴 − 𝑂⃗ . (2)

Let 𝜶𝟏 = 𝑟 , 𝜶𝟐 = 𝐵⃗ − 𝐴 , 𝜶𝟑 = 𝐶 − 𝐴 , 𝜷 = 𝐴 − 𝑂⃗ ,
then,

 𝜶𝟏𝑡 − 𝜶𝟐𝑢 − 𝜶𝟑𝑣 = 𝜷.

Let 𝑑 = |𝜶𝟏 𝜶𝟐 𝜶𝟑|, if 𝑑 ≠ 0, on the basis of

Cramer’s Rule [15]:

𝑡 =
|𝜷 𝜶𝟐 𝜶𝟑|

𝑑
, 𝑢 =

|𝜶𝟏 𝜷 𝜶𝟑|

𝑑
, 𝑣 =

|𝜶𝟏 𝜶𝟐 𝜷|

𝑑
.

 If 0 < 𝑢 < 1, 0 < 𝑣 < 1 0 < 𝑢 + 𝑣 < 1. (3)

Fig. 2. Point 𝑃⃗ on a ray 𝑟 .

Fig. 3. Point P⃗⃗ inside a triangle ABC.

Then it represents the intersection point is in the

positive direction of the ray and inside the triangle face

as well, where 𝑡 represents the distance between the

original point and the reflection point. Loop the

computation with all faces, then compare 𝑡, intersection

point with minimum 𝑡 value is the reflection point and

go to step 2). However, if the result does not meet (3), it

represents that the ray has not intersected with the

buildings or terrains, and step 2) is supposed to be

skipped.

SHI, TANG, WANG, ZHAO, GAO: A GPU IMPLEMENTATION OF A SHOOTING AND BOUNCING RAY TRACING METHOD 615

2) Calculating the reflection vector

As is shown in Fig. 4, 𝑖 is the normalized incident

vector, r is the normalized reflection vector, and 𝑛⃗ is the

normal vector of a triangle face. Angle of incidence

equals to the angle of reflection, therefore quadrangle

MONQ is a rhombus, so OQ = 2OP. On basis of step 1),

the coordinate of O is deterministic.

Solve the equation to calculate 𝑟 :

 𝑟 = 𝑖 − 2𝑃𝑂⃗⃗⃗⃗ ⃗ = 𝑖 − 2(𝑖 ∙ 𝑛⃗)𝑛⃗ , (4)

where 𝑛⃗ =
𝐴𝐵⃗⃗ ⃗⃗ ⃗×𝐴𝐶⃗⃗⃗⃗ ⃗

|𝐴𝐵⃗⃗ ⃗⃗ ⃗×𝐴𝐶⃗⃗⃗⃗ ⃗|
, 𝐴 , 𝐵⃗ , 𝐶 are the vertices of a triangle

face.

3) Case analysis

If neither of a ray of the ray tube has an intersection

point (case 0), this ray tube is discarded. If some or all

three rays have intersection points (case 1, 2, 3, 4 and 5),

it is necessary to consider all kinds of reflection and

diffraction cases based on the coordinate of intersection

points:

0. three rays do not intersect a building;

1. three rays intersect the same face of a building;

2. one rays intersect a face of a building while the other

two do not;

3. two rays intersect the same face of a building while

the other one does not;

4. two rays intersect two adjacent face of a building

while the other one does not;

5. two rays intersect the same face of a building while

the other one intersects an adjacent face of a building.

Fig. 4. A ray 𝑖 intersects with a plane.

We mainly consider six cases above. It is obvious

that the reflection exists in all cases except case 0 while

diffraction does not exist in case 0 and 1. Figure 5 shows

five cases of ray tubes intersecting the building faces. As

for case 2, 3, 4, 5, each thread will calculate the

coordinates of diffraction edges.

GPU specializes in tedious repetitive numerical

calculation and is weak in dealing with complicated logic

structure; hence it is reasonable to run highly intensive

computational task on the GPU like solving equations in

step 1) and 2). Parallel numerical calculation indicates

that when the amount of incident ray tubes is large and

the formulas are complex, the acceleration effect is

particularly obvious compared with CPU serial programs.

Fig. 5. Five cases that ray tubes intersect with building

faces.

C. Generating diffracting rays

Once the wavefront of a ray tube illuminates an edge

of two adjacent faces and the two adjacent faces make up

a wedge, this ray tube will generate diffraction rays. The

following paragraphs will show the procedure.

A single GPU thread represents an incident ray tube

to be diffracted. Based on the incident ray tube and the

diffraction edge, we can get an original point of the

incident ray tube and two intersections of the wavefront

of the incident ray tube with diffraction edge. Then, two

virtual incident rays are created. Each of them generates

a group of diffraction rays. We need to specify the count

N of the generated diffraction rays. Suppose the dihedral

angle of the two adjacent faces, which can make up a

wedge, is θ. The cross section of the circular cone, which

is a sector, can be divided into N-1 parts with the angle

of
360−θ

N−1
. As a result, the N-1 parts are able to construct

N-1 ray tubes of which the wavefront is a quadrangle, as

is shown in Fig. 6. Considering the consecutive thread

ID, we can get three arrays, A[i], B[i] and R[i]. Among

ACES JOURNAL, Vol. 32, No. 7, July 2017616

the three arrays, A[i] and B[i] contain the diffraction rays

to be generated, and the other one R[i] contains the

diffraction ray tubes which consist of the diffraction rays

in the first two arrays. As is shown in Fig. 7, we use i to

represent the ray tube number. The relationship between

diffraction rays and diffraction ray tubes is also shown.

Besides, the ray tube number i is in a loop from (idx * N)

to (idx+1) * N, in which idx means thread ID.

Different with original ray tubes and reflection ray

tubes, the diffraction ray tubes are quadrangle ray tubes,

which means each lateral-ray tube consist of four rays.

Fig. 6. Generating ray tubes from diffracting edge.

Fig. 7. Data structure of diffraction rays and ray tubes.

III. MODELING AND IMPLEMENTATION
To verify the efficiency of the proposed GPU-based

shooting and bouncing lateral-ray tube tracing method, a

CPU-based version is also implemented for comparison.

A model is established, and several numerical examples

are tested. The GPU hardware used in this research is

Quadro K620 of Compute Capability 5.0, with 2 GB of

memory. The CPU hardware used in this research is

Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60 GHz with 6

cores. Our implementation runs atop Windows 7 with the

CUDA Toolkit 7.5. As all future NVIDIA GPUs will

support CUDA, the proposed GPU-based SBR is scalable

across future generations.

CUDA provides a simple and general C/C++ language

interface to the programmers and the programming

on GPU does not have much difference from using

application programming interfaces.

The GPU-based shooting and bouncing lateral-ray

tube tracing method is applied to a sample environment.

There are 4 buildings set on the terrain. All the buildings

are with the same height, which is 100 m above the

terrain. The entire model is made up of 19650 triangle

faces. The material parameter of the buildings is 𝜀𝑟 = 15,
𝜎 = 0.015. The material parameter of the ground is
𝜀𝑟 = 25, 𝜎 = 0.02. Considering the architecture of the

transmitter is a regular icosahedron, we can estimate the

complexity according to the subdivision coefficient. In

this sample, we set the subdivision coefficient to 32. As

a result, 20480 original triangle ray tubes are generated

from the transmitter. There are 2 groups of receivers.

One is made up of receivers ranging from (0, 0, 50) to (0,

160, 50) with a 20 - m step. The other group is made up

of receivers ranging from (0, 0, 20) to (0, 0, 100) with a

10 - m step. The modeling is shown in Fig. 8.

Fig. 8. A sample model of propagation environment.

The data of the terrain and the buildings are

imported from the electronic map. All the data necessary

in the experiment including the terrain and buildings are

saved in the global memory. In CUDA programming, the

number of blocks and threads per block is specified by

the programmer, and each thread has a unique thread ID

and block ID to identify the unique data assigned to each

thread. As a result, each lateral-ray tube can be specified

through thread ID and block ID. In our experiment,

considering the 20480 original triangle ray tubes, the

maximum block size and the thread count in per block

in our implementation is 32 × 640. In addition, because

of the limited device memory, we cannot transfer all

the triangle faces data into the GPU. We resolve this

problem by transferring the data in batches.

IV. RESULTS AND DISCUSSION
Last part we introduced the modeling, knowing that

there are 19650 triangle faces and 20480 original triangle

ray tubes. Figure 9 and Fig. 10 show the E field vs.

receiver distance and E field vs. receiver height. Both

SHI, TANG, WANG, ZHAO, GAO: A GPU IMPLEMENTATION OF A SHOOTING AND BOUNCING RAY TRACING METHOD 617

are compared with the commercial electromagnetic

simulation software Wireless Insite.

Fig. 9. Comparison of E field vs. receiver distance with

proposed method and Wireless Insite simulation.

In Fig. 9, the heights of the transmitter and the

receivers are all 50 m. Since the distance between the

transmitter and the receivers varies from 30 m to 190 m

with a 20 - m step, the E field decreases in general.

However, under the influence of the building reflection,

the E field decreases slowly even grows a little when the

distance becomes longer and longer.

Fig. 10. Comparison of E field vs. receiver height with

proposed method and Wireless Insite simulation.

In Fig. 10, the height of the transmitter is 50 m. The

horizontal distance between the transmitter and all the

receivers is 30 m. Since the height of the receivers varies

from 20 m to 100 m with a 10 - m step, the distance

between the transmitter and the receivers decreases at

first and then increases with the receiver height. As a

result, the electric field increases at first for the receiver

becomes closer to the transmitter. However, for the

receivers above 50 m, the electric field decreases with

the increase of receiver height.

From the Table 1, we can get the information that

the execution speed on the GPU is more than 16 times

higher than CPU.

Table 1: Comparisons between execution time for CPU

and GPU

Type Time

Executing on CPU 140122 ms

Executing on GPU 8706 ms

Below we will put emphasis on analyzing the factors

which affect the executing time.

The executing time on the CPU is as follow:

 𝑡𝐶𝑃𝑈 =
𝑁

𝑓𝐶𝑃𝑈
×

1

𝐶𝐶𝑃𝑈
×

1

𝜂
, (5)

where 𝑁 represents the data scale inputted, 𝑓𝐶𝑃𝑈

represents the CPU frequency and 𝐶𝐶𝑃𝑈 represents

the CPU’s capability of calculation, η represents the

efficiency of the algorithm.

We pay more attention to the factors which affect

the executing time on the GPU. The formula is shown as

follow:

𝑡𝐺𝑃𝑈 = 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 + 𝑡𝑚𝑒𝑚𝑐𝑝𝑦

 = 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ + 𝑡𝑁 𝑚𝑜𝑑 𝑛 + 𝑡𝑚 × ⌈

𝑁

𝑛
⌉, (6)

 𝑡𝑛 =
𝑛

𝑓𝐺𝑃𝑈
×

1

𝐶𝐺𝑃𝑈
×

1

𝜂
+ 𝑛 × 𝑎, (7)

 𝑡0 = 0, (8)

where 𝑡𝐺𝑃𝑈 represents the total execution time on the

GPU, 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 represents the execution time cost in the

kernel functions, 𝑡𝑚𝑒𝑚𝑐𝑝𝑦 represents the time spent on

copying data from the GPU to the CPU, 𝑁 represents the

data scale inputted, 𝑛 represents the data scale inputted

per time, ⌊
𝑁

𝑛
⌋ represents rounding down to

𝑁

𝑛
, ⌈

𝑁

𝑛
⌉

represents rounding up to
𝑁

𝑛
, 𝑡𝑛 represents the computation

time with 𝑛 triangle faces transferred, 𝑡𝑚 represents the

time spent on copying the data once, 𝑓𝐺𝑃𝑈 represents the

GPU frequency, 𝐶𝐺𝑃𝑈 represents the GPU’s capability of

calculation, 𝜂 represents the efficiency of the algorithm,

and 𝑎 is a constant which affects the speed of copying

memory changing with different GPUs.

Because of the limited GPU memory, we cannot

copy all the data from the CPU to the GPU. As a result,

we should divide the data into several parts. Then we

copy each part from the CPU to the GPU. We do not

copy the second part of the data until the first part of the

data has been calculated. So do the rest parts of the data.

This is the reason why
𝑁

𝑛
 is in the formula. The GPU

frequency influences the memory clock rate so the

frequency is higher the more time is saved. Additionally,

the capability of the GPU is stronger, the more time is

saved.

In the formula (6),
𝑁

𝑛
 is decided by programmers. In

our experiment, 𝑁 depends on the count of triangle faces

and the count of original ray tubes. We divide all the

19626 triangle faces into several groups. Meanwhile, we

test the time of the intersection test which is the most

ACES JOURNAL, Vol. 32, No. 7, July 2017618

time-consuming part of the whole experiment. As is

shown in Fig. 11.

Fig. 11. Computation time on the GPU predicted and

measured.

In the formula (6), as the 𝑛 grows, 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ +

𝑡𝑁 𝑚𝑜𝑑 𝑛, which is 𝑡𝑘𝑒𝑟𝑛𝑒𝑙, does not change. 𝑡𝑚 changes

slightly, too. So the formula (6) mainly depends on ⌈
𝑁

𝑛
⌉.

Therefore, we should try our best to get the biggest 𝑛 to

enhance the efficiency. We treat 𝑛 = 200 as a basic unit.

Then we predict the calculation time by the formula (6),

as is shown in Fig. 11. For our GPU, the biggest 𝑛 is up

to 4500. If 𝑛 > 4500, there will not be enough space to

save the data. So in the example of the comparisons of

the CPU and the GPU, the 𝑛 of the GPU is chosen as

4500.

For the efficiency of algorithm, we can use the

shared memory to store the triangle face information

instead of global memory to save time. Proper distribution

way of blocks and threads also reduces the total execution

time. In addition, improvement of access mode can

increase the operation efficiency, too.

V. CONCLUSION
This paper mainly introduced a GPU-Based

shooting and bouncing lateral-ray tube tracing method

that is applied to predicting the radio wave propagation.

This method can be applied in electrically large scenes

which is time-consuming. Then we discussed the most

efficient mode of transferring the data of triangle faces,

which is a necessary part in the shooting and bouncing

ray tracing algorithm. The results proved that the method

can greatly reduce the computation time. Moreover, this

proposed method can be implemented on the future GPU

devices which support the CUDA programming.

REFERENCES
[1] H. Ling, R. C. Chow, and S. W. Lee, “Shooting and

bouncing rays: Calculating the RCS of an

arbitrarily shaped cavity,” IEEE Trans. Antennas

Propag., vol. 37, no. 2, pp. 194-205, 1989.

[2] J. Baldauf, S. W. Lee, L. Lin, S. K. Jeng, S. M.

Scarborough, and C. L. Yu, “High frequency

scattering from trihedral corner reflectors and other

benchmark targets: SBR vs. experiments,” IEEE

Trans. Antennas Propag., vol. 39, no. 9, pp. 1345-

1351, 1991.

[3] F. Weinmann, “UTD shooting-and-bouncing ext-

ension to a PO/PTD ray tracing algorithm,”

Applied Computational Electromagnetics Society

Journal, vol. 24, no. 3, pp. 281-293, June 2009.

[4] S. Y. Seidel and T. S. Rappaport, “Site-specific

propagation prediction for wireless in-building

personal communication system design,” IEEE

Trans. Veh. Technol., vol. 43, pp. 879-891, Nov.

1994.

[5] S. Chen and S. Jeng, “An SBR/image approach for

radio wave propagation in indoor environments

with metallic furniture,” IEEE Trans. Antennas

Propagat., vol. 45, pp. 98-106, Jan. 1997.

[6] C. Yang, B. Wu, and C. Ko, “A ray-tracing method

for modeling indoor wave propagation and pene-

tration,” IEEE Trans. Antennas Propagat., vol. 46,

pp. 907-919, June 1998.

[7] H. Suzuki and A. S. Mohan, “Ray tube tracing

method for predicting indoor channel characteristic

map,” Electron. Lett., vol. 33, no. 17, pp. 1495-

1496, 1997.

[8] C. Saeidi, F. Hodjatkashani, and A. Fard, “New

tube-based shooting and bouncing ray tracing

method,” Proc. IEEE ATC, Hai Phong, Vietnam,

pp. 269-273, Oct. 12-14, 2009.

[9] A. Capozzoli, O. Kilic, C. Curcio, and A. Liseno,

“The success of GPU computing in applied

electromagnetics,” Applied Computational Elect-

romagnetics Society Express Journal, vol. 1, no. 4,

pp. 113-116, Apr. 2016.

[10] N. A. Carr, J. D. Hall, and J. C. Hart, “The ray

engine,” in Proc. Graphics Hardware’02, pp. 37-

46, Sep. 2002.

[11] Y. Tao, H. Lin, and H. Bao, “GPU-based shooting

and bouncing ray method for fast RCS prediction,”

IEEE Trans. Antennas Propagat., vol. 58, no. 2,

pp. 494-502, Feb. 2010.

[12] H. Meng and J. Jin, “Acceleration of the dual-field

domain decomposition algorithm using MPI–

CUDA on large-scale computing systems,” IEEE

Trans. Antennas Propagat., vol. 62, no. 9, pp.

4706-4715, Sep. 2014.

[13] K. Wang and Z. Shen, “A GPU-based parallel

genetic algorithm for generating daily activity

plans,” IEEE Trans. on Intelligent Transportation

Systems, vol. 13, no. 3, pp. 1474-1480, Sep. 2012.

[14] Z. Shen, K. Wang, and F.-H. Zhu, “Agent-based

traffic simulation and traffic signal timing optimiz-

ation with GPU,” in Proc. 14th Int. IEEE Conf.

SHI, TANG, WANG, ZHAO, GAO: A GPU IMPLEMENTATION OF A SHOOTING AND BOUNCING RAY TRACING METHOD 619

https://www.bing.com/dict/search?q=time&FORM=BDVSP6&mkt=zh-cn
https://www.bing.com/dict/search?q=consuming&FORM=BDVSP6&mkt=zh-cn

Intell. Transp. Syst., pp. 145-150, 2011.

[15] G. Cramer, “Introduction à l'Analyse des lignes

Courbes algébriques,” (in French). Geneva: Euro-

peana., pp. 656-659, 1750. Retrieved 2012-05-18.

Dan Shi received her Ph.D. degree

in Electronic Engineering from

Beijing University of Posts and

Telecommunications in Beijing,

China in 2008. Now she is an

Associate Professor in Beijing

University of Posts and Telecomm-

unications. Her research interests

include electromagnetic compatibility, electromagnetic

environment, and electromagnetic computation. She is

Chair of IEEE EMC Beijing chapter, Vice Chair of URSI

E Commission in China, and General Secretary of EMC

section of China Institute of Electronics.

Xiaohe Tang received his Bach-

elor degree in Telecommunication

Engineering from University of

Shanghai for Science and Techno-

logy in Shanghai, China in 2015.

Now he is studying for Master

degree in Beijing University of

Posts and Telecommunications in

Beijing, China. His research interests include electro-

magnetic compatibility and electromagnetic environment.

Chu Wang received his Bachelor

degree in Electronic and Inform-

ation Engineering from Xidian

University in Xi'an, China in 2015.

Now he is studying for Master

degree in Beijing University of

Posts and Telecommunications in

Beijing, China. His research interests

include electromagnetic compatibility and electromag-

netic environment.

Ming Zhao received his Bachelor

degree in Computer Science and

Technology Department from Beijing

University of Posts and Telecomm-

unications in Beijing, China in

2015. Now he is studying for Master

degree in Beijing University of

Posts and Telecommunications in

Beijing, China. His research interests include electro-

magnetic compatibility and electromagnetic environment.

Yougang Gao received his B.S.

degree in Electrical Engineering

from National Wuhan University,

China in 1950. He was a Visiting

Scholar in Moscow Technical

University of Communication and

Information in Russia from 1957 to

1959. He is now a Professor and

Ph.D. Supervisor in Beijing University of Posts and

Telecommunications, China. He has been an Academician

of International Information Academy of UN since 1994.

He was once the Chairman of IEEE Beijing EMC

Chapter and Chairman of China National E-Commission

for URSI. He became an EMP Fellow of US Summa

Foundation since 2010.

ACES JOURNAL, Vol. 32, No. 7, July 2017620

	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887

	inside fix put article 10 with njumbers.pdf
	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887

