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Abstract ─ Shooting and bouncing ray tracing method 

(SBR) is widely adopted in radio wave propagation 

simulations. Compared with the center-ray tube model, 

the lateral-ray tube model is more accurate but more time 

consuming. As a result, we use graphics processing unit 

(GPU) to accelerate the lateral-ray tube model. In this 

paper, we proposed a GPU-Based shooting and bouncing 

lateral-ray tube tracing method that is applied to predicting 

the radio wave propagation. The numerical experiment 

demonstrates that the GPU-based SBR can significantly 

improve the computational efficiency of lateral-ray tube 

model about 16 times faster, while providing the same 

accuracy as the CPU-based SBR. The most efficient 

mode of transferring the data of triangle faces is also 

discussed. 

 

Index Terms ─ Compute unified device architecture 

(CUDA), graphics processing unit (GPU), radio wave 

propagation, ray tracing, shooting and bouncing ray 

(SBR). 
 

I. INTRODUCTION 
In the past few decades, electromagnetic environment 

(EME) simulation technology has been growing in its 

popularity, for it is significant both for military use  

and for civil use. As a result, various computational 

electromagnetic methods have been applied in this field. 

Among all kinds of computational methods, the shooting 

and bouncing ray (SBR) [1, 2] tracing method is a high 

frequency asymptotic one for calculating the radio  

wave propagation through environments with regions of 

reflecting surfaces, diffracting edges and so on [3]. At 

present, there are several models proposed, which have 

their own characteristics. Tube creating can be categorized 

into two different schemes using center-ray tubes (a ray 

is shot from the center of the patch wavefront) or lateral-

ray tubes (rays are shot from vertices of the patch 

wavefront), depending on the number of rays chosen to 

build a tube. The ray cone is a kind of center-ray tube. 

When the rays transmitted are treated as ray cones, 

overlap and double counting are unavoidable because of 

the spherical wavefront during the propagation process 

[4-7]. But regular polygons such as triangles, squares and 

hexagons can completely cover an area without leaving 

gaps or existing overlaps. Using lateral-ray tube tracing 

methods can get a more accurate result than using center-

ray tube tracing methods. However, the cost of tracing 

lateral-ray tubes is much higher than tracing center-ray 

tubes [8]. Therefore, we propose to use the graphics 

processing unit (GPU) to accelerate the shooting and 

bouncing lateral-ray tube method. 

It is obvious that ray tracing is well suitable for 

parallel processing due to the independence of rays [9]. 

Carr et al. first implemented the ray-triangle intersection 

on the GPU in 2002 [10]. Tao used center-ray tube model 

to trace the valid tubes in the radar cross section (RCS) 

prediction on the GPU in 2010 [11]. In this paper, 

abandoning the inaccurate center-ray tube model, we use 

the lateral-ray tube model and fully implement the 

shooting and bouncing lateral-ray tube tracing method 

on the GPU. 

This paper is organized as follows. Section II 

discusses the method of GPU-Based shooting and 

bouncing lateral-ray tube tracing. In Section III, modeling 

and implementation details is introduced. In Section IV, 

the results and discussion are given. Last section is the 

conclusion. 

 

II. GPU-BASED SBR 
GPU is a specialized device that has many cores 

working together. Typically, every 32 threads compose a 

warp which is the basic executing unit of the GPU, and 

the 32 threads execute the same instruction on different 

data simultaneously [12]. This effectively reduces the 

memory access delay by 32 times. 

In software, a typical compute unified device 

architecture (CUDA) program consists of two parts. One 

part is the CPU codes that control the process of the 

whole program, and the other part is the GPU part that 

does the parallel work [13]. A function that executes on 

the GPU is typically called a “kernel” [14]. 

The procedure of the GPU-Based shooting and 

bouncing lateral-ray tube tracing method is divided into 

three steps. They are, generating original ray tubes, 
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reflecting calculation, and diffracting calculation. Among 

all the steps, reflecting calculation and diffracting 

calculation executes their kernels separately. The details 

of these steps are discussed in Section II-A through 

Section II-C. 

 

A. Generating lateral-ray tubes from a transmitter 

The transmitter is modeled as a point source, and for 

purpose of considering all possible angles of departure 

of rays, a regular icosahedron is inscribed inside the unit 

sphere. To achieve better resolution, each face of the 

icosahedron is tessellated into N equal segments where 

N is the tessellation. Rays are launched through 

icosahedron vertices and at the intersection points of 

tessellated triangle faces. Figure 1 shows an example 

with N = 32, which is used in our model. This method of 

launching the source rays provides wavefronts that 

completely subdivide the surface of the unit sphere with 

nearly equal shape and area [4]. An original ray tube is 

composed of three adjacent rays as Fig. 1 illustrates. 

 

 
 
Fig. 1. A regular icosahedron and tessellation of 

icosahedron face. 

 

B. Intersection tests and reflecting calculation 

The CUDA program traces all original ray tubes 

synchronously. Parallelism is introduced by running 

main threads scheduling child thread that accomplishes 

the calculation, and each child thread shows up as a 

separate process. 

The heart of the matter is to distribute the 

computation to over ten thousand of individual, 

controllable, and analogous threads. Since every thread is 

supposed to perform almost the same task, the distribution 

appears particularly significant, which signifies that we 

should ensure every distributed computation process 

resembles each other so that a universal kernel function 

(consistent input and output, same calculation formula, 

etc.) can be the template for every child thread. 

Therefore, we assign a CUDA thread to a single ray tube. 

A thread merely traces one single ray tube, which 

ensures the independence and the similarity of different 

CUDA threads. 

The most time-consuming part is the intersection 

tests of ray tubes as follows: 

1) Calculating the reflection point 

Any point on the ray can be represented as 𝑶⃗⃗ + 𝒕𝒓⃗  

(where 𝑶⃗⃗  represents the original point of the ray, 𝒓⃗  
represents the direction vector of the ray, 𝒕 represents  

the distance coefficient, if 𝒕 > 𝟎, then it represents the 

point is in the positive direction) as Fig. 2 shows, and  

any point inside a triangle face can be represented as 

𝒖𝑨𝑩⃗⃗⃗⃗⃗⃗ + 𝒗𝑨𝑪⃗⃗⃗⃗  ⃗ + 𝑨⃗⃗  (where 𝒖 and 𝒗 represent the distance 

coefficient of 𝑨𝑩⃗⃗⃗⃗⃗⃗  and 𝑨𝑪⃗⃗⃗⃗  ⃗, if 𝟎 < 𝒖 < 𝟏, 𝟎 < 𝒗 < 𝟏,
𝟎 < 𝒖 + 𝒗 < 𝟏, then it represents the point is inside the 

triangle ABC as Fig. 3 shows: 

 𝑂⃗ + 𝑡𝑟 =  𝑢(𝐵⃗ − 𝐴 ) + 𝑣(𝐶 − 𝐴 ) + 𝐴 , (1) 

 𝑡𝑟 −  𝑢(𝐵⃗ − 𝐴 ) − 𝑣(𝐶 − 𝐴 ) = 𝐴 − 𝑂⃗ . (2) 

Let 𝜶𝟏 = 𝑟 , 𝜶𝟐 = 𝐵⃗ − 𝐴 , 𝜶𝟑 = 𝐶 − 𝐴 , 𝜷 = 𝐴 − 𝑂⃗ , 
then, 

 𝜶𝟏𝑡 − 𝜶𝟐𝑢 − 𝜶𝟑𝑣 = 𝜷. 

Let 𝑑 = |𝜶𝟏  𝜶𝟐  𝜶𝟑|, if 𝑑 ≠ 0, on the basis of 

Cramer’s Rule [15]: 

𝑡 =
|𝜷   𝜶𝟐  𝜶𝟑|

𝑑
, 𝑢 =

|𝜶𝟏   𝜷  𝜶𝟑|

𝑑
, 𝑣 =

|𝜶𝟏   𝜶𝟐  𝜷|

𝑑
. 

 If 0 < 𝑢 < 1,   0 < 𝑣 < 1    0 < 𝑢 + 𝑣 < 1. (3) 

 

 
 

Fig. 2. Point 𝑃⃗  on a ray 𝑟 . 
 

 
 

Fig. 3. Point P⃗⃗  inside a triangle ABC. 

 

Then it represents the intersection point is in the 

positive direction of the ray and inside the triangle face 

as well, where 𝑡 represents the distance between the 

original point and the reflection point. Loop the 

computation with all faces, then compare 𝑡, intersection 

point with minimum 𝑡 value is the reflection point and 

go to step 2). However, if the result does not meet (3), it 

represents that the ray has not intersected with the 

buildings or terrains, and step 2) is supposed to be 

skipped. 
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2) Calculating the reflection vector 

As is shown in Fig. 4, 𝑖  is the normalized incident 

vector, r  is the normalized reflection vector, and 𝑛⃗  is the 

normal vector of a triangle face. Angle of incidence 

equals to the angle of reflection, therefore quadrangle 

MONQ is a rhombus, so OQ = 2OP. On basis of step 1), 

the coordinate of O is deterministic. 

Solve the equation to calculate 𝑟 : 

 𝑟 = 𝑖 − 2𝑃𝑂⃗⃗⃗⃗  ⃗ = 𝑖 − 2(𝑖 ∙ 𝑛⃗ )𝑛⃗ , (4) 

where 𝑛⃗ =
𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝐴𝐶⃗⃗⃗⃗  ⃗

|𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝐴𝐶⃗⃗⃗⃗  ⃗|
, 𝐴 , 𝐵⃗ , 𝐶  are the vertices of a triangle 

face. 

 

3) Case analysis 

If neither of a ray of the ray tube has an intersection 

point (case 0), this ray tube is discarded. If some or all 

three rays have intersection points (case 1, 2, 3, 4 and 5), 

it is necessary to consider all kinds of reflection and 

diffraction cases based on the coordinate of intersection 

points: 

0. three rays do not intersect a building; 

1. three rays intersect the same face of a building; 

2. one rays intersect a face of a building while the other 

two do not; 

3. two rays intersect the same face of a building while 

the other one does not; 

4. two rays intersect two adjacent face of a building 

while the other one does not; 

5. two rays intersect the same face of a building while 

the other one intersects an adjacent face of a building. 
 

 
 

Fig. 4. A ray 𝑖  intersects with a plane. 

 

We mainly consider six cases above. It is obvious 

that the reflection exists in all cases except case 0 while 

diffraction does not exist in case 0 and 1. Figure 5 shows 

five cases of ray tubes intersecting the building faces. As 

for case 2, 3, 4, 5, each thread will calculate the 

coordinates of diffraction edges. 

GPU specializes in tedious repetitive numerical 

calculation and is weak in dealing with complicated logic 

structure; hence it is reasonable to run highly intensive 

computational task on the GPU like solving equations in 

step 1) and 2). Parallel numerical calculation indicates 

that when the amount of incident ray tubes is large and 

the formulas are complex, the acceleration effect is 

particularly obvious compared with CPU serial programs. 

 

 

 

 
 

Fig. 5. Five cases that ray tubes intersect with building 

faces. 

 
C. Generating diffracting rays 

Once the wavefront of a ray tube illuminates an edge 

of two adjacent faces and the two adjacent faces make up 

a wedge, this ray tube will generate diffraction rays. The 

following paragraphs will show the procedure. 

A single GPU thread represents an incident ray tube 

to be diffracted. Based on the incident ray tube and the 

diffraction edge, we can get an original point of the 

incident ray tube and two intersections of the wavefront 

of the incident ray tube with diffraction edge. Then, two 

virtual incident rays are created. Each of them generates 

a group of diffraction rays. We need to specify the count 

N of the generated diffraction rays. Suppose the dihedral 

angle of the two adjacent faces, which can make up a 

wedge, is θ. The cross section of the circular cone, which 

is a sector, can be divided into N-1 parts with the angle 

of 
360−θ

N−1
. As a result, the N-1 parts are able to construct 

N-1 ray tubes of which the wavefront is a quadrangle, as 

is shown in Fig. 6. Considering the consecutive thread 

ID, we can get three arrays, A[i], B[i] and R[i]. Among 
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the three arrays, A[i] and B[i] contain the diffraction rays 

to be generated, and the other one R[i] contains the 

diffraction ray tubes which consist of the diffraction rays 

in the first two arrays. As is shown in Fig. 7, we use i to 

represent the ray tube number. The relationship between 

diffraction rays and diffraction ray tubes is also shown. 

Besides, the ray tube number i is in a loop from (idx * N) 

to (idx+1) * N, in which idx means thread ID. 

Different with original ray tubes and reflection ray 

tubes, the diffraction ray tubes are quadrangle ray tubes, 

which means each lateral-ray tube consist of four rays. 
 

 
 

Fig. 6. Generating ray tubes from diffracting edge. 

 

 
 

Fig. 7. Data structure of diffraction rays and ray tubes. 

 

III. MODELING AND IMPLEMENTATION  
To verify the efficiency of the proposed GPU-based 

shooting and bouncing lateral-ray tube tracing method, a 

CPU-based version is also implemented for comparison. 

A model is established, and several numerical examples 

are tested. The GPU hardware used in this research is 

Quadro K620 of Compute Capability 5.0, with 2 GB of 

memory. The CPU hardware used in this research is 

Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60 GHz with 6 

cores. Our implementation runs atop Windows 7 with the 

CUDA Toolkit 7.5. As all future NVIDIA GPUs will 

support CUDA, the proposed GPU-based SBR is scalable 

across future generations. 

CUDA provides a simple and general C/C++ language 

interface to the programmers and the programming  

on GPU does not have much difference from using 

application programming interfaces. 

The GPU-based shooting and bouncing lateral-ray  

tube tracing method is applied to a sample environment. 

There are 4 buildings set on the terrain. All the buildings 

are with the same height, which is 100 m above the 

terrain. The entire model is made up of 19650 triangle 

faces. The material parameter of the buildings is 𝜀𝑟 = 15,
𝜎 = 0.015. The material parameter of the ground is  
𝜀𝑟 = 25, 𝜎 = 0.02. Considering the architecture of the 

transmitter is a regular icosahedron, we can estimate the 

complexity according to the subdivision coefficient. In 

this sample, we set the subdivision coefficient to 32. As 

a result, 20480 original triangle ray tubes are generated 

from the transmitter. There are 2 groups of receivers. 

One is made up of receivers ranging from (0, 0, 50) to (0, 

160, 50) with a 20 - m step. The other group is made up 

of receivers ranging from (0, 0, 20) to (0, 0, 100) with a 

10 - m step. The modeling is shown in Fig. 8. 

 

 
 

Fig. 8. A sample model of propagation environment. 

 

The data of the terrain and the buildings are 

imported from the electronic map. All the data necessary 

in the experiment including the terrain and buildings are 

saved in the global memory. In CUDA programming, the 

number of blocks and threads per block is specified by 

the programmer, and each thread has a unique thread ID 

and block ID to identify the unique data assigned to each 

thread. As a result, each lateral-ray tube can be specified 

through thread ID and block ID. In our experiment, 

considering the 20480 original triangle ray tubes, the 

maximum block size and the thread count in per block  

in our implementation is 32 × 640. In addition, because 

of the limited device memory, we cannot transfer all  

the triangle faces data into the GPU. We resolve this 

problem by transferring the data in batches. 

 

IV. RESULTS AND DISCUSSION  
Last part we introduced the modeling, knowing that 

there are 19650 triangle faces and 20480 original triangle 

ray tubes. Figure 9 and Fig. 10 show the E field vs. 

receiver distance and E field vs. receiver height. Both  
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are compared with the commercial electromagnetic 

simulation software Wireless Insite.  

 

 
 

Fig. 9. Comparison of E field vs. receiver distance with 

proposed method and Wireless Insite simulation. 

 

In Fig. 9, the heights of the transmitter and the 

receivers are all 50 m. Since the distance between the 

transmitter and the receivers varies from 30 m to 190 m 

with a 20 - m step, the E field decreases in general. 

However, under the influence of the building reflection, 

the E field decreases slowly even grows a little when the 

distance becomes longer and longer. 

 

 
 

Fig. 10. Comparison of E field vs. receiver height with 

proposed method and Wireless Insite simulation. 

 

In Fig. 10, the height of the transmitter is 50 m. The 

horizontal distance between the transmitter and all the 

receivers is 30 m. Since the height of the receivers varies 

from 20 m to 100 m with a 10 - m step, the distance 

between the transmitter and the receivers decreases at 

first and then increases with the receiver height. As a 

result, the electric field increases at first for the receiver 

becomes closer to the transmitter. However, for the 

receivers above 50 m, the electric field decreases with 

the increase of receiver height. 

From the Table 1, we can get the information that 

the execution speed on the GPU is more than 16 times 

higher than CPU. 

 

Table 1: Comparisons between execution time for CPU 

and GPU 

Type Time  

Executing on CPU 140122 ms 

Executing on GPU 8706 ms 

 

Below we will put emphasis on analyzing the factors 

which affect the executing time. 

The executing time on the CPU is as follow: 

 𝑡𝐶𝑃𝑈 =
𝑁

𝑓𝐶𝑃𝑈
×

1

𝐶𝐶𝑃𝑈
×

1

𝜂
, (5) 

where 𝑁 represents the data scale inputted, 𝑓𝐶𝑃𝑈 

represents the CPU frequency and 𝐶𝐶𝑃𝑈 represents  

the CPU’s capability of calculation, η represents the 

efficiency of the algorithm. 

We pay more attention to the factors which affect 

the executing time on the GPU. The formula is shown as 

follow: 

𝑡𝐺𝑃𝑈 = 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 + 𝑡𝑚𝑒𝑚𝑐𝑝𝑦                                    

 = 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ + 𝑡𝑁 𝑚𝑜𝑑 𝑛 + 𝑡𝑚 × ⌈

𝑁

𝑛
⌉, (6) 

 𝑡𝑛 =
𝑛

𝑓𝐺𝑃𝑈
×

1

𝐶𝐺𝑃𝑈
×

1

𝜂
+ 𝑛 × 𝑎, (7) 

 𝑡0 = 0, (8) 

where 𝑡𝐺𝑃𝑈 represents the total execution time on the 

GPU, 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 represents the execution time cost in the 

kernel functions, 𝑡𝑚𝑒𝑚𝑐𝑝𝑦 represents the time spent on 

copying data from the GPU to the CPU, 𝑁 represents the 

data scale inputted, 𝑛 represents the data scale inputted 

per time, ⌊
𝑁

𝑛
⌋ represents rounding down to 

𝑁

𝑛
, ⌈

𝑁

𝑛
⌉ 

represents rounding up to 
𝑁

𝑛
, 𝑡𝑛 represents the computation 

time with 𝑛 triangle faces transferred, 𝑡𝑚 represents the 

time spent on copying the data once, 𝑓𝐺𝑃𝑈 represents the 

GPU frequency, 𝐶𝐺𝑃𝑈 represents the GPU’s capability of 

calculation, 𝜂 represents the efficiency of the algorithm, 

and 𝑎 is a constant which affects the speed of copying 

memory changing with different GPUs. 

Because of the limited GPU memory, we cannot 

copy all the data from the CPU to the GPU. As a result, 

we should divide the data into several parts. Then we 

copy each part from the CPU to the GPU. We do not 

copy the second part of the data until the first part of the 

data has been calculated. So do the rest parts of the data. 

This is the reason why 
𝑁

𝑛
 is in the formula. The GPU 

frequency influences the memory clock rate so the 

frequency is higher the more time is saved. Additionally, 

the capability of the GPU is stronger, the more time is 

saved. 

In the formula (6), 
𝑁

𝑛
 is decided by programmers. In 

our experiment, 𝑁 depends on the count of triangle faces 

and the count of original ray tubes. We divide all the 

19626 triangle faces into several groups. Meanwhile, we 

test the time of the intersection test which is the most 
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time-consuming part of the whole experiment. As is 

shown in Fig. 11. 
 

 
 

Fig. 11. Computation time on the GPU predicted and 

measured. 
 

In the formula (6), as the 𝑛 grows, 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ +

𝑡𝑁 𝑚𝑜𝑑 𝑛, which is 𝑡𝑘𝑒𝑟𝑛𝑒𝑙, does not change. 𝑡𝑚 changes 

slightly, too. So the formula (6) mainly depends on ⌈
𝑁

𝑛
⌉. 

Therefore, we should try our best to get the biggest 𝑛 to 

enhance the efficiency. We treat 𝑛 = 200 as a basic unit. 

Then we predict the calculation time by the formula (6), 

as is shown in Fig. 11. For our GPU, the biggest 𝑛 is up 

to 4500. If 𝑛 > 4500, there will not be enough space to 

save the data. So in the example of the comparisons of 

the CPU and the GPU, the 𝑛 of the GPU is chosen as 

4500. 

For the efficiency of algorithm, we can use the 

shared memory to store the triangle face information 

instead of global memory to save time. Proper distribution 

way of blocks and threads also reduces the total execution 

time. In addition, improvement of access mode can 

increase the operation efficiency, too. 

 

V. CONCLUSION 
This paper mainly introduced a GPU-Based 

shooting and bouncing lateral-ray tube tracing method 

that is applied to predicting the radio wave propagation. 

This method can be applied in electrically large scenes 

which is time-consuming. Then we discussed the most 

efficient mode of transferring the data of triangle faces, 

which is a necessary part in the shooting and bouncing 

ray tracing algorithm. The results proved that the method 

can greatly reduce the computation time. Moreover, this 

proposed method can be implemented on the future GPU 

devices which support the CUDA programming. 
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