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Abstract ─ Electromagnetic diffraction modelling and 

recent numerical simulation approaches, on the 

canonical 2D non-penetrable wedge scattering problem, 

are reviewed in this introduction paper. 

  

Index Terms ─ Diffraction, electromagnetics, finite 

element method (FEM), geometric optics (GO), 

geometric theory of diffraction (GTD), method of 

moments (MoM), physical optics (PO), physical theory 

of diffraction (PTD), simulation, time domain finite 

difference method (FDTD), wave scattering.  

 

I. INTRODUCTION 
We have witnessed transformation from engineering 

electromagnetics to electromagnetic engineering [1-4]. 

This is merely because of technological developments 

we have had for the last two-three decades. 

Understanding and using electromagnetic theory has 

become a must in many engineering disciplines. One 

important topic is electromagnetic scattering, and 

diffraction is the most critical phenomena that has been 

investigated analytically and numerically for a long 

time [5-36].   

Electromagnetic (EM) scattering from wave – 

object interactions using analytical solutions is limited 

to structures whose surfaces can be described by 

orthogonal curvilinear coordinates. Most of these 

solutions are in the form of infinite series, which are 

poorly convergent when the dimensions of the object 

are greater than a few wavelengths. Many practical 

scattering problems have no closed-form solutions. 

Because of this, high frequency asymptotic (HFA) 

techniques have been used when the dimensions of the 

scattering object are many wavelengths. Both ray-type 

Geometrical Theory of Diffraction (GTD) [5-8] and the 

wave- (i.e., induced-source)-based Physical Theory of 

Diffraction (PTD) [9-11] have received considerable 

attention in the past several decades. A short summary 

on HFA is given in [13].  

Diffraction from a two-dimensional (2D) non-

penetrable wedge is a canonical structure for all these 

HFA methods (see, Fig. 1). The source locations 1 and 

2 belong to single-side (SSI) and double-side (DSI) 

illuminations, respectively. Note that, there is a shadow 

region for SSI where only diffraction fields exist. The 

two critical angles reflection-shadow boundary (RSB) 

and incident-shadow boundary (ISB) separate three 

regions. In Region I, incident, reflected, and diffracted 

fields exist. In Region II, only incident and diffracted 

fields exist. In Region III (i.e., in the shadow region) 

only diffracted fields exist. In the DSI scenario, there 

are two RSBs which separate regions with and without 

reflected fields. 
 

 
 

Fig. 1. Wedge scattering scenarios (1: single side 

illumination; 2: double side illumination). 

 

In the case of acoustic waves, the two boundary 

conditions (BC) appropriate for the non-penetrable 

wedge are acoustically soft (SBC) and hard (HBC) 

wedges. In electromagnetics, they correspond to 

transverse magnetic (SBC TM) and transverse electric 

(HBC TE) cases, respectively. The field components 

used in these two cases, respectively, are the z-

components of electric ( zE ) and magnetic field ( zH ) 

intensities. Mathematically, they are Dirichlet and 

Neumann BCs, respectively. 

Wedge scattering has also been modeled with 

numerical models such as the Finite-Difference Time-

Domain (FDTD) [16,17], Method of Moments (MoM) 
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[18-23], and Finite Element Method [33,34]. The 

following sections summarize these models and 

techniques with characteristic applications. 

 

II. NUMERICAL MODELING OF 

DIFFRACTED WAVES 

A. FDTD approach 

Wedge scattering can be modeled with the FDTD 

method [20-28] and scattered, reflected and diffracted 

fields can be separated in both time and frequency 

domains. Early approaches were based on the separation 

of incident, reflected, and diffracted pulses in the time 

domain using time-gating approach [20-22].  

The methods discussed in [23-29] use multi-step 

techniques in separation of both diffracted and fringe 

fields as pictured in Fig. 2. Here, scenario (a) yields 

total fields; incident, reflected, and diffracted field 

components in Region I; incident and diffracted field 

components in Region II; and only the diffracted fields 

in Region III.  

 

 
 

Fig. 2. Multi-step FDTD-based diffraction approach: (a) 

the wedge scenario, (b) infinite-plane problem, and (c) 

free-space scenario [25].  

 

Scenario (b) in the figure is the infinite-plane 

scenario ( 180  , Plane-1) which yields total fields 

on the upper half plane ( 0    ). Since there is no 

edge or tip, the total fields include only incident and 

reflected fields; and do not contain diffracted fields. 

Finally, scenario (c) yields only the incident fields in 

the free-space. 

The FDTD simulation is run separately for each of 

these three scenarios and time-domain data are recorded. 

Subtracting the time data of the second scenario from 

the first scenario in Region I ( 00      ); and the 

time data of the third scenario from the first scenario in 

Region II ( 0 0        ) will yield diffracted-

only fields all around the wedge [23-25]. 

 

B. MoM approach 

Diffracted fields can also be obtained with the two-

step MoM approach as introduced in [30-32]. Figure 3 

shows the two (i.e., the wedge and infinite-plane) 

scenarios used for this purpose. 

MoM is a general procedure and frequency domain 

approach for solving linear equations. Many problems 

that cannot be solved exactly can be solved 

approximately by this method. It has been applied to a 

broad range of EM problems since the publication of 

the book by Harrington [37]. A useful tutorial has  

just been published [38]. MoM is a semi-analytical-

numerical model which needs the Green’s function 

solution of the problem at hand.  

 

 
 

Fig. 3. The two-step MoM-based diffraction approach: 

(a) the wedge scenario, and (b) infinite-plane problem 

[30]. 

 

The two-step MoM approach [30] is applied as 

follows. In Fig. 3 (a), incident fields are injected 

analytically, therefore MoM solutions directly yield the 

scattered fields which contains reflected and diffracted 

fields. The MoM solution of the half-plane scenario  

in Fig. 3 (b) yields the reflected fields in the region  
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up to the critical angle =-0. During the MoM 

implementation of the wedge scattering first, incident 

fields upon segments are calculated using the Green’s 

function of the problem and the impedance matrix is 

formed. Then 2N by 2N matrix system is solved and 

source-induced segment currents are obtained. Finally, 

scattered fields on the chosen observation points are 

calculated from the superposition of segment radiations 

using the Green’s function. Total fields are obtained by 

adding the direct wave from the source to the receiver. 

The diffracted-only fields can be obtained using the 

MoM procedure if reflected fields in (
00      ) 

are subtracted. The reflected fields in this region) can 

be obtained with the scenario in Fig. 3 (b).  

 
C. FEM approach 

Field components around the 2D non-penetrable 

wedge can also be extracted via FEM [33-34]. FEM is a 

variational method that is developed for approximate 

solution of boundary value problems governed by 

partial differential equations. It has been widely used 

due to its flexibility in handling arbitrary geometries 

and material non-homogeneities. 

Consider, the wedge problem in Fig. 4 (a). The 

open-region of the computational domain is terminated 

by PML blocks. The dotted observation circle represents 

the positions of receivers all of which will record the 

scattered fields. The three-step diffracted field extraction 

is as follows:  

(i) FEM is run for the structure in Fig. 4 (a) and the 

scattered fields are recorded on the observation circle.  

(ii) FEM is run for the problem in Fig. 4 (b), where 

the right edge of the object is extended over the vertical 

direction, and the scattered fields are recorded only on 

the blue-dotted part of the observation circle. These 

fields correspond to the reflected fields from the top 

face of the wedge. 

(iii) The same is repeated for the problem in Fig.  

4 (c) and fields reflected from the bottom face of the 

wedge are obtained. 

Finally, the diffracted field is obtained by 

subtracting the fields in steps (ii) and (iii) from the 

scattered fields in step (i). 

  

III. NUMERICAL MODELING OF FRINGE 

WAVES 
Electromagnetic and/or acoustic waves interact 

with objects and induce surface currents. These surface 

currents contain both uniform (PO) and non-uniform 

(PTD) currents if there is an edge and/or tip. The non-

uniform currents are called fringe currents and fields 

generated by these currents are called fringe fields. In 

order to calculate fringe waves, one needs to separate 

source-induced non-uniform and uniform currents. 

 

 
 

Fig. 4. FEM-based diffraction modeling: (a) original 

geometry, (b) modified geometry for obtaining the PO 

currents for SSI, and (c) modified geometry for obtaining 

the PO currents for SSI [34]. 

 

Fringe currents can be extracted with all these three 

methods (FDTD [29], MoM [31], and FEM [35]) by 

using similar multi-step procedures. First, standard 

procedures are applied to the wedge problem and surface 

currents are obtained. The currents on the illuminated 

face of the wedge contain both uniform and non-

uniform currents; only non-uniform currents exist on 

the shadow face. Then, infinite-plane scenario is used 

and (since there is no edge or tip type discontinuity) 

only uniform currents are obtained. Subtracting (that 

part of corresponding) infinite-plane currents from the  
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illuminated face wedge currents yields the non-uniform 

currents on the top face. The bottom face of the wedge 

already has non-uniform currents. The scattered waves 

superposed using non-uniform currents then yield the 

fringe waves. 

Note that, the infinite-plane scenario must be 

repeated for the other face of the wedge for the DSI in 

both diffracted and fringe field simulations.   

 

IV. NUMERICAL EXAMPLES  
The tutorial in [15] summarizes HFA models and 

the MATLAB based virtual diffraction tool presented in 

[16] can be used to visualize total and diffracted fields 

around a 2D non-penetrable wedge. The front panel of 

this virtual tool is shown in Fig. 5. 

 

 
 
Fig. 5. The front panel of the WedgeGUI tool [16]. 

 

The top block of the panel is reserved for the 

structure. The wedge figure is shown on the top right. 

The wedge exterior angle, incident distance/angle are 

supplied on the top left. The user also selects either of 

the Soft and Hard BCs; total and diffracted fields in this 

block. A pop-up menu allows the user to choose a plane 

wave or a line source excitation. For each source type 

the methods used in simulations are given with tick 

boxes. Multiple selection is possible. An example 

generated with this tool is given in Fig. 6. Here, total 

and diffracted fields for both SBC and HBC cases are 

shown. 

The next examples belong to numerical techniques. 

In Fig. 7, electromagnetic scattering around a 60-wedge 

with non-penetrable boundaries is shown. 

Here, MoM results are compared with HFA results. 

On the left, total fields around the wedge is presented. 

On the right, only diffracted fields are plotted. The 

angle of incidence is 60; this corresponds to SSI.  

As observed in the total fields plot, strong 

interference occurs between incident and reflected fields 

and lobes are formed. The total field on the shadow 

region only contains diffracted fields. As observed in 

the diffracted fields plot, maximum diffraction occurs 

along the two critical angles.  

 

 
 

Fig. 6. EM scattering around a 30-wedge, (Left) total 

fields, (Right) diffracted fields (r=5, kr=31.4). 
 

 
 

Fig. 7. EM scattering around a 60-wedge, (Left) total 

fields, (Right) diffracted fields (TE/HBC case). The 

receivers are located on a circle around the wedge with 

radius r=2. Plane wave excitation is used [30]. 

 

Figure 8 belongs to the same wedge with similar 

comparisons but for DSI. Here, 0=150 and r=2. The 

results belong to HFA, MoM, and FDTD simulations. 

As observed, there is a perfect agreement among the 

results. 

Fringe waves represent the part of the total edge-

diffracted waves generated by source-induced fringe 

surface currents. These waves can be generated directly 

using fringe currents. Fringe fields around a 60-wedge 

for both SBC and HBC cases are plotted in Fig. 9. Here, 

only PTD and MoM results are given for a clear 

visualization.  
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Fig. 8. EM scattering around a 60-wedge, (Left) total 

fields, (Right) diffracted fields (TE/HBC case). Plane 

wave excitation is used [30]. 

 

 
 

Fig. 9. Fringe fields vs. angle around a 60-wedge. 

(Top) TM/SBC case, (Bottom) TE/HBC case. A line 

source excitation is used [31]. 

 

The last example in Fig. 10 belongs to fringe fields 

around a 30-wedge with non-penetrable hard boundaries. 

All the methods are used here. As observed, PTD, MoM, 

FDTD, and FEM results agree very well; the incorrect 

result belongs to MTPO [36]. 

Note that, the free virtual tools presented in [26] 

(based on FDTD method), [30] and [32] (based on 

MoM) can also be used to visualize EM scattering 

around the 2D non-penetrable wedge comparatively. 

 

V. CONCLUSION 
Understanding electromagnetic wave scattering is 

critical in many applications, especially in designing 

reliable surveillance systems and low visible air and 

surface targets. This used to be done using approximate 

analytical models such as GO, GTD, UTD and PO, 

PTD, widely known as high frequency asymptotics.  

 
 

Fig. 10. Fringe fields vs. angle around a 30-wedge 

(TE/HBC case). 

 

The GO can model reflections and refractions  

but fails to account for the field intensity in shadow 

regions. GTD describes diffraction everywhere except 

at and near incidence and reflection shadow transitions; 

UTD removes the discontinuities along these shadow 

boundaries. However, GO/GTD/UTD fails near caustics. 

The PTD supplements PO to provide corrections that 

are due to diffractions at edges of conducting surfaces. 

Ufimtsev suggested the existence of nonuniform (fringe) 

edge currents in addition to the uniform physical optics 

surface currents.  

Note that, GO/GTD/UTD is simple to apply, can 

be used to solve complicated problems that do not have 

exact solutions, provides physical insight into the 

radiation and scattering mechanisms from the various 

parts of the structure and can be combined with other 

techniques, such as MoM, to form a hybrid method. On 

the other hand, PO/PTD provides correctly only the 

first asymptotic terms for main components of the 

scattered field in 3D problems, allows constructing 

relatively simple solutions of various practical problems, 

provides uniform asymptotics for the scattered field 

which are valid both in the ray regions and in the 

vicinity of foci and caustics, clarifies the physical 

structure of the scattered field, establishes the diffraction 

limit of reduction of scattering by absorbing coatings, 

and can be utilized to develop efficient hybrid 

techniques. 

Parallel to the use of high speed, huge memory 

computers, novel numerical models have also begun to 

be used in scattering modeling. Recent studies have 

focused on the identification and isolation of diffracted 

and fringe wave components using well-known 

numerical models such as FDTD, MoM, and FEM. The 
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use and success of these numerical models are promising 

in modeling and simulation realistic objects in 3D.    
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Abstract ─ We present computational analysis, 

optimization, and design of optical couplers that can be 

useful to improve the transmission along bended 

nanowires. After demonstrating the deteriorated energy 

transmission due to sharp bends, which lead to out-of-

phase nanowires and diffraction, we use a rigorous 

simulation environment to design efficient couplers made 

of spherical particles. For this purpose, an optimization 

module based on genetic algorithms is combined with 

the multilevel fast multipole algorithm, leading to a  

full-wave environment for precise designs of couplers. 

Numerical examples involving silver nanowires are 

presented to demonstrate the effectiveness of the 

optimization mechanism. 

 

Index Terms ─ Genetic algorithms, multilevel fast 

multipole algorithm, nanowires, optical couplers, surface 

integral equations. 
 

I. INTRODUCTION 
Their favorable properties that allow controlling and 

guiding optical waves make nanowires an important 

class of popular ingredients of nano-optical systems [1]–

[14]. Thanks to plasmonic properties of metals at optical 

frequencies, nanowires provide an excellent ability to 

transfer electromagnetic energy to long distances with 

respect to wavelength [3]. Hence, they are naturally used 

in a plethora of applications, such as sensing [1], energy 

harvesting, and optical imaging [5],[7]. As in all areas  

of electromagnetics, computational studies [12]–[14] are 

performed hand in hand with analytical and experimental 

work in order to develop alternative configurations of 

nanowire systems, leading to improved designs with 

better optical responses. Today, nanotechnology allows 

for the fabrication of less defective nanowires and their 

highly ordered arrangements for achieving ideal structures 

that were considered to be only theoretical a decade ago. 

When a nanowire system is used as a transmission 

line, the electromagnetic energy is transmitted via 

surface plasmon polaritons. At the end of the line, the 

energy is assumed to be coupled to another system [6], 

or to free space, where radiation occurs from the tips of 

the nanowires [3]. In an optical system, depending on the 

application, it may be required to bend the transmission 

line. Then, similar to their counterparts at microwave 

frequencies, reflections may occur from the bends, 

reducing the amount of energy transferred. But, since the 

nanowires are not closed systems and the energy is 

mainly carried on the nanowire-air interfaces, diffraction 

at the bending locations becomes an important problem 

that further reduces the efficiency of the transmission 

[8]. As shown in this paper, smooth bends improve the 

transmission; but a large radius of curvature (ROC) may 

be required for a sufficient transmission. In addition, 

curving nanowires may bring additional challenges in 

the fabrication processes. At the same time, a large ROC 

wastes an area around bend and it is desirable to use a 

coupler that allow for efficient transmission even for 

sharply bended nanowires. 

This study is devoted to the design of optical 

couplers for bended nanowire transmission lines. By 

using an array of spherical particles at the bend locations, 

we are able to increase the transmission through 90º 

corners without implementing any curves. The structure 

of the coupler is optimized via genetic algorithms (GAs) 

supported by fast and accurate solutions using the 

multilevel fast multipole algorithm (MLFMA) [15],[16]. 

In the next section, we briefly provide the details of the 

developed simulation and optimization environment. 

Section III presents the optimization parameters and 

numerical results, demonstrating the effectiveness of the 

optimizations. The paper ends with our concluding 

remarks in Section IV. 
 

II. SIMULATION AND OPTIMIZATION 

ENVIRONMENT 
We consider metallic objects, i.e., nanowires and 

couplers, located in free space at optical frequencies. The 

transmission problems are solved in frequency domain 

assuming time-harmonic sources in steady state. The 

major components of the solver and the optimization 

mechanism can be summarized as follows. 

 Metals are modeled as homogeneous plasmonic 

objects using frequency-dependent complex perm 
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values with negative real parts. Surfaces are 

discretized by using triangular meshes. Electric  

and magnetic current densities are expanded via 

standard Rao-Wilton-Glisson functions. For 

accurate solutions, a modified combined tangential 

(MCTF) [17] is used, which provides accurate 

solutions of metallic objects in wide ranges of 

optical frequencies. 

 Iterative Krylov-subspace algorithms are used to 

solve the dense matrix equations derived from the 

discretized MCTF. Matrix-vector multiplications 

are performed efficiently by using MLFMA [15], 

that is developed particularly for plasmonic 

structures [18]. Iterative solutions are accelerated 

by using a nested scheme employing MLFMA and 

its approximate forms. All interactions (matrix 

elements) and near-zone calculations are performed 

with two digits of accuracy (1% maximum error). 

 GAs are used to optimize the couplers involving 

spherical plasmonic particles. On/off optimizations 

are performed by removing or keeping the particles 

to maximize the cost function. Hence, binary 

chromosomes involving 0 (off/remove) and 1 

(on/keep) bit values are used so that the chromosome 

length corresponds to the number of initial particles 

in the coupler. An in-house implementation of 

GAs, employing hybrid selection, success-based 

mutations, and family elitism, is used for efficient 

optimizations. 

 The GA implementation is combined efficiently 

with the solver module based on MLFMA. Two 

different kinds of combinations are considered, 

depending on the size of the problems. In a black-

box combination, the GA module requires the 

evaluation of each individual, which is considered 

to be an independent electromagnetic problem. In 

an integrated combination, the setup computations 

for the full problem is performed before the 

optimization starts, and each evaluation is achieved 

by row/column deletion on the full matrix equation. 

In both cases, a dynamic accuracy control for 

MLFMA [19] can be used to further accelerate the 

optimizations by using less accurate solutions in 

initial GA pools. 

More details of the solver and optimization modules can 

be found in [19],[20]. 

 

III. NUMERICAL RESULTS 
Figure 1 depicts the scenario considered in this 

paper. Transmission lines involving pairs of silver (Ag) 

nanowires are considered at 250 THz. At this frequency, 

the relative permittivity of Ag is approximately −60.8 + 

4.31i [21], while it is assumed to be non-magnetic. 

 

 
 

Fig. 1. The transmission scenario considered in this 

paper. 

 

The nanowires have 0.1 × 0.1 μm square cross 

sections, while the surface-to-surface distance between 

them is also set to 0.1 μm. Without bending, each 

transmission line involves a horizontal part (in the z 

direction) of approximately 20 μm that is connected to a 

vertical part (in the x direction) of approximately 20 μm, 

leading to a total length of around 40 μm (approximately 

33λ, where λ is the wavelength in free space). The 

couplers are designed as two-dimensional arrays of 

spherical Ag particles located at the intersection locations. 

The spheres are identical with a diameter of 90 nm. 

When using the couplers, the horizontal and vertical 

parts are connected sharply with 90º corners. For 

benchmarking, we also consider curved bends with 

various ROC values, while no coupler is used in these 

cases. As also depicted in Fig. 1, each transmission line 

is excited by a pair of dipoles (with unit dipole moments, 

i.e., 1 Am strengths) located symmetrically on the left-

hand side with 0.2 μm distance from the nanowires. The 

output region is defined at the bottom end of the vertical 

nanowires. Specifically, sampling points on 1.3 × 1.3 μm 

planes with 0.1 μm distance from the nanowires are used 

to assess the transmission capabilities of the nanowires 

systems. 

First, we consider the performances of curved 

connections, in comparison to the 90º sharp connection. 

Figure 2 presents the electric-field intensity (magnitude 

in dBV/m) and the power density (magnitude in dBW/m2) 

at around the transmission lines. The power density is 

calculated as: 

 *1
,

2
 S E H  (1) 

where E and H represents the electric field intensity and 

the magnetic field intensity, respectively. The dynamic 

ranges are selected as 40 dB and 20 dB for the field and 

power, respectively, for a comparative visualization. The  
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dipoles are clearly visible on the left-hand sides, where 

strong coupling to the nanowires is also observed. 

Diffraction occurs due to bending in all cases, while it 

becomes less localized as ROC increases from 0.3 μm to 

10 μm. A comparison of the field and power values at 

the output sides reveals that the transmission is very low 

for the 90º sharp case, i.e., the power density in the 

vicinity of the nanowires at the output is less than 20 dB 

in this case. Then, as ROC increases and bending becomes 

smoother, the transmission improves progressively. 

While this is expected, we note that the quality of the 

transmission deteriorates due to the negative effects of 

the diffraction, as well as the phase mismatch between 

the nanowires. These contributions can be difficult to be 

isolated; but, they are modeled precisely using a full-

wave solver. 

 

 
 

Fig. 2. The electric field intensity and power density at around the curved transmission lines with various values of 

ROC, in addition to the 90º sharp bending case. 

 

For a detailed comparison of the curved transmission 

lines, Fig. 3 present the magnitudes of the electric field 

intensity (dBV/m), magnetic field intensity (dBA/m), 

and power density (dBW/m2) on the output plane described 

in Fig. 1. Our observations are in consistent with the 

discussion above, i.e., the transmission clearly improves 

ACES JOURNAL, Vol. 32, No. 7, July 2017564



as ROC increases. Considering the power density plots, 

a small spot of values at around 35 dB is visible for the 

sharp case, while it evolves into a much larger spot with 

values more than 45 dB as ROC becomes 10 μm. It is 

remarkable that, in addition to the larger output values, 

increasing ROC leads to more symmetric output 

patterns, as a demonstration of improved transmission 

quality. 

 

 
 

Fig. 3. The electric field intensity, magnetic field intensity, and power density at the outputs (see Fig. 1) of the 

transmission lines with various values of ROC, in addition to the 90º sharp bending case. 

 

Following the benchmark on curved transmission 

lines, we consider the design of couplers for improving 

the transmission through sharp corners. Two-dimensional 

arrays of 139 or 143 spherical particles, which are also 

made of Ag, are placed at the corner locations enclosing 

the nanowires. Specifically, a 13 × 13 grid is used, while 

the particles corresponding to the nanowire locations  

are simply omitted. Optimizations are performed in  

the MATLAB environment. As the cost function, we 

select the average power density to be maximized on the 

1.3 × 1.3 μm output planes. In the following, we present 

the results for three types of optimizations.  

 The full model, discretized with around 91,314 

unknowns, is considered. Using pools of 40 

individuals (40 solutions per generation), it takes 

around one day to perform 6 generations (240 

solutions) using 20 workers. Therefore, in order to 

perform an optimization with 50 generations, we 

need around 8 days.  

 A quarter model, which is obtained by reducing the 

length of the transmission lines to 10 μm (5 μm 

horizontal plus 5 μm vertical), is considered. 

Locations of the dipoles and the output planes with 

respect to the transmission lines are kept as in  

the full model. In this case, again using pools of  

40 individuals and 20 workers in the MATLAB 

environment, we are able to complete 100 

generations in 4 days. Once an optimal coupler is 

found, it is tested on the full geometry for the actual 

performance.  

 For testing the sensitivity, a quarter model, where 

the sphere grid is shifted by one element towards 

the outer sides of the corner, is considered. In the 

following, three separate trials are shown for this 

scenario. Optimization histories (increase of the 

cost function) for these three optimizations can be 

seen in Fig. 4. 

Figure 5 depicts the optimized coupler designs, in 

addition to the obtained electric field intensity. It can  

be observed that the couplers effectively improve the 

transmission along the nanowires, leading to better 

output values in comparison to the sharp case without 

any coupler (see Fig. 3). Better transmissions with the 

couplers are further verified in Fig. 6, where power 

density values at around the transmission lines as well  

as on the output planes are presented. We have the 

following conclusions. 

 Using a quarter model for the optimizations instead 

of the full geometry provides quite successful 

results. In fact, the results for the full geometry  

in Figs. 5 and 6 are clearly worse than the 

corresponding results for the quarter geometry. 

This is due to the less number of generations (50 

instead of 100) used for the full geometry, due to 

the slower optimization trials for this geometry. 

Although not shown, reducing the geometry further 

(smaller than the quarter) reduces the effectiveness 

of the optimizations, i.e., a designed coupler for the 

smaller geometry does not work sufficiently for the 

full case. 
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 Shifting the grid slightly changes the optimization 

results. This is partially due to the small 

rearrangements of the spherical particles when 

shifting is applied. Consequently, the optimizations 

seem to be stable, leading to reasonably good 

results that can be achieved. 

 Three different optimizations for the same (shifted) 

grid and geometry provide similar results, again 

demonstrating the stability of the optimizations. 

Obviously, discrepancies also exist as the final 

geometries depicted in Fig. 5 are not exactly the 

same. If the results are investigated in detail, and as 

also depicted in Fig. 4, the second trial leads to a 

better performance among three trials with more 

than 1.8 kW/m2 average power. 

 Considering again the last three optimizations, the 

similarities between the coupler designs shown in 

Fig. 5 is remarkable. In general, we observe empty 

spaces on the right-top and left-bottom portions, 

while the particles mostly remain on the left-top 

and right-bottom sides. These designs may be used 

as seeds to reach more optimal couplers to be 

considered in a further work.  

Finally, for more quantitative comparisons, Table 1 

lists the average and maximum power density values at 

the outputs of the transmission lines considered in this 

paper. Although the maximum power is not directly 

optimized, there is a high correlation between the 

maximum and average power values. In addition to the 

sharp (no-coupler) case, we consider the optimized (the 

second trial for the quarter model with shifted grid) case, 

as well as the curved designs with various ROC values. 

It can be observed that the optimized coupler improves 

the average power ten times than the no-coupler case. 

The improvement by the coupler is close to the curved 

sample with 2.5 μm ROC. Existence of any coupler 

design of the same size, which may provide transmissions 

as good as larger ROCs, is under investigation. 

 

 
 

Fig. 4. Optimization histories for three trials on the 

shifted quarter model.  

 

 
 
Fig. 5. Coupler designs (optimization results) to maximize the output of the 90º bended transmission line, and the 

corresponding electric field intensity at around the nanowires as well as on the output plane. 
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Fig. 6. The power density at around the nanowires when using the coupler designs at the corner of the 90º bended 

transmission line. 

 

Table 1: Average and maximum power density values at the outputs of the transmission lines 

 Curved Transmission Lines  

ROC 0.3μm 0.6 μm 0.9 μm 1.2 μm 2.5 μm 5.0 μm 10 μm Sharp Optimized 

Average (kW/m2) 0.924 1.04 1.18 1.38 3.26 6.85 10.4 0.307 3.22 

Maximum (kW/m2) 5.49 5.53 5.80 6.12 10.3 24.0 32.68 3.91 10.0 

 

IV. CONCLUSION 
We present simulation and optimization of optical 

couplers to improve the transmission ability of bended 

nanowire systems. By using an optimization mechanism 

involving efficient implementations of GAs and an 

MLFMA-based solver, we perform full-wave 

optimizations of couplers when they are located on the 

transmission lines (without resorting to isolation). We 

show that a well-designed coupler that involves only 

100–200 spherical particles can improve the average 

power transmission through sharp corners by 10-folds 

without applying any curve at the bend locations.  
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Abstract ─ This paper presents an efficient high-

frequency analysis framework for studying diffraction 

occurring at irises, or baffles, in the arms of a Fabry-

Perot optical interferometer, relevant to the design and 

operation of interferometric detectors of gravitational 

waves like LIGO and Virgo. 

 

Index Terms ─ Gaussian beams, gravitational wave 

detectors, uniform theory of diffraction.  
 

I. INTRODUCTION 
Recently interferometric detectors of gravitational 

waves like LIGO, Virgo and KAGRA provided the first 

direct observation of gravitational waves [1-2]. These 

instruments are very long baseline (5km) Fabry-Perot 

optical interferometers, where the (quadrupole) spacetime 

ripples due to a gravitational wave are converted into an 

intensity modulation of the dark fringe [3-5]. 

The differential arm length perturbations to be 

measured are extremely small, of the order of 10-21m, 

hence requiring extreme precision in the whole optical 

set-up, and extreme rejection of all possible noise 

sources. In particular, the (infrared, 𝜆 =1064nm) laser 

beam travels the interferometer arms within pipes where 

high vacuum is created, to minimize light scattering from 

air molecules. Even if the beam is very narrow, the  

spot size on the terminal mirrors being a few cm wide, 

diffraction due to the finite size of the end-mirrors (and 

other optical components) [6] may cause a small amount 

of stray light to reach the vacuum pipe walls, that are 

coupled to environmental noise, creating multipath 

interference that may result into idiosyncratic noise 

features, that ultimately hinder the instrument’s 

performance. Absorbing baffles or irises, are accordingly 

placed along the beam path, to intercept stray light that 

would eventually reach the pipe walls, and re-couple to 

the main FP cavity mode [7,8]. 

However, diffraction from the baffle edges can be  

itself a source of multipath interference; hence efficient 

modeling of baffle diffraction is necessary in order to 

optimize baffle design for present and next generation 

detectors.  

In this paper we apply the uniform theory of 

diffraction (UTD) to a simple canonical baffle problem, 

using a realistic (Gaussian beam) model for the primary 

field in the arms, and a fully 3D baffle geometry. The 

proposed solution is analytic and physically readable, 

and the UTD-computed diffracted field is projected into 

the natural Gauss-Laguerre basis describing the light 

field the FP interferometer arms [4], to obtain an efficient 

(accurate, readable and easily computable) representation 

of the diffracted field.  

The paper is organized as follows: the needed 

Gauss-Laguerre and UTD concepts are introduced in 

Section II and III, respectively. Section IV discusses the 

geometry of the baffle problem and the proposed UTD 

solution, with numerical results shown in Section V. 

Finally, Section VI draws some conclusions and hints for 

future work. 

 

II. GAUSSIAN BEAMS 
Laser beams are usually very narrow-band, and 

highly directive, so that the beam amplitude drops  

off rapidly as the angle between the beam axis and the 

direction of observation increases. 

The (scalar) Gaussian beam solution of Helmholtz 

equation in the paraxial approximation, provides a very 

useful tool for the mathematical representation of fields 

which propagate unbounded but confined close to a 

specific direction, as laser beams [9]. 

Assuming axial symmetry, and propagation along 

the positive z direction, the fundamental (scalar) Gaussian 

beam field is: 

 

2

2

2

[ ( )] ( ) ( )0( , )
( )

.Gw jz z jkzR zw
u z e e e e

w z

 
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

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The function ( )w z  describes the beam width (distance 

between the points where the field’s amplitude reduces 

by a factor 𝑒−1 from its maximum on-axis value); 

0 (0)w w  being denoted as the beam waist, as shown  

in Fig. 1. The larger 
0w  the more collimated the beam. 

( )R z  is the wavefront radius of curvature. At the beam 

waist 𝑧 = 0, (0)R  tends to infinity, as one would expect 

for a plane wave. Further away, lim
𝑧→∞

𝑅(𝑧) = 𝑧, that is the 

radius of curvature of a spherical wavefront originating 

in 𝑧 = 0. As the Gaussian beam propagates along the z-

axis, its phase changes in a way which differs from that 

of a plane wave. The phase shift is represented by the 

Gouy phase ( )G z  (see [9, 10] for details), resulting in a 

slightly increased distance between wavefronts.  
 

 
 

Fig. 1. Reference system and Gaussian beam, showing 

how the waist ( )w z  changes along the beam propagation 

direction. 

 

In real lasers or optical systems, axial symmetry 

cannot be guaranteed, and higher order modes can be 

excited. In cylindrical coordinates, these are the Gauss-

Laguerre (GL) modes: 
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 (2) 

The Laguerre polynomials ( )m

pL x  are defined by 

two integer indices p>0 and m and are of order 

2N p m  . The related Gouy phase shift ( )G z  is 

larger than that of the fundamental Gaussian beam by a 

factor 𝑁 + 1.  

The two indices p and m describe, respectively,  

the radial and azimuthal dependence of the beam. In 

particular, the radial index p denotes the number of  

nodal rings on a plane perpendicular to the direction of 

propagation.  

The superposition of the (p, m) and (p,-m) GL modes 

yields the TEMp,m modes shown in Fig. 2. 

In the case of interest here, the vector electromagnetic 

field is linearly polarized, and can be written as follows: 

 ˆ( , , ) ( , , )z u z   u p , (3) 

where 𝒑̂ is a constant unit vector.  
 

 
 

Fig. 2. Transverse intensity distribution of various TEMp,m 

(GL) beams. 
 

III. UNIFORM THEORY OF DIFFRACTION 
In the asymptotic high frequency limit, when the 

wavelength becomes negligible with respect to the size 

of the scattering objects, the light field can be computed 

by ray tracing (eikonal equation, Fermat principle) 

combined with field transport and energy conservation 

along the rays, yielding the geometrical optics (GO) 

solution [11].  

The Fermat principle was generalized by Keller to 

include knife-edge and conical-tip diffracted rays, leading 

to an improved version of GO known as Geometrical 

Theory of Diffraction (GTD) [12].  

The GTD field, however, may exhibit discontinuities 

(e.g., at shadow/reflection boundaries) and/or singularities 

(e.g. at caustics and foci). 

The Uniform Geometrical Theory of Diffraction 

(UTD) was developed to overcome some of these 

limitations, namely the divergence at shadow boundaries, 

by the introduction of appropriate, physically motivated 

transition functions. UTD hence provides continuous 

field at shadow boundaries, even if it still fails at caustics 

[13]. 

In the asymptotic short wavelength limit, diffraction 

can be considered as a local phenomenon and the study 

of scattering is reduced to that of a few ideal “canonical” 

problems, the most relevant for our purposes being the 

“wedge problem” [14, 15]. 

The field scattered by a wedge is given by the 

superposition of GO and diffracted (UTD) field: the 

former takes into account incident and reflected fields  

in those regions where they exist; the latter guarantees 

continuity. The diffracted field may be accordingly 

written as [ ] [ ][ ] ( )d i jkD A e  E E , where [ ]d
E  and 

[ ]i
E  are column matrices holding the components of  

x

y

z

z

w z( ) w0




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the diffracted and incident fields respectively, [ ]D  is a 

square matrix of diffraction coefficients,   is the distance 

from the wedge edge to the observation point and ( )A   

is a spreading factor. Field components are conveniently 

given in a ray-fixed coordinate system (see [13-15] for 

details), hence incident and diffracted field are fully 

described by their parallel and perpendicular components 

with respect to the incidence and diffraction planes 

respectively, and [ ]D  is a 2-by-2 matrix. The diffraction 

matrix is available for perfectly conducting, perfectly 

absorbing and mixed (impedance) boundary condition 

wedges [13-15]. 
 

IV. FORMULATION 
As a toy model for studying baffle diffraction in the 

beam pipes of a LIGO-like interferometric detector of 

gravitational waves, we consider the simple geometry 

depicted in Fig. 3: a planar metal screen placed at ,bz z  

perpendicular to the pipe/beam axis z, with a centered 

circular aperture of radius a. 
 

 
 

Fig. 3. Geometry for the baffle diffraction problem. 
 

Even if the diffracting edge is a circular rim, its 

diameter is usually several thousands of wavelengths, so 

that the edge can be treated as locally straight, and UTD 

coefficients for the straight wedge can be used. 

The baffle is illuminated by a 3D Gaussian beam  

(3) propagating along the z-axis, with the electric field 

linearly polarized along the y direction.  

Different polarizations can, of course, be treated in 

a similar manner. 
 

Table 1: Baffle aperture radius and observing plane used 

in our simulations 

 5bz a  2s bz a z   5s bz a z   

a = 0.05 m  m 0.35 m 0.5 m 

a = 0.15 m  m 1.05 m 1.5 m 

a = 0.5 m  m 3.5 m 5 m 

 

The diffracted field is evaluated on a plane at 
sz z  

by resorting to the extended Fermat’s principle to locate 

the diffraction point on the baffle rim for each diffracted 

ray path. 

V. NUMERICAL RESULTS 
For the present analysis, a wavelength 1 m   has 

been considered, with a beam waist 
0 010w  , and unit 

amplitude on the beam axis.  

Six different baffle geometries have been considered, 

whose relevant parameters are collected in Table 1. 

The diffracted field has been computed using UTD 

and is depicted in Fig. 4, in normalized units for easier 

reading for various values of the baffle’s aperture a and 

of the observation plane distance from the baffle’s plane.  

In all cases, an interference pattern appears. As the 

aperture becomes larger, the interference pattern tends to 

vanish.  

As the distance between the planes at bz z  and 

sz z  increases, the intensity of the diffracted field also 

tends to vanish, and no interference pattern shows up.  

One of the major numerical issues has been the very 

low incident field’s values on the baffle’s edge. Dealing 

with a wavelength and a beam waist in the order of  

10-6m and 10-4m, the beam is extremely collimated and 

its intensity on the baffle’s edge is of the order of  

10-10Vm-1. Hence, the evaluation of the diffracted field  

is critical due to its very low intensity and to the finite 

machine’s precision. Smaller values for the beam waist 

or an augmented intensity of the incident beam have 

been used in order to get larger values for the incident 

field on the baffle’s edge, values which are then to be 

denormalized to attain final results.  

Even if UTD overcomes the GTD issues at the 

shadow boundaries, thanks to the transition function, it 

is known that, as the distance from the edge increases, 

the UTD evaluation is more critical [13]. Special care 

was hence necessary in our case, where the field is 

computed thousands of wavelength away from the edge, 

to evaluate the transition function since, again, finite 

machine precision give rise to non-perfect singularity 

cancellation in diffraction coefficients very close to the 

shadow boundaries.  

Table 2 shows CPU times. It can be noted how times 

are not the same, even if the number of points where the 

diffracted field is computed is the same, due to checks  

in the evaluation of the transition functions which are 

necessary as a increases and the baffle and the reference 

section gets farther apart. 

 

Table 2: Times to compute the incident field on the edge, 

inct , and the diffracted field on the section, dt , at two 

different distances from the baffle 

 a = 0.05 m a = 0.15 m a = 0.5 m 

inct  0.017s 0.001s 0.001s 

@2dt a  79,748s 79,865s 80,393s 

@5dt a  79,826s 80,393s 81,005s 

x

y

z j

a

j

P z( ),j,


z
b

z
s

incidence plane
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Fig. 4. Normalized transverse electric field components. Left column 2sz a ; right column 5sz a . 

 

VI. CONCLUSIONS 
Light diffraction by a baffle with a circular aperture 

in a perfectly conducting screen illuminated by a 

Gaussian beam in a LIGO-like interferometric detector 

of gravitational waves has been discussed.  

Gauss Laguerre modes have been used as a natural  
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representation tool for the fields in a FP cavity, and UTD 

has been used to compute the scattered fields. The 

predicted magnitude of the diffracted field is pretty  

low; yet the extreme sensitivity of gravitational wave 

detectors needs an accurate analysis of all possible noise 

sources, including stray light, as discussed here. Further 

developments will include more realistic geometric and 

material properties of the baffles, and a study of the 

impact of baffle-diffracted light on the noise floor of the 

instrument. 
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Abstract ─ A novel method is introduced for calculating 

fringe currents and fringe waves around the tip of a 

perfectly reflecting wedge under line source illumination. 

The time-domain fringe (non-uniform) currents are 

extracted with the finite-difference time-domain (FDTD) 

method. These currents are then fed into a free-space 

FDTD and fringe waves are excited. Alternatively, fringe 

waves are also obtained using the Green’s function 

approach. The validation of the proposed method and the 

verification of the results are done against the physical 

theory of diffraction (PTD) as well as the method of 

moments (MoM). The factors affecting the accuracy are 

also discussed. 

 

Index Terms ─ Finite difference time domain (FDTD), 

fringe waves, method of moments (MoM), nonuniform 

currents, physical theory of diffraction, PTD, uniform 

currents, wedge. 

 

I. INTRODUCTION 
Physical optics (PO), introduced by Macdonald in 

1912, is a high frequency asymptotic (HFA) technique 

used for the calculations of scattered fields from 

perfectly electrical conducting (PEC) objects [1]. PO is 

a source-based technique where currents are assumed to 

be induced on an infinite PEC plane tangent to the object. 

PO source induced currents, which are nonzero only on 

the illuminated side of object’s surface (away from any 

discontinuity), are named as uniform currents. PO-based 

scattered fields, which consist of reflected and diffracted 

fields, yield inaccurate results for the objects having 

discontinuities such as sharp edges and/or tips. This is 

because the magnitude of the induced currents near a 

discontinuity is not uniformly distributed. In other 

words, diffraction is not modeled properly with PO’s 

uniform current approximation. Physical theory of 

diffraction (PTD) extends PO by introducing fringe 

(non-uniform) currents. The PTD scattered fields contain 

contributions of both uniform (PO) currents and non-

uniform (fringe) currents [2]. The fields radiated from 

fringe currents are called fringe waves.  

The understanding and investigation of fringe waves 

are critical in broad range of electromagnetic (EM) 

problems, such as radar cross-section, propagation, 

electromagnetic compatibility modeling and simulation. 

The canonical wedge structure has long been used  

for this purpose. For example, exact and asymptotic 

formulations of fringe currents are given for a PEC 

wedge illuminated by a plane wave in [3] and for the line 

source illumination in [4]. A novel method of moments 

(MoM)-based approach is also introduced recently [5]. 

Finite difference time domain (FDTD) is a numerical 

method used in solving Maxwell’s equations in time 

domain. It has been widely used in variety of EM 

problems including radiation, propagation, and scattering. 

The FDTD method has also been used in the calculation 

of diffraction coefficients and there are many studies  

in modeling diffraction from various wedges [6]–[9]. 

Recently, double tip diffraction has also been modeled 

with FDTD [10]. Here, we propose a novel FDTD 

method for the extraction of fringe currents and fringe 

waves on the canonical PEC wedge structure. The fringe 

fields are also computed via Green’s function based on 

FDTD-extracted fringe currents.  

The paper is organized as follows. In Section 2,  

we describe the problem and summarize PTD fringe 

wave expressions. Then, the FDTD-based fringe currents 

extraction procedure is outlined in Section 3. Section 4 

presents examples and numerical comparisons against 

the PTD and MoM data. Conclusions are given in Section 

5. 

 

II. GEOMETRY OF THE PROBLEM 
The geometry of the problem is shown in Fig. 1. 
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Here, a PEC wedge with apex angle  2  is 

illuminated by a line source located at  00 , . The tip 

of the wedge is at the origin. The receiver is at  , . 

The incident EM wave hits the wedge and induces 

surface currents. This induced current consists of uniform 

(PO) and non-uniform (fringe) parts [2]. Non-uniform 

currents cause fringe waves. 

 

 
 

Fig. 1. Geometry of the problem under SSI illumination. 

 

PTD fringe fields are obtained by subtracting PO 

diffracted fields from total/exact diffracted fields: 

 POdExactdfringe uuu ,,  . (1) 

Exact diffracted fields can be obtained from both integral 

and series summation representations [2, 3, 11]. Below, 

the integral solution is given for the sake of completeness 

for both soft (TM) and hard (TE) boundary condition 

(BC), respectively:  
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diffracted fields are given as [4]: 
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with  0
22 cos2   rrrr . The term 

refld
hu ,

 

is used for hard BC and expressed by the opposite of (7). 

Numerical computation of this integral representation is 

discussed in [12]. 

 

III. FDTD MODELING OF FRINGE WAVES 
FDTD is a numerical method which is based on 

discretization of Maxwell’s equations in both space and 

time. The first and most popular (staircase) discretization 

scheme was proposed by Yee in 1966 [13]. In this 

scheme, field components are assumed to be located  

in space as shown in Figs. 2 and 3. Besides the spatial 

difference, electric and magnetic fields are also assumed 

to be separated in the time domain by a half-time step. 

The 2D FDTD equations, for the scenario in Fig. 1, 

corresponding to soft (TMz) and hard (TEz) BC problems 

contain (Hx, Hy, Ez) and (Ex, Ey, Hz) components, 

respectively. 
 

 
 

Fig. 2. A FDTD model of the problem in the TMz 

configuration. The magnetic field components used for 

calculation of surface currents are circled. 
 

 
 

Fig. 3. A FDTD model of the problem in the TEz 

configuration. The magnetic field components used for 

calculation of surface currents are circled. 
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The PEC wedge in TMz configuration is modeled by 

setting all electric field components to zero for the cells 

lying inside. For TEz configuration, the electric field 

components lying inside are set to zero and the magnetic 

fields are updated in the usual way. 

The source-induced surface currents are modeled 

using the tangential magnetic fields. On the top surface 

and for the TMz mode, this is expressed by: 

 
xzy

top
s HaHaJ ˆˆ 


. (8) 

The field components are not collocated because of the 

staggered nature of FDTD grid. Hence, spatial averaging 

can be applied to magnetic fields for approximating  

their values on the boundaries. As shown in Fig. 2, Hx 

components are positioned a half-cell ( 2/y ) above and 

below of top surface; these are used in averaging source-

induced surface currents. The bottom surface is not that 

simple because the normal direction changes according 

to the position of the E-field. For example, the surface 

normal is directed along xâ  for the boundary between 

nodes  ji ,1  and  1,1  ji . Hence, source-induced 

surface current is obtained by averaging four Hy located 

around the boundary, i.e.: 
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25.0)1,(

,


, (9) 

where n is time index. For TEz mode, Hz is used in 

obtaining source-induced surface currents on both top 

and bottom surfaces. As seen in Fig. 3, spatial averaging 

is also required for this mode. 

The novel multi-step FDTD approach used for the 

calculation of fringe currents and fringe waves in the 

time domain is as follows: 

 Run the FDTD simulation for the PEC wedge 

structure and record surface currents in the time 

domain. On the top surface, recorded currents contain 

both uniform and non-uniform parts; on the bottom 

surface it contains only non-uniform currents. 

 Make the wedge angle 180 (i.e., replace wedge with 

the half-plane), run the FDTD simulation again, and 

record surface currents only on the top surface of the 

wedge. Recorded data contains only uniform (PO) 

currents. 

 Subtract data recorded in Step 2 from Step 1 and 

obtain only non-uniform currents on the top surface. 

 Remove the wedge from the FDTD space, use 

discrete form of JtEH


 /0  equation and 

feed the time-domain fringe current using J


 to the 

related E-field component(s) and run the FDTD 

program. The FDTD simulation directly yields the 

fringe waves.  

Note that, this procedure is for single side 

illumination (SSI) as shown in Fig. 1. For the double- 

side illumination (DSI), where both faces of wedge are 

illuminated by the incident field, uniform currents are 

also induced on the bottom surface; hence one additional 

step, which is similar to Step 2, needs to be performed. 

In this step, the bottom surface of the wedge is extended 

to infinity and the time domain currents are recorded. 

The recorded currents are formed by only uniform 

currents and they need to be subtracted from the total 

currents obtained in step 1 on bottom surface.  

Note also that, frequency domain fringe currents (at 

a specified frequency) may also be obtained using FFT. 

Fringe waves may then be calculated analytically using 

the Green’s function representations, for example, as  

in (6a) and (6b) in [10] for the TE and TM modes, 

respectively. 
 

IV. EXAMPLES AND COMPARISONS 
The proposed approach is validated and verified 

against PTD and MoM through the examples presented 

in Figs. 4-11. Here, different wedge angles (0, 45, and 

90) and different angle of illuminations are used. The 

frequency is 30 MHz. 

In Fig. 4, TMz fringe fields around a 90 PEC wedge, 

illuminated by a line source at ρ0=60 m, φ0=70 recorded 

on a circle with a radius 20 m (2) from the tip are 

shown. Note that, Fig. 4 (a) shows angular variation of 

the fringe fields in the frequency domain, while Fig. 4 

(b) shows a snapshot during the FDTD simulations (i.e., 

time-domain pulsed fringe fields). 
Time domain characteristics of PO and fringe 

currents, recorded on the top surface of this wedge at  

a point 1.5 m away from the tip, are shown in Fig. 5. 

Normalized frequency domain variations of the same 

point are also shown in Fig. 6 with source’s FFT. 

The total (uniform + non-uniform) and non-uniform 

currents induced on this PEC wedge are shown in Fig. 7. 

As observed, non-uniform currents concentrate in the 

vicinity of edge. Figures 8 and 9 belong to the same 

scenario but for the TEz polarization. 

The simulations are repeated for 0 and 45 PEC 

wedges and results are presented in Figs. 10 and 11. As 

observed, very good agreement among analytical and 

numerical methods are achieved. 

Note that, FDTD simulations are performed on a 

400400 cell area. The spatial resolution is 20/ yx

corresponds to 0.5 m cell size at 30 MHz. Temporal 

resolution is t 1.18 ns. Once-differentiated Gaussian 

pulse is used as the excitation     22
0 /

0 /2
 ttn

ettne


 . 

Here, n is time-step,  0/3.2 f 0.16 ns is the 

characteristics-half width and 5.40 t  is temporal delay. 

The discretization of the PTD and MoM are as in [4] and 

[5], respectively. 
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Fig. 4. (a) Fringe fields around the tip of the wedge for 

TMz polarization (SSI), Dashed: MoM, Solid: FDTD, 

Dashed-dotted: PTD, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz; (b) a time-domain snapshot showing broad-

band fringe fields. 
 

 
 

Fig. 5. Time domain surface currents for TMz polarization 

of above scenario recorded on top surface at 1.5 m 

distance from the tip, (Top) PO currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz. 
 

 
 

Fig. 6. Normalized frequency domain surface currents 

for TMz polarization of above scenario recorded on top 

surface at 1.5 m distance from the tip, (Top) Source’s 

FFT, (Middle) FFT of PO currents, (Bottom) FFT of 

fringe (non-uniform) currents, α=270, ρ0=60 m, φ0=70, 

ρ=20 m, f=30 MHz. 

 
 

Fig. 7. Wedge surface currents for TMz polarization of 

above scenario, (Top) total currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz Solid: MoM, Dashed: FDTD (left and right 

portions belong to the bottom and top surfaces, 

respectively). 
 

 
 

Fig. 8. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dashed-dotted: PTD (TEz 

pol, SSI, α=270, ρ0=60 m, φ0=70, ρ=20 m, f=30 MHz); 

(b) a time-domain FDTD snapshot showing broad-band 

fringe fields. 
 

 
 

Fig. 9. Wedge surface currents for TEz polarization of 

above scenario, (Top) total currents, (Bottom) fringe 

(non-uniform) currents, α=270, ρ0=60 m, φ0=70, ρ=20 m, 

f=30 MHz Solid: MoM, Dashed: FDTD (left and right 

portions belong to the bottom and top surfaces, 

respectively). 
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Fig. 10. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dashed-dotted: PTD (TMz 

pol, SSI, α=360, ρ0=70 m, φ0=45, ρ=20 m, f=30 MHz); 

(b) a time-domain FDTD snapshot. 
 

 
 

Fig. 11. (a) Fringe fields around the tip of the wedge; 

Dashed: MoM, Solid: FDTD, Dash-dot: PTD (SSI, TMz 

pol, α=315, ρ0=60 m, φ0=70, ρ=5 m, f=30 MHz); (b) a 

time-domain FDTD snapshot. 
 

V. CONCLUSIONS 
For the first time in the literature, a novel, FDTD 

diffraction method is introduced for the simulation of 

fringe currents and fringe waves around a PEC wedge. 

Fringe currents and fringe waves are presented both in 

the frequency and time domains. The validity of the 

proposed method and the verification of the accuracy of 

the results are done using PTD and MoM generated 

fringe currents and fields.  

Note that, using geometric averaging yields better 

performance for collocating electric and magnetic fields 

[14] and the accuracy may be increased. Also, the 

rectangular grid used in the standard FDTD algorithm 

limits the accuracy, especially for the TE polarization 

[15]. This limitation can be removed by using FDTD 

algorithms based on conformal cells [16]. Note also that, 

the FDTD-extracted fringe currents and fringe waves 

further demonstrate the argument on the modified theory 

of physical optics (MTPO) in [17]. 
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Abstract ─ An improved algorithm for shooting and 

bouncing ray tracing (SBR) is proposed in this paper. 

The conventional SBR method has to launch a large 

number of rays or ray tubes to guarantee the accuracy, 

which increases the calculation time significantly. This 

paper presents a novel adaptive ray launching (ARL) 

method based on the pattern of transmitting antenna, 

which reduces the launched rays greatly while maintaining 

the computation accuracy. Some examples of applying 

the proposed method to calculate the outdoor radio wave 

propagation are presented, and the results are compared 

with the measurements and simulations. The good 

agreements between them validate the proposed approach. 

The method has a high gain in terms of computational 

efficiency (about 480% speedup compared with 10 

uniform ray launching). 

 

Index Terms ─ Acceleration, pattern, ray tracing, receiver 

ball, shooting and bouncing ray, transmitting angle. 
 

I. INTRODUCTION 
With the growing demands of electromagnetic 

environment management (EEM) and wireless 

communication network design (WCND), the radio 

wave propagation prediction in outdoor environment 

attracts more and more attentions recently. Owing to the 

complexity and large size of the outdoor environment, 

the ray tracing method rather than other numerical 

methods such as finite difference time domain method 

(FDTD) and finite element method (FEM), is often 

applied in the computation. There are basically two types 

of ray tracing, namely image method [1] and shooting 

and bouncing ray (SBR) method [2-3]. Although the 

image method can find the exact propagation paths  

from the transmitters to the receivers, however, the 

computational burden grows exponentially with the 

number of the facets or the walls in the environment  

[4]. Thus, its application is limited to very simple 

environment. The SBR method, on the other hand, is 

computationally efficient for the complex environment, 

and can well model the refraction phenomenon. However, 

generally the SBR method is less accurate than the image 

method for it launches a limited number of rays to save 

the computational time. Therefore, a large number of 

rays have to be launched to increase the accuracy, which 

greatly increases the simulation time simultaneously. 

Thus, a lot of research has been done to save the 

computational time of the SBR method in the published 

literatures [5-13]. A group of acceleration techniques 

incorporate bounding volumes, which reduce the 

simulation time mainly by decreasing the intersection 

test calculations [5-7]. In other research activities,  

the concept of spatial super-sampling is used [8-9]. 

Nevertheless, the intelligent reduction of the number of 

the rays is an efficient way to reduce the computational 

burden [10-13], by using wave-front decomposition 

method and line search theory. 

In this paper, a new method to reduce the number of 

the rays is proposed. The method focuses on reducing the 

chance to trace these rays which cannot reach the 

receivers. The rays with strong possibility to reach the 

receiver are refined to enhance the accuracy of the 

simulation. This is achieved by dynamical iterations  

of transmitting angle and the receiver ball radius. 

Moreover, the ray assignment is combined with the 

pattern of the transmitter, leading to more rays are sent 

out in the direction of the main lobe, which enhances the 

computational accuracy and efficiency at the same time. 

The organization of this paper is as follows. In 

Section II, the proposed method is introduced. In Section 

III, some examples of applying the method for studying 

the outdoor radio wave propagation are presented, and 

the results are compared with other methods and 

measurements. The conclusion is drawn in Section IV. 

 

II. METHOD DESCRIPTION 
In traditional SBR method, the source is often 

modeled with a limited number of rays, which are 

uniformly generated in all directions of the three-

dimensional space with identical angular separation [14-

16]. However, the transmitting angles that transport 

electromagnetic power to the receivers constitute only a 
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small fraction of the total space. If these transmitting 

angles are specified prior to the start of the high-

resolution ray tracing, the refinement rays are launched 

only through them, and the computational burden 

decreases significantly. In this paper, it is proposed to 

find the transmitting angles around the transmitter that 

transport electromagnetic power to the receivers firstly 

and then trace the rays in those angles with a high 

resolution. Some iterative algorithms are applied, which 

include adaptive receiver ball radius and changeable 

transmitting angles. As the method used in the commercial 

software Wireless Insite (WI) [16], the transmitting sphere 

is often divided by 10 angles, and every angle sends out 

a ray. Thus, there are 64800 rays sent out from the source 

initially and the number would increase dramatically  

for modeling scattering and diffraction effects, which 

depends on the terrain and geometry environment. Thus, 

the number of rays is increased significantly in complex 

environment if all the rays from the source should be 

traced. In our model, however, the transmitting angles 

are not uniform and are iterated step by step. Moreover, 

the angles are dependent on the pattern of the transmitter. 

The angles in the main lobe of the transmitter are assigned 

much smaller while the angles in other directions are 

roughly assigned. For example, a diploe has 600 beam-

width in E plane and is omni-directional in H plane. If 30 

transmitting angle is applied in the main lobe and 100 

transmitting angle is applied in other directions, there are 

only 2832 rays sent out from the source. So, the rays 

launched initially are less than the traditional method 

with 10 uniform ray launching. 

The steps are as follows: 

1) Firstly, the radius of the receiver ball is set as half 

of the distance between the transmitter and the receiver. 

Such large radius is to guarantee receiving as many  

rays as possible and thus avoid leaving out the rays that 

contribute to the total electromagnetic field at the receivers. 

In other words, this process is to roughly determine the 

fraction of the sphere around the transmitter from which 

the rays are needed to be refined. 

2) Then, according to the received rays in last step, 

the iterations of the receiver ball and transmitting angles 

are implemented. If the ray from the transmitting angle 

is received, the transmitting angle should be refined, and 

more rays are emitted from this transmitting angle. 

During the iteration, the radius of receiver ball is reduced 

by half until it reaches the threshold, which is 1/10 of  

the distance between the transmitter and the receiver. 

This threshold is obtained on the basis of thousands of 

experiments. The process and flow chart are displayed in 

Fig. 1 and Fig. 2, respectively. 

 

Transmitter
Receiver

 new rays for 
refinement

Original rays

 
 

Fig. 1. The iteration of rays. 

 

 
 

Fig. 2. Flowchart of the proposed method. 

 

According to Fig. 2, N rays are launched initially, 

and the receiver ball radius is assigned according to the 

distance between the transmitter and the receiver. Then 

these rays are traced one by one and recorded according 

to this radius. After all these rays are traced, the receiver  

Start

Generate N source rays 
with initial  transmitting 
angle and receiver ball 

radius

Does the ray 
impinge upon the 
receiver last time?

Trace the ray

Yes

Is the stopping  
criteria reached?

No

i=i+1

itotal？

No

Change the receiver 
radius by half

Does the ray impinge 
upon receiver this time?

Generate new ray 
according to  
algorithm 1

Generate new ray 
according to 
algorithm 2

Yes
No

End

No

Yes

Discard the ray 
and stop 
tracing it

Yes

Compute the field with the 
rays which impinge upon the 

last receiver ball  

Is the ray newly 
generated?

No

Yes
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ball radius is reduced by half. And then these rays are 

traced according to the new receiver ball radius. The rays 

which are not received in the last iteration would be 

discarded in this iteration. After determining whether the 

ray illuminates the receiver or not in this iteration, two 

branches appear: one is “Generate new rays according  

to algorithm 1” and the other is “Generate new rays 

according to algorithm 2”. In algorithm 1, if the 

neighboring ray is also received, one more ray is 

launched between them for refinement. On the other 

hand, if the neighboring ray is not received, one more  

ray is launched between them for narrowing the range of 

the ray generation. In algorithm 2, if the neighboring  

ray is received, one more ray is launched between them 

for narrowing the range of the ray generation. If the 

neighboring ray is not received, no more rays are 

launched between them. After all the rays are traced and 

recorded once, the receiver ball radius is reduced by half. 

The procedure is repeated until the stopping criteria is 

reached, which is the minimal receiver ball radius. 

To provide an efficient way for data storage and path 

searching, the data structure is designed as shown in Fig. 

3. The information of every ray is comprised of four 

parts, which are starting point, direction vector, flag to 

mark whether the ray is received or not, and the path 

information. 

 

Structure

Parent ray The ray
Another parent 

ray

Starting 
point

Direction 
vector

Flag
Path 

information
 

 
Fig. 3. Data structure for rays. 

 

III. NUMERICAL RESULTS 
Two examples in the outdoor scenarios are 

investigated with the proposed algorithm in this part.  

The first scenario is shown in Fig. 4. The transmitter 

is a planar antenna consisted of a dipole antenna array 

with a reflector of a base station, whose input power is 

about 43 dBm, and the gain is about 13 dBi. The center 

frequency is 935 MHz. Its location in the electric map is 

x = 207 m, y = 528 m and z = 20 m. It is located on the 

roof of a building, which is marked with a red triangle. 

There are three receivers, which are all half wave dipole 

antennas and marked with the red circles. The receiver 1 

is located at the position where x = 382 m, y = 199 m, 

and z = 2 m. The receiver 2 is located at x = 94 m, y = 0, 

z = 2 m. The receiver 3 is at x = 1046 m, y = 134 m,  

z = 2 m. The distances between the transmitter and the 

three receivers are 373 m, 540 m and 927 m, respectively. 

The terrain is loaded from the electric map directly. The 

conductivity and permittivity of different materials are 

listed in Table 1. 

 

 
 

Fig. 4. The transmitter and receivers in an outdoor 

scenario. 

 

Table 1: Material properties 

Material Conductivity 

(S/m) 

Relative 

Permittivity 

Concrete wall 0.015 15 

Brick wall 0.014 4 

Wood 0 5 

Asphalt 0.0005 5.72 

Ground 0.001 4 

River 0 81 

Grass 0.085 40 

Leaf 0.39 26 

Branch 0.39 20 

 
The calculation area is several square kilometers. In 

such site - specific environment, numerous reflections 

and diffractions occur. If the transmitting angle is 

uniformly set as 10 according to the traditional method, 

it takes 8 hours and 13 minutes to complete the 

calculation. However, if the transmitting angle is 

uniformly set as 100 firstly, and then is refined on the 

basis of the received rays, the computation time is only 

33 minutes. As an improved method for the accuracy, if 

the transmitting angle is assigned by the pattern of the 

transmitter, in which the transmitting angle is set as 30 in 

the main lobe direction and 100 in other directions firstly, 

and then is iterated based on the received rays, the 

computation time is 1 hour and 25 minutes. In this 

model, the smallest transmitting angle is only 0.06250 

finally. The eventually received rays and computation 

accuracy are compared in Table 2. 

From Table 2 and Fig. 5, it can be found that  

the method with adaptive transmitting angle improves 

the accuracy comparing with the traditional method. 

Moreover, the accuracy is highest when the transmitting 

angles are assigned on the basis of the pattern of the 

transmitter. The results obtained with this improved 

method are very close to the measurements. The proposed 

method not only improves the computational accuracy, 

but also saves a lot of the computational time. The 

computational efficiency is enhanced by a factor of 4.8 

compared with 10 uniform ray launching.  

Transmitter 

Receiver 1 

Receiver 2 

Receiver 3 
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Table 2: Comparisons with measurements 

 Measurement 
10 

Fixed 

100 

Iterative 

30+100 

Iterative 

Received 

rays at 

receiver 1 

 12 8 18 

Power at 

receiver 1 

-20.4 

dBm 

-36.3 

dBm 

-25.6 

dBm 

-21.4 

dBm 

Received 

rays at 

receiver 2 
 10 7 16 

Power at 

receiver 2 

-23.5 

dBm 

-38.1 

dBm 

-28.5 

dBm 

-23.8 

dBm 

Received 

rays at 

receiver 3 

 9 6 15 

Power at 

receiver 3 

-29.7 

dBm 

-46 

dBm 

-30.5 

dBm 

-29.8 

dBm 

 

 
 

Fig. 5. Comparison between different methods and 

measurements. 

 

To further verify the proposed method, the electric 

fields at 80 different points are calculated with the 

proposed method and Wireless Insite (WI) simulation. 

The results obtained by the proposed method are close 

with those by the WI simulation. In addition, the electric 

fields vs. distance and height are investigated in Fig. 6 

and Fig. 7, respectively. In Fig. 6, the transmitter with a 

dipole antenna is located at the position where x = 49 m, 

y = 193 m, and z = 10 m, and 50 receivers are located  

at different positions with a 10 m interval with the 

neighboring one. It can be found that the electric field 

attenuates with the distance between the transmitter and 

the receiver. The reason why the electric fields at those 

points at the beginning are smaller is because that there 

are not line of sight paths between the receivers and the 

transmitter owing to the terrain. 

In Fig. 7, the transmitter is same as that in Fig. 6, 

and 30 receivers are located the position where x = -73 m 

and y = 108 m. The height of these receivers varies from 

10 m to 300 m with 10 m interval. From Fig. 7 we can 

see that the electric field attenuates with the height since 

the distance between the transmitter and the receiver 

increases as the height increases. 

 

 
 

Fig. 6. Electric field vs. distance. 

 

 
 

Fig. 7. Electric field vs. height. 

 

IV. CONCLUSION 
A new acceleration technique for the ray tracing 

method was presented. The proposed method is 

extremely suitable for the wave propagation prediction 

in the complex and electrically large environment. The 

results indicated the proposed approach had a speedup  

of 480% and a high accuracy compared with the 

measurements and the WI simulation. The proposed 

method can be applied in the EEM and WCND in 

practice. 
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Abstract ─ Free space electromagnetic wave propagation 

is an excessively pretty simple. However, in the reality, 

there are obstructions like buildings and hills blocking 

the electromagnetic waves and leading diffraction and 

reflection, and these obstructions can be modeled as a 

knife edge or wedge due to using of UHF. Hence, the 

vital problem is how an electromagnetic wave propagates 

in multiple diffraction scenario including buildings, 

trees, hills, cars etc. In order to estimate the field strength 

or relative path loss of the waves at the receiver, so many 

electromagnetic wave propagation models have been 

introduced throughout the century. Ray tracing and 

numerical integration based propagation models are 

introduced. In this paper, detailed information is provided 

about S-UTD-CH (Slope UTD with Convex Hull) model. 

Particularly, in the transition zone, the S-UTD-CH model 

can be applied to multiple diffraction scenarios. In addition, 

Fresnel zone concept, convex hull and slope UTD models 

are fundamentals of the S-UTD-CH model. Moreover, in 

terms of computation time and accuracy, the S-UTD-CH 

model is conceived an optimum model. Furthermore, 

verification of S-UTD-CH model is made by means  

of FEKO, which is a comprehensive electromagnetic 

simulation software tool by Altair. 

 

Index Terms ─ Diffraction, FEKO, radio wave 

propagation, Ray-tracing, S-UTD-CH model. 
 

I. INTRODUCTION 
In order to establish high precision and time efficient 

communication networks and radio broadcasting systems 

too many electromagnetic wave propagation models 

have been introduced throughout the century. At first, 

geometrical optic model observing some physical events 

like reflection, refraction and enlightenment is proposed 

[1]. The geometrical optic (GO) model based on particle 

property of the light. That is, the light propagates from 

the source as particle and there are sharp shadow 

boundaries. The geometrical optic model does not work 

successfully in the case of multiple-diffraction. In real 

environment, there are obstacles such as buildings, hills, 

trees and cars etc., can cause reflection, refraction and 

diffraction. Thanks to using ultra-high frequency (UHF) 

electromagnetic waves, the buildings, trees and hills  

in the environment can be modeled as knife edge and 

wedge structures, respectively. Geometrical theory of 

diffraction (GTD) model is introduced by Keller [2]. The 

GTD model is an extension to the GO model by adding 

diffracted waves [3]. The GTD model fails to calculate 

the field strength in the vicinity of the optical boundaries 

[4]. In other words, the GTD model is unsuccessful to 

calculate the relative path loss in the case of that source, 

diffraction and observation points are in the same line 

[5]. The GTD model finds the acceptable results in the 

case that the size of obstacle is less than the wavelength 

of the incident wave [6]. In 1966, Deygout proposed a 

new multiple-diffraction propagation model for knife-

edge structures [7]. This model is valid for the 

environment including limited number of knife-edge 

structures [8]. Besides this model fails to calculate the 

relative path loss in the case of that the knife edges are 

close to each other [9]. Uniform theory of diffraction 

(UTD) model is a high frequency asymptotic technique 

introduced by [10] and computes the field strength at the 

receiver in a very short time. The UTD model removes 

some of the failure of GTD model in the vicinity of  

the shadow boundary. If an obstacle blocks the frontal 

obstacle, the UTD model fails to calculate the relative 

path loss accurately [11, 12]. That is, if the heights of the 

obstacles are close to each other, the UTD model gives 

inaccurate predictions. In order to remove the failure of 

the UTD model, slope UTD model is proposed [13-16]. 

This model is more exact than the GO, GTD and UTD 

models. It is based on adding of derivatives of incident 

fields. Some simulations are made in order to verify the 

S-UTD model with Vogler’s model [17]. Vogler model 

is an accurate and numerical integration based well-

known model. If the number of obstacle is greater than 

10, the S-UTD model fails to predict the field strength 

accurately, and leads so much complexity and requires 

so much computation time. That is, up to 10 diffractions, 

the S-UTD model come up with remarkable, accurate, 

meaningful and time-efficient results [18-20]. In order to 

overcome time efficiency and exactness deficiencies of 

slope UTD model, another UTD-based, ray theoretical, 

time-efficient and accurate model is proposed [19-23]. 
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The proposed model called by S-UTD-CH, abbreviated 

form of Slope UTD with Convex Hull. In fact S-UTD-

CH model is not a new model and only combination of 

the Slope UTD model and Convex-Hull model. The rest 

of paper explains S-UTD-CH model and give comparison 

results of UTD based models with regard to computation 

time and accuracy of prediction. Another comparison is 

made by using CAD FEKO electromagnetic simulation 

software tool. 

 

II. S-UTD-CH MODEL 
Electric field behind an obstacle can be calculated 

by formula in [24]: 

 𝐸 = [𝐸𝑖𝐷 +
𝜕𝐸𝑖

𝜕𝑛
𝑑𝑠] 𝐴(𝑠)𝑒−𝑗𝑘𝑠, (1) 

where 𝐸𝑖 is incident field, A(s) is the spreading factor, D 

is the amplitude diffraction coefficient, 𝑘 is the wave 

number, ds is the slope diffraction coefficient, n represents 

the normal and s is a distance. The obstacles like buildings 

and hills can be modelled as a knife edge, wedge or 

cylinder thanks to using UHF waves. In the knife-edge 

case diffraction coefficient [16] is expressed by: 

 𝐷(𝛼) = − 
𝑒

−𝑗𝜋
4⁄

2√2𝜋𝑘 cos(𝛼 2⁄ )
𝐹[𝑥], (2) 

where, 𝑘 is the wave number, 𝐹[𝑥] is the transition 

function given in [25], 𝛼 is an angle between the incident 

and the diffracted waves. 𝐴(𝑠) is the spreading factor is 

given by: 

 𝐴(𝑠) = √
𝑠0

𝑠1(𝑠1+𝑠0)
, (3) 

where, s0 is the total distance before the last diffracting 

obstacle, whereas s1 is the distance after the last diffracting 

obstacle as shown in Fig. 1. 
 

 

 

 

 

 

 

 
Fig. 1. Diffraction geometry. 

 
By taking into account the wedge structure, 

polarisation effects have to be added. The amplitude 

diffraction coefficients [26] for horizontal and vertical 

polarization are given by: 

 𝐷𝑠 = 𝑅0𝑠𝑅𝑛𝑠𝐷1 + 𝐷2 + 𝑅0𝑠𝐷3 + 𝑅𝑛𝑠𝐷4, (4) 

 𝐷ℎ = 𝑅0ℎ𝑅𝑛ℎ𝐷1 + 𝐷2 + 𝑅0ℎ𝐷3 + 𝑅𝑛ℎ𝐷4, (5) 

where, h and s indices stand for vertical and horizontal 

polarisations. R is the reflection coefficient, 0 and n 

denote zero and n faces of the wedge and they are 

illustrated in Fig. 1.  

D1,2,3,4 are in [27] are given by:  

 𝐷𝑖 =
−𝑒−𝑗𝜋 4⁄

2𝑛√2𝜋𝑘
cot(𝜓(𝑖)) 𝐹(2𝑘𝐿𝑛2 sin2(𝜓(𝑖))), (6) 

𝜓(1)=
π+φ-φ' 

2n
, 𝜓(2)=

π-φ+φ'

2n
, 𝜓(3)=

π-φ-φ'

2n
, 𝜓(4)=

π+φ+φ'

2n
, 

where, n is a number (𝑛 = 2 − 𝛽/𝜋) ranging in [0-2]. β 

is the internal angle and L is the distance parameter 

calculated via using continuity equations.  

Due to using wedge structure, the reflected fields 

have to be taken into account. Thus, the reflection 

coefficients in [28] are given by: 

 𝑅0𝑠 =
sin(𝜑′)−√𝜀𝑟−𝑐𝑜𝑠2(𝜑′)

sin(𝜑′)+√𝜀𝑟−𝑐𝑜𝑠2(𝜑′)
, (7) 

 𝑅0ℎ =
𝜀𝑟 sin(𝜑′)−√𝜀𝑟−𝑐𝑜𝑠2(𝜑′)

𝜀𝑟 sin(𝜑′)+√𝜀𝑟−𝑐𝑜𝑠2(𝜑′)
, (8) 

 𝑅𝑛𝑠 =
sin(𝑛𝜋−𝜑)−√𝜀𝑟−𝑐𝑜𝑠2(𝑛𝜋−𝜑)

sin(𝑛𝜋−𝜑)+√𝜀𝑟−𝑐𝑜𝑠2(𝑛𝜋−𝜑)
, (9) 

 𝑅𝑛ℎ =
εrsin(𝑛𝜋−𝜑)−√𝜀𝑟−𝑐𝑜𝑠2(𝑛𝜋−𝜑)

𝜀𝑟 sin(𝑛𝜋−𝜑)+√𝜀𝑟−𝑐𝑜𝑠2(𝑛𝜋−𝜑)
. (10) 

As aforementioned, the S-UTD-CH model is 

combination of two previously proposed S-UTD (Slope 

UTD) and CH (Convex Hull) models. Convex hull 

model is introduced and applied in [29, 30]. A convex 

hull is constructed by using the Fresnel zone. The Fresnel 

zone, an ellipsoid region between the transmitting and 

receiving antennas, is commonly used in radio planning 

tools [31] as depicted in Fig. 2.   
 

 
 

Fig. 2. Fresnel zone. 
 

F1 is the radius of the first Fresnel zone expressed 

by: 

 𝐹1 =  √
𝑛𝑐𝐷1𝐷2

𝑓(𝐷1+𝐷2)
, (11) 

where (n=1) is the order of the Fresnel zone and c is the 

speed of light, 𝐷1 and 𝐷2 are the distance before and after 

the obstacle, respectively.  

Most of the wave emits from the transmitter 

propagates in Fresnel zone. If the obstacle does not 

disrupt the Fresnel zone, this obstacle would be excluded 

from the scenario due to so little contribution on the 

receiver. Fresnel zone disruption by tree and house can 

be seen in Fig. 3. 
 

   
 

Fig. 3. Fresnel zone disruption. 
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Convex hull, a polygon between the transmitter and 

the receiver, is constructed by using the fresnel zone 

concept [32].  

Firstly, the first fresnel zone is drawn between  

the tranmitter and the receiver. Some obstacles placed 

outside of the zone are excluded from the scenario. Then, 

the highest obstacle intersecting the line between the 

transmitter and the receiver in the scenario is selected. 

Next, secondary fresnel zones are drawn between the 

transmitter and the highest obstacle and between the 

receiver and the highest obstacle. Afterthat, the obstacles 

placed outside of the secondary zones are excluded from 

the scenario again. Finally, convex hull is constructed 

with remained obstacles as illustrated in Figs. 4 (a-b). 
 

 
 (a) 

 
 (b) 

 
Fig. 4. Convex hull construction. 

 

Exclusion of some unsuccessful diffracting obstacles 

alleviates the computation time and complexity by not 

promising from the accuracy of predicted field. 

S-UTD-CH mechanism can be explained as followed. 

Firstly, convex hull is constructed by utilising the Fresnel 

zone concept. Secondly, all the ray paths emanate from 

the transmitter and ends on the receiver are determined. 

Finally, Slope UTD model runs for these ray paths and 

predicts the field strength.     

 

III. COMPARISON OF THE MODELS 
A lot of comparisons have been carried out among 

the models for accuracy and/or computation time [33-

38]. Ray-theoretical electromagnetic wave propagation 

models, which are UTD, S-UTD and S-UTD-CH, are 

compared with regard to computation time and accuracy 

of prediction of relative path loss in this section. In the 

case of that there are fewer than 11 diffractions in the 

scenario the S-UTD model is envisioned the reference 

model according to accuracy of prediction. The scenario 

of comparisons is illustrated in Fig. 5.  

 

  
 

Fig. 5. Test scenarios for comparison. 

 

As shown in Fig. 5, there are 10 obstacles in given 

scenario, and the obstacles and the receiving antenna 

heights are 20 m and 1.5 m, respectively. All the distances 

between obstacles and antennas are deployed equally 

spaced as 25 m and 50 m. The operational frequencies 

are 100, 400, 900 and 1800 MHz. The height of transmitter 

is selected as 10, 15, 20, 25 and 30 m.   

In the first case, the operational frequency is 100 MHz 

and the distance between the obstacles is 25 m. The 

transmitter heights are selected as 10, 15, 20, 25 and 30 m, 

respectively. In order to show how the relative path loss 

is affected by the change of transmitter height, simulation 

is performed, and the results are demonstrated in Table 

1. 

In Table 1, the first column shows the transmitter 

height. Next three columns indicate the relative path loss 

of S-UTD-CH, S-UTD and UTD models, respectively. 

The latter three columns give the computation time of 

mentioned models. The eliminated obstacle number in 

the S-UTD-CH model is shown in the last column.  

The UTD model requires the least computation 

time. Also, in the highly elevated transmitting antenna 

case (30 m), due to one obstacle elimination the S-UTD-

CH model has relatively shorter computation time than 

S-UTD model. In this case, computation time of the  

S-UTD model is 2118.35 s, whereas the computation 

time of the S-UTD-CH model is 354.18 s. However, the 

difference between the relative path losses of models is 

only 0.06 dB. The S-UTD-CH model can be used instead 

of the S-UTD model with relatively less computation 

time. It is obvious that the S-UTD model needs the 

highest computation time.  

In the second case, the operational frequency is  

100 MHz and the distance between the obstacles is 50 m. 

The transmitter heights are selected as 10, 15, 20, 25 and 

30 m, respectively. In order to show how the relative path 

loss is affected by the change of the distance between 

obstacles, simulation is performed, and the results are 

shown in Table 2. 

In Table 2, the first column shows the transmitter 

height. Next three columns indicate the relative path loss 

of S-UTD-CH, S-UTD and UTD models, respectively. 

The latter three columns give the computation time of 

mentioned models. The eliminated obstacle number in 

the S-UTD-CH model is shown in the last column.  

The UTD model requires the least computation  

Main Secondary Secondary 

Tx Rx 
Eliminated 
wedges 

Tx Rx 
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time. Due to that all the obstacles are in the Fresnel zone 

of the transmitter, there is no eliminated obstacle in  

the S-UTD-CH model. This situation leads the same 

computation times for the S-UTD-CH model and the S-

UTD model.  

In the third case, the transmitter height is 30 m and 

the distance between the obstacles is 25 m. The operational 

frequencies are selected as 100, 400, 900 and 1800 MHz, 

respectively. In order to indicate how the relative path 

loss is affected by the change of operational frequency, 

simulation is performed, and the results are illustrated in 

Table 3. 

In Table 3, the first column shows the operational 

frequency. Next three columns indicate the relative path 

loss of S-UTD-CH, S-UTD and UTD models, respectively. 

The latter three columns give the computation time of 

mentioned models. The eliminated obstacle number in 

the S-UTD-CH model is shown in the last column.  

The S-UTD model requires the most computation 

time with ultimate in accuracy. Also, in highly elevated 

(30 m) transmitting antenna cases, there is obstacle 

elimination. Moreover, as the operational frequency 

increases, eliminated obstacle number increases too. 

There is almost no difference between prediction 

accuracy of S-UTD and S-UTD-CH models. In these cases 

S-UTD-CH model can be used in multiple diffractions 

with regard to less computation time. Furthermore, as the 

operational frequency increases, predicted relative path 

loss decreases.  

The second proof is made by using FEKO 

electromagnetic simulation software tool. The test 

scenario is given in Fig. 6. 

 

 
 

Fig. 6. The second test scenario. 

 

As can be seen in the Fig. 6, the transmitting antenna 

height is 15 m, and at a 40 m distance from the transmitter 

there is an obstacle whose height is 30 m. The operational 

frequency is 900 MHz. By using the FEKO coverage 

map is drawn in Fig. 7. 

 

 
 

Fig. 7. FEKO simulation results. 

 

As it is seen in the Fig. 7, in front of the obstacle 

there are LOS, ground reflected, obstacle reflected and 

backward diffracted waves. Thanks to that these rays are 

in different phases, interference pattern is observed in 

front of the obstacle. Moreover in behind of the obstacle, 

only diffracted waves are propagated.  

Coverage map also generated with the S-UTD-CH 

model for the same scenario and this map is illustrated in 

Fig. 8. 

 

 
 

Fig. 8. S-UTD-CH simulation results. 

 

As can be seen in the Fig. 8, the same interference 

pattern is obtained behind and in front of the obstacle. 

Behind the obstacle there is some difference resulted 

from FEKO design.  

Table 1: 1st Case (f = 100 MHz, d = 25 m) 

Transmitter 

Height 

S-UTD-CH 

RPL (dB) 

S-UTD 

RPL (dB) 

UTD 

RPL (dB) 

S-UTD-CH 

Time (s) 

S-UTD 

Time (s) 

UTD 

Time (s) 

Eliminated 

Obstacle 

10 -52,91 -52,91 -86,82 1355,95 1319,92 4,16 0 

15 -47,02 -47,02 -82,19 1303,26 1323,15 4,08 0 

20 -38,98 -38,98 -75,9 2075,16 1953,81 5,62 0 

25 -32,12 -32,12 -35,36 2044,41 1995,04 5,53 0 

30 -27,99 -27,93 -29,49 354,18 2118,35 5,83 1 
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Table 2: 2nd Case (f = 100 MHz, d = 50 m) 

Transmitter 

Height 

S-UTD-CH 

RPL (dB) 

S-UTD 

RPL (dB) 

UTD 

RPL (dB) 

S-UTD-CH 

Time (s) 

S-UTD 

Time (s) 

UTD 

Time (s) 

Eliminated 

Obstacle 

10 -46,56 -46,56 -81,7 1363,38 1361,64 4,29 0 

15 -41,63 -41,63 -77,86 1303,6 1266,21 4,16 0 

20 -30,8 -30,8 -35,33 2137,49 2119,73 5,73 0 

25 -35,78 -35,78 -73,23 2122,38 2150,01 5,54 0 

30 -26,80 -26,80 -29,35 2116,67 2150,26 5,88 0 

 

Table 3: 3rd Case (Transmitter height = 30 m, d = 25 m) 

Frequency 

(MHz) 

S-UTD-CH 

RPL (dB) 

S-UTD 

RPL (dB) 

UTD 

RPL (dB) 

S-UTD-CH 

Time (s) 

S-UTD 

Time (s) 

UTD 

Time (s) 

Eliminated 

Obstacle 

100 -27,99 -27,93 -29,49 354,18 2118,35 5,83 1 

400 -30,43 -30,34 -30,45 55,12 2136,95 5,63 2 

900 -31,78 -31,68 -31,57 2,04 2076,68 5,66 4 

1800 -33,44 -33,67 -33,24 0,61 2101,19 5,54 5 

 

IV. CONCLUSIONS  
A top-down approach for S-UTD-CH model is 

presented in this study. A great many simulations 

indicates that there is tremendous contribution to UTD 

model in the case of multiple transition region diffraction. 

Adding the derivative of incoming field removes the 

discontinuity problem of UTD model in the transition 

zone. Actually, the UTD model can be used to predict 

the field strength or relative path loss in the rural or 

single diffraction case with a relatively short computing 

time. Next, the S-UTD model has ultimate accuracy  

with relatively long computing time in the multiple 

diffraction including more than 10 obstacles. Besides, 

there is a tradeoff between the accuracy of prediction  

and computation time. Afterwards, Slope UTD with a 

Convex-Hull (S-UTD-CH) model is based on the 

selection mechanism, based on the Fresnel zone concept 

and convex hull model, for unsuccessful obstacles.  

The S-UTD-CH model provides accurate results and 

short computation time in multiple-diffraction scenarios 

including more than 10. Moreover, due to the elevated 

transmitting antenna and higher operational frequency 

cases the relative path loss of models and contribution  

to the UTD model are reduced. Furthermore, verification 

of the S-UTD-CH model is provided by FEKO 

electromagnetic wave simulation software tool. To sum 

up, the S-UTD-CH model could be used in radio planning 

tool, broadcasting systems and prediction algorithms 

thanks to higher accuracy of prediction and less 

computation time.  
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Abstract ─ A comparative study of some theoretical and 

numerical models is presented in the solution of two-

dimensional urban radiowave propagation problems. 

The path loss is computed by GO+UTD (geometric 

optics + uniform theory of diffraction), two-way SSPE 

(split step parabolic equation) and the diffracting screens 

models, and the results are compared through numerical 

simulations. The diffracted fields that are obtained by  

the GO+UTD model are demonstrated. Computational 

aspects of the models are briefly discussed. 

 

Index Terms ─ Diffracting screens model, geometric 

optics (GO), GO+UTD tool, path loss, PETOOL, two-

way split step parabolic equation (SSPE), uniform theory 

of diffraction (UTD), urban propagation. 
 

I. INTRODUCTION 
The planning and development of modern mobile 

communications systems requires accurate and efficient 

models for urban radiowave propagation, which aim to 

predict losses in radio signals in different environments. 

Since the domain of interest is very large in wavelengths, 

numerical methods like method of moments, finite 

difference and finite element methods (as well as some 

commercial software like HFSS, CST, etc.) cannot be 

employed due to large number of unknowns required  

to solve such long-range propagation problems. Some 

empirical models have been developed, which try  

to estimate propagation losses based on curve-fitting  

of measured field response [1,2]. However, the main 

limitation of these models is that they are accurate  

for specific parameters and environments, and they  

do not become valid in different propagation scenarios. 

To overcome the difficulties in empirical models,  

some theoretical models have been proposed in which 

the environment is represented by some canonical 

parameters/geometries, such as building geometry, 

spacing, etc. For example, Longley-Rice model [3], 

Bullington model [4], Lee’s model [5], and Walfisch and 

Bertoni model [6,7] have been used in the literature.  

There are also some theoretical models, so-called 

high frequency techniques, such as geometrical optics 

(GO) [8], geometrical theory of diffraction (GTD) [9], 

uniform theory of diffraction (UTD) [10], physical 

optics (PO) [11] and physical theory of diffraction (PTD) 

[12], which can be used to model urban propagation 

problems. These techniques use ray-based approach and 

provide accurate formulations to account for main 

propagation mechanisms, such as reflection, refraction 

and diffraction. In Fig. 1, reflection and diffraction of 

field rays are illustrated in a typical urban propagation 

problem involving a series of buildings. The GO 

approach computes incident and reflected fields, but 

cannot include diffracted fields. Keller extended GO  

to include diffraction effects and developed GTD  

by defining a diffraction coefficient for a perfectly 

conducting wedge by asymptotically evaluating 

Sommerfelds’ diffraction integral. To overcome the 

singularities along the incident and reflection shadow 

boundaries (ISB and RSB) in the GTD model, UTD was 

developed to achieve smoother wave behavior along the 

shadow boundaries. The PO model estimates the field 

and current on surface and integrates the current over the 

surface to determine the scattered field. Similar to GO, 

the PO does not include the diffracted fields. The PTD 

method includes the diffracted fields by using non-

uniform (fringe) edge currents on the surface. Recently, 

a MATLAB-based tool (called GO+UTD) was developed 

to model radiowave propagation by combining the GO 

and UTD models [13,14]. Also, a MATLAB-based tool 

for diffraction modeling of a wedge problem was 

proposed [15,16].  

Other than these empirical and theoretical models, 

parabolic equation (PE) method is perhaps the most 

efficient numerical method to model arbitrary refraction 

effects and terrain irregularities in long-range propagation 

problems [17]. It is based on an approximate form  

of the Helmholtz wave equation, and can be solved by  

a marching type algorithm. Therefore, long range 

propagation problems can easily be solved in a fast and 

accurate manner. However, one of the limitations of the 

standard PE is that it considers only forward propagating 

waves. For short range problems, as well as the problems 

involving multiple reflections and diffractions because 

of hills and valleys with steep slopes, the standard PE 

fails to model multipath effects. To model backward 

ACES JOURNAL, Vol. 32, No. 7, July 2017

1054-4887 © ACES 

Submitted On: November 22, 2016 
Accepted On: December 26, 2016

593



propagating waves in an irregular terrain profile, two-

way PE model was proposed [18] and implemented as a 

MATLAB-based tool (called PETOOL) [19]. Although 

the PE method can inherently model diffracted fields, it 

cannot separate the diffracted field from the total field. 

The organization of this paper is as follows: the 

GO+UTD, the two-way SSPE and the diffracting screens 

models are summarized in Sections II, III and IV, 

respectively. Numerical examples are presented in a 

comparative manner in Section V. Finally, some 

conclusions are drawn in Section VI.  

 

 
 

Fig. 1. Radiowave propagation in urban region. 

 

II. GO+UTD MODEL 
The GO+UTD toolbox is based on an algorithm that 

divides the terrain into a number of line segments, and 

superposes the incident and multiple reflected and 

diffracted fields by repeatedly utilizing the GO and UTD 

principles according to different line-of-sight (LOS) 

conditions [13]. First, direct ray is computed for each 

illuminated point. Line segments illuminated by the 

source and their image sources are determined. Reflected 

rays are computed by radiating these image sources.  

This process is continued to account for higher-order 

reflections until the reflected rays escape from the 

domain, or until the contribution of reflected rays 

becomes negligible according to a certain threshold 

criterion. In addition, diffracted fields from sharp tips are 

computed. The tips behave as new source locations, and 

the reflected rays of the diffracted rays are computed by 

obtaining image sources similar to the above steps. 

The GO method is illustrated in Fig. 2 (a), where a 

cylindrically diverging line source is above a flat surface. 

Assuming that 𝑢 denotes the electric or magnetic field  

in horizontal (soft) or vertical (hard) polarizations, 

respectively, the total field (𝑢𝑡) in the illuminated part of 

the surface is the sum of direct/incident field (𝑢𝑖) and the 

reflected field (𝑢𝑟) emanating from the image source, 

which are given by (assuming 𝑒𝑗𝜔𝑡 time dependence): 

 0

i jkru u e r , (1) 
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where 𝑢0 is the amplitude of the incident field, 𝑘 = 2𝜋/𝜆 

is the wavenumber ( is the wavelength), and 𝑅𝑠,ℎ is the 

reflection coefficient of the surface, which is −1 and +1 

for soft and hard polarizations, respectively. 

 

 
 

Fig. 2. Illustration of the GO+UTD modeling in the close 

vicinity of the receiver: (a) GO and (b) UTD. 

 

The UTD method is used to model diffracted fields, 

and is described by considering the geometry in Fig. 2 

(b), which shows the region between two buildings. If 

the corners of the building are illuminated by either 

incident field or reflected field from other surfaces, the 

diffracted fields for each corner are computed and 

superposed to determine the field at a receiver point. 

Consider a single corner whose interior wedge angle is 

𝜋/2, as shown in the figure. The tip-to-source distance 

and the source angle are denoted by 𝑟0 and 𝜑0, 

respectively; whereas the tip-to-observer distance and the 

observation angle are represented by 𝑟 and 𝜑, respectively. 

The exterior wedge angle is set to 𝛼 = 3𝜋/2 to model a 

right-angled building, and can be set to any value for 

arbitrary geometries. The diffracted field in UTD is 

determined by: 
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where 𝑢𝑖 is the incident field at the tip of the wedge, and 

𝐷𝑠,ℎ is the diffraction coefficient for soft and hard 

polarizations, given as follows [10]: 
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where (−) and (+) are for soft and hard polarizations, 

respectively. Here, 𝑛 = 𝛼/𝜋, 𝜉+ = 𝜑 + 𝜑0, 𝜉− = 𝜑 − 𝜑0, 

ACES JOURNAL, Vol. 32, No. 7, July 2017594



and 𝐹(𝑋) is the Fresnel integral given by: 
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and 𝐿 and 
g  are expressed as follows: 
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where   2     N n  are the integers that most 

closely satisfy this expression. Since the cotangent 

functions possess singularities at the shadow boundaries, 

they can be replaced by (for small 0  ): 
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III. TWO-WAY SSPE MODEL 

The parabolic equation (PE) model is widely used  

in modeling radiowave propagation since electrically 

long distances can easily be handled by employing a 

marching-type numerical algorithm. The PE is derived 

from the Helmholtz wave equation by separating the 

rapidly varying phase term to get a reduced function 

varying slowly in range for propagating angles close to 

the paraxial (horizontal) direction. The PE is converted 

to an initial value problem and can be solved by the 

Fourier split-step parabolic equation (SSPE), which starts 

from an initial field defined by an antenna pattern, and 

marches in range by determining the field along vertical 

direction at each range step. The SSPE in its standard 

form is a one-way approach and accounts for only 

forward-propagating waves. The field at range x x   

is determined as follows [17-19] (assuming 𝑒−𝑖𝜔𝑡 time 

dependence): 
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where F denotes the Fourier Transform, 𝑝 = 𝑘𝑧 =
𝑘 sin 𝜃 is the transform wavenumber where  is the 

propagation angle from the horizontal, and 𝑛 is the 

refractive index. Equation (8) is known as wide-angle 

SSPE because it is valid for propagation angles up to 

40-45. 

Since the one-way SSPE model considers only 

forward propagating waves and ignores backward 

waves, it cannot model multipath effects accurately if 

there are some obstacles that re-direct the incoming 

wave. In [18], a two-way SSPE algorithm was proposed 

to incorporate the backward waves into the solution,  

by employing an iterative forward-backward marching 

algorithm over an irregular terrain. When the wave meets 

the terrain, it is partially-reflected and is marched out in 

the opposite direction by reversing the paraxial direction 

in the PE formulation. This continues until satisfying a 

stopping criterion that compares the total fields at each 

iteration. The two-way SSPE algorithm was implemented 

in MATLAB and named as PETOOL [19]. 
 

IV. DIFFRACTING SCREENS MODEL 
The diffracting screens model is one of the 

theoretical models developed by Walfisch and Bertoni 

[6,7]. In this approach, the rows of city buildings are 

modeled as a series of absorbing diffracting screens  

of uniform height. The forward diffraction along the 

screens, and a final diffraction down to street provides 

an average field strength at the receiver location (see Fig. 

3). This model is polarization independent, and provides 

a rough estimate about the propagation path loss. In this 

model, the path loss is obtained by [6,7]: 
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where ℎ𝑡𝑥 is the height of the transmitter antenna in 

meter, and 𝑑 is the range in km not beyond horizon. 

Here, 𝐹 is the free-space propagation loss given by: 

  32.4479 20log fsL fd , (10) 

where 𝑓 is the frequency in MHz. The loss 𝐿1 is given 

as: 
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where ℎ𝑏 is the height of the building in meter, ℎ𝑟𝑥 is the 

height of the receiver antenna in meter, 𝑎 is the distance 

between the building and the receiver in meter, 𝐺𝑟𝑥(𝜃) 

is the gain of the receiver antenna along the corner 

direction, 𝑘 is the wavenumber, and 𝜃 = tan−1((ℎ𝑏 −
ℎ𝑟𝑥)/𝑎) is the angle from the corner to the receiver. The 

loss 𝐿2 is obtained as: 
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where 𝐺𝑡𝑥 is the gain of the transmitter antenna along the 

corner direction (usually taken as unity), and Q is: 
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 (13) 

where 𝑤 is the distance between buildings in meter,  is 

the wavelength, and 𝜃1 = tan−1((ℎ𝑏 − ℎ𝑡𝑥)/𝑤). 
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Fig. 3. Illustration of the diffracting screens modeling in 

the close vicinity of the receiver. 

 

V. NUMERICAL EXAMPLES 
This section presents the results of some numerical 

examples comparing the models in the calculation of 

path loss. After finding the fields in the SSPE and 

GO+UTD models, the path loss is obtained by: 

 
   

    

20log 20log 4

10log sin 30loge e

L u

a x a





  

 
, (14) 

where 𝑎𝑒 is the effective earth radius to account for the 

bending of the rays in the standard atmosphere.  

In Fig. 4, the 3D maps of path loss obtained by the 

GO+UTD and two-way SSPE are compared assuming 

that the frequency is 1800 MHz, the polarization is soft 

(horizontal), the antenna is omnidirectional and the 

atmosphere is standard. The range and height step sizes 

are 0.5 m and 0.2 m, respectively, which are used in other 

simulations as well. There are 7 buildings, the last of 

which is 𝑑 = 900 m away from the transmitter at ℎ𝑡𝑥 =
20 m height. The height of each building is ℎ𝑏 = 15 m, 

and the separation between the buildings is 𝑤 = 40 m. 

The thickness of each building is 10 m. Due to the height 

of the transmitter, the field between the buildings is 

mainly due to the diffracted fields and multiple reflections 

of the diffracted fields. In Fig. 5, 3D maps of path loss 

and the magnitude of the diffracted field computed by 

GO+UTD are plotted for different transmitter heights. 

The frequency is 900 MHz, and the range is 𝑑 = 900 m. 

As observed from the results, the field strength between 

the buildings increases as the transmitter height increases. 

This is expected due to the contribution of reflected 

fields at the upper part of the buildings. The behavior of 

the diffracted field in Fig. 5 (c) is because of the non-

physical discontinuities around the incident and reflected 

shadow boundaries. Dominant diffraction occurs along 

these critical angles.  

In Fig. 6, the path loss is plotted as a function of 

receiver height for different frequencies, assuming that 

the receiver is 𝑎 = 20 m away from the buildings. In 

addition, 𝑑 = 600 m and ℎ𝑡𝑥 = 100 m. Although the 

GO+UTD and SSPE models compare well, the results of 

the diffracting screens model deviate. This is expected 

because the diffracting screens model does not account 

for the reflections from the finite thickness of the buildings 

and the multiple reflections of the diffracted field 

between the buildings. It is also observed that as the 

frequency increases, the path loss tends to increase. In 

Fig. 7, the path loss is plotted as a function of range  

for different frequencies, assuming that ℎ𝑡𝑥 = 100 m, 

𝑎 = 20 m and ℎ𝑟𝑥 = 1.5 m. It is seen that as the distance 

between the buildings and the transmitter antenna 

increases, the path loss tends to increase. However, due 

to the interference of diffracted and reflected fields, the 

path loss may decrease/increase even if the distance 

increases/decreases. In Fig. 8, the path loss is plotted as 

a function of receiver height by varying the transmitter 

height. The frequency is 900 MHz, 𝑑 = 900 m, and  

𝑎 = 20 m. As the transmitter height increases, the path 

loss tends to decrease between the buildings. Finally, in 

Fig. 9, the GO+UTD and two-way SSPE models are 

compared for arbitrarily-shaped and positioned buildings. 

Note that the diffracting screens model is not applicable 

in this configuration.  

 

 
 

Fig. 4. 3D maps of path loss in 1800 MHz: (a) GO+UTD, 

and (b) two-way SSPE.  

 

When the computational performances of the 

models are compared, it is evident that the diffracting 

screens model quickly performs in a few seconds, but  

its accuracy is less. Although the SSPE and GO+UTD 

models involve heavier computational load, they provide 

accurate results. The computation time of the SSPE and 

GO+UTD models depend on many factors, such as the 

distance, the level of discretization in the domain (range 

and height step sizes), the level of accuracy (the difference 

in the field distribution when each contributing field  

is added) and especially the interaction between the 

radiated fields and the buildings. Depending on the 

location of the antenna and the buildings, the amount of 

wave interactions (multiple reflections and diffractions) 

determine the amount of calculations and the computation 
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time. The GO+UTD tool has been parallelized in 

MATLAB by using the parallel processing tools to 

perform the computations in parallel for each point 

within the LOS of each source. Hence, the performance 

of the GO+UTD also depends on the number of 

processors used. The two-way SSPE performs sequential 

computations, but this tool will be parallelized in the near 

future. The 3D maps of the example in Fig. 9 were 

obtained by GO+UTD in 27mins with 4 processors, and 

by SSPE in 20mins (12mins) for 1500 (1000) number of 

step-wise forward-backward calculations. Note that the 

discretization is taken quite fine (256380 grid) to obtain 

better looking maps. The time will decrease if less 

receiver points are needed in the domain.  

 

 
 

Fig. 5. 3D maps of path loss and the magnitude of the 

diffracted field computed by GO+UTD in 900 MHz: (a) 

path loss with ℎ𝑡𝑥 = 20 m, (b) path loss with ℎ𝑡𝑥 = 50 m, 

(c) diffracted field with ℎ𝑡𝑥 = 20 m, and (d) diffracted 

field with ℎ𝑡𝑥 = 50 m. 

 
 

Fig. 6. Path loss as a function of receiver height: (a)  

450 MHz, (b) 900 MHz, (c) 1800 MHz. (𝑑 = 600 m, 

ℎ𝑡𝑥 = 100 m, 𝑎 = 20 m). 
 

 
 

Fig. 7. Path loss as a function of range: (a) 450 MHz,  

(b) 900 MHz, (c) 1800 MHz. (ℎ𝑡𝑥 = 100 m, 𝑎 = 20 m, 

ℎ𝑟𝑥 = 1.5 m). 
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Fig. 8. Path loss as a function of receiver height for 

different transmitter heights. (𝑓 = 900 MHz, 𝑑 = 900 m, 

𝑎 = 20 m). 

 

 
 

Fig. 9. Simulation of arbitrarily-shaped and -positioned 

buildings at 900 MHz: (a) path loss (two-way SSPE), (b) 

path loss (GO+UTD), (c) diffracted field (GO+UTD), 

(d) path loss vs. receiver height (at 100 m range), and (e) 

path loss vs. receiver height (at 150 m range). 

 

VI. CONCLUSION 
Three models (GO+UTD, two-way SSPE and the 

diffracting screens models) have been considered for the 

solution of radiowave propagation in urban area. It is 

observed that the diffracting screens model provides a 

rough estimate for the path loss and is not capable of 

modeling interference effects due to multiple reflections 

and diffractions. However, the SSPE and GO+UTD 

provide accurate results, and the GO+UTD model is 

useful to visualize the diffracted fields. The GO+UTD 

and the two-way SSPE compare well in general, except 

for small differences around the shadow boundaries and 

in the deep shadow region, which can be improved by 

decreasing the step size. 
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Abstract ─ The paper examines diffraction at rounded 

wedges with perfectly conducting faces. This topic was 

a subject of many publications which investigated 

mainly the total diffracted waves. In the present paper, 

we calculate specifically their fringe components to 

illustrate their sensitivity to the edge curvature. Such 

fringe waves provide substantial contributions to the 

scattered field in certain directions and represent a key 

element in extension of the physical theory of diffraction 

(PTD) for objects with rounded edges. 

 

Index Terms ─ Fringe wave, hard boundary condition, 

method of moments, non-uniform currents, physical 

optics, physical theory of diffraction, rounded wedge, 

soft boundary condition, uniform currents. 

 

I. INTRODUCTION 
A number of papers exist which studied diffraction 

at wedges with rounded edges. Perhaps the first one was 

the Kalashnikov paper [1] where he presented the first 

objective validation of the Sommerfeld diffraction theory. 

He accomplished thorough experimental investigation of 

light waves diffracted at metallic wedges with finite edge 

curvature. In publications [2-24], one can find additional 

references. Main subjects in those publications were the 

total waves scattered at the edges. Our objective is to 

calculate specifically their fringe components which are 

the most sensitive to the edge curvature. Such fringe 

waves provide substantial contributions to the scattered 

field away from the boundaries of incident and reflected 

waves. They represent a key element for extension of the 

physical theory of diffraction (PTD) to objects with 

rounded edges. 

The paper is organized as follows. Section 2 describes 

the geometry of the problem. In Section 3, we formulate 

the integral equations in the PTD format for the fringe 

currents [5,6,25,26]. Section 4 presents their solution by 

method of moments (MoM) and illustrates fringe waves 

scattered at curved edges in comparison with those 

scattered at sharp wedges. 

The time dependence  tiexp  is used in the paper. 
 

II. GEOMETRY OF THE PROBLEM 
A wedge with a rounded edge is constructed as a 

combination of the circular cylinder smoothly conjugated 

with the wedge faces (see, Fig. 1). The wedge with interior 

angle 2 is located symmetrically along x-axis on the 

two-dimensional (2D) xy-plane. The origin coincides 

with the apex of the sharp wedge. Here, a is the radius of 

the cylindrical surface L0. Points (xj,yj) and (xj,-yj) are the 

junctions/tangency points of the cylindrical surface L0 

with two half-planes L1, and L2, which are the faces of 

the tangential wedge. Fringe waves calculated below for 

rounded edges are compared with those for the tangential 

wedge with infinite sharpness (a=0). The wedge is 

illuminated (from the left) by a plane incident wave 

propagating along the x-axis. In other words, only double 

side fixed illumination is considered. 

Electromagnetic (EM) waves with two basic 

polarizations may be investigated for this scenario: the 

waves with the electric vector (magnetic vector) parallel 

to the edge of the PEC wedge. In the acoustic diffraction 

problem, these two situations relate to the wedge with 

the soft (hard) boundary conditions (SBC and HBC), 

respectively. The solutions of these two-dimensional EM 

and acoustic problems are identical [5,6]. 

The wedge structure is canonical in terms of 

extracting/visualizing every wave phenomenon occurs 

there [16]. Electromagnetic and acoustic waves interact 

with objects and scatter. The word scattering includes 

reflection, refraction, and diffraction. The addition of the 

scattered field and the incident field yields total fields. 

The 2D scattering plane around the wedge may be 

divided into three regions in terms of critical wave 
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phenomena occurred there [16]. In the first region, all 

three field components (incident field, reflected field, 

and diffracted field) exist. In the second (reflection-free) 

region, only incident and diffracted fields exist. These 

two regions are separated by the reflection shadow 

boundary. 

 

 
 

Fig. 1. Rounded wedge with perfectly reflecting faces.  

 

For the sake of clear understanding and completeness, 

the definitions of total, scattered, diffracted, and fringe 

fields are included. Total field is the addition of the 

incident and scattered fields. In other words, in order to 

obtain scattered field, one needs to extract/subtract the 

incident field from the total field. The subtraction of the 

incident and reflected fields from the total field yields the 

diffracted field. In other words, the diffracted field is 

equal to the scattered field minus the reflected field. The 

fringe field is the part of diffracted field generated by  

the source-induced fringe (nonuniform) currents. These 

currents exist because of any deviations of a scattering 

surface from a tangential plane [5,6]. Such deviations 

can be in the form of sharp discontinuities (edges, tips), 

discontinuity of a surface curvature (as in the junction 

points (xj,yj), (xj,-yj)) as well as the smooth bending (as 

in the cylindrical surface L0). 

As observed in Fig. 2, there are two points that can 

be taken as the origin. The first is the origin of the xy-

coordinate system (0,0). For the computation of fields 

around the wedge for both sharp and rounded wedges  

the receivers are located on the observation circle with 

this origin and with a specified radius. In this case, the 

coordinates (r,φ) related to the sharp wedge are used. 

The second origin is the center of the rounded-part of the 

rounded wedge (d,0) where we use coordinates (ρ,ψ) 

related to the rounded wedge. In this case, fields around 

the rounded wedge are computed for the receivers 

located on the observation circle with this origin and 

with a specified radius. Figure 2 presents these two 

cases. Note that, reflections occur only in the shaded area 

for the sharp wedge but occur everywhere for the rounded 

wedge.  
 

 
 

Fig. 2. Scenarios for: (a) sharp–rounded wedge 

comparisons, and (b) fields simulated around the rounded 

wedge.  

 

III. FORMULATION OF INTEGRAL 

EQUATIONS 
In the problem under investigation, we apply a 

scalar interpretation for a perfectly conducting wedge. 

The soft boundary condition u=0 relates to excitation of 

the wedge by the E-polarized plane wave: 

 
ikxinc

z
inc euEu 0 . (1) 

The hard boundary condition ( 0/  nu ) corresponds 

to the case when the wedge is illuminated by the H-

polarized plane wave: 

 
ikxinc

z
inc euHu 0 . (2) 

Proceeding with the second Green’s identity one can 

obtain the surface integral equation: 

 

     

 
 

 
2

,,
                   

,..
4

,

)1(
0

)1(
0

yxu
ldkrH

n

yxu

krH
n

yxuvp
i

yxu
L

inc



















 

. (3) 

Here, L=L0+L1+L2
 

is the total surface of the body, 

   22
yyxxr  , and the integrand is singular at 

the point r=0. The integral is understood as its Cauchy 

principal value. The incident wave 
incu  in (3) is given 

everywhere on the surface L. Function u is the total field 

u=uinc+usc. It follows from (3) that, 
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for the soft surface (u=0), and, 
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 (5) 

for the hard surface ( 0/  nu ). 

Now, we recast these equations in the PTD format 

[5,6]. First, introduce the surface currents: 

 hh
s

s uj
n

u
j 




 , . (6) 

They consist of two components: 
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where POjj )0(

 
is the uniform component defined 

according to the physical optics (PO). It is defined as: 
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The term fr
hsj ,

 represents the non-uniform PTD component 

called here the fringe current. In view of these notations, 

Equations (4) and (5) take the forms: 

 

   

     







L

PO
s

inc

L

fr
s

ldkrHyxjvp
i

yxu

ldkrHyxjvp
i

)1(
0

)1(
0

,..
4

,

,..
4

, (9) 

 

     

   















L

PO
h

L

fr
h

fr
h

ldkrH
n

yxjvp
i

ldkrH
n

yxjvp
i

yxj

)1(
0

)1(
0

,..
4

            

,..
4

,
2

1

. (10) 

Calculating fr
hsj ,

 from (9) and (10), one can find the total 

fringe waves scattered by the object as: 
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As shown in [6,25], the integrals from 
PO

hsj ,  over the faces 

L1,2 represent the PO fields scattered by half-planes. 

They are described in accordance with (3.37-3.40) and 

(3.49), (3.50) of [6]. The details of their calculations  

are presented in [25] that contain the fringe integral 

equations similar to (9), (10). The only difference in (9), 

(10) consists in presence of integrals over the cylindrical 

part L0.  

For numeric solution of the fringe integral Equations 

(9), (10) we apply the classical MoM (see, [14,20] for 

details). 
 

IV. NUMERICAL SIMULATIONS AROUND 

SHARP AND ROUNDED WEDGES 
The MoM related references mentioned above in the 

Introduction show that MoM is highly capable of solving 

surface integral equations. Here, we develop the MoM 

algorithms for the fringe integral equations derived in the 

previous section and first test them against the sharp 

wedge. Note that, in addition to the fringe fields, the 

total, scattered, and PO scattered field variations around 

the wedge are also given for clear understanding of  

wave scattering phenomena (see, [16,18] for detailed 

illustrations of diffracted fields). Fringe fields are 

directly computed using (11), (12). One needs to add PO 

scattered fields in order to obtain total scattered fields. 

Finally, addition of the incident field to the scattered 

field yields the total field. 

Numerical simulations in this section consist of  

two parts. As shown in Fig. 2 (a), the first computations 

belong to various fields from the rounded wedge and 

their comparison with that from the sharp wedge. The 

frequency of all simulations is 30 MHz (i.e., λ=10 m). 

The observer radius is r=2. Although infinite, the length 

of L1 and L2 parts of the wedge is taken 50-long, which 

is tested to be enough for the accuracies used in these 

numerical calculations. Also, the number of segments in 

one wavelength is chosen as 20 for MoM calculations (in 

the vicinity of the edge up to 100-500 segments may be 

used to increase the accuracy). It is also numerically 

tested that the number of segments of the rounded part 

(L0 part) is at least 20 to satisfy rounded curvature. Note 

that, different discretizations may be required for the 

wedges with soft and hard BCs [20]. Approximately, 

10λ-20λ-long wedge sides are enough for the soft wedge 

but up to 100λ-long wedge sides (even more) may be 

required for the hard wedge.  

In the second part, fields from the rounded wedge 

are computed for the scenario in Fig. 2 (b). It includes 

the fringe field, the PO field, and their sum. 

For the soft sharp wedge, we denote  yxj fr
s ,  as

 yxj shrpfr
s ,,  and outside the wedge it creates the field: 
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This fringe field is calculated using (4.18) on p. 107 in 

[6]. This is assumed as the reference (PTD) solution. 

Alternatively, the MoM algorithm presented in [20,25] 

can be used directly. For the rounded wedge, (9) is 

discretized and solved using the new MoM algorithm 

and segment fringe currents rndfr
sj

,  are obtained. Then, 

fringe fields  yxu rndfr
s ,,  around the object are calculated 

using (11). 

In the following examples, for the sharp wedge, first 

the wedge (half) angle β=5°,15°,30°,45° is specified. 

Then, the observation circle with r=2 is chosen. On  

this circle, the receivers are located at grid points 

   cosrx ,    sinry  with Δφ=0.5°. Finally, 

because of the symmetry with respect to x axis, 0
, / uu shrpfr

s

for  0  is calculated and plotted. For the 

rounded wedge, and for the same sets of parameters, 

a=/m, m=2,5,10,20,… is specified and MoM solutions 

are generated and 0
, / uu rndfr

s  for  0  is 

plotted. The objective is to demonstrate how 0
, / uu rndfr

s  

approaches 0
, / uu shrpfr

s  with decreasing of the rounding 

radius (a). Examples presented in Figs. 3-7 belong to 

SBC case; the next figures are given both for SBC and 

HBC cases. 
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Note that, the rounded wedge MoM model directly 

yields sharp wedge solutions when a=0. This is used  

in validating the new rounded wedge MoM algorithm. 

The rounded wedge algorithm is tested against both PTD  

and previous sharp MoM models and perfect agreement 

is obtained. Figure 3 belongs to these validations (a  

free MATLAB package has been prepared for the 

visualization of fringe waves around a sharp wedge and 

its tutorial has just been published [26]). 

Figures 4-5 present total and fringe fields, 

respectively, with four different wedges for the scenario 

in Fig. 2 (a). The three curves belong to a=0, a=λ/10, and 

a=λ/5, cases. As observed in Fig. 4, major total field 

contribution comes from the interaction of incident, 

reflected, and diffracted waves. Total fields of the 90 

wedge for all three cases are almost identical. The 

differences in the total fields around the wedge become 

significant as the wedge interior angle gets smaller. This 

is because the locations of the receivers shift significantly 

for narrow wedges (see, Fig. 2 (a)). The same observation 

also holds for the fringe field variations in Fig. 5.  

For the sharp wedge only diffracted field occurs 

backwards (i.e., towards to the angle of incoming plane 

wave). But for the rounded wedge there is a strong 

backward reflection.  

Note that, as a increases, the distance between the 

receiver on x-axis and backward specular reflection point 

increases and the amplitude of the scattered field along 

this direction decreases. The effect of this is observed in 

Fig. 5 where fringe field variation is plotted. However, 

for fringe waves another reason also exists for their 

decrease. The larger is radius a of rounded/cylindrical 

surface L0
 

the smaller gets its curvature and, as a 

consequence, the smaller fringe currents become there.  

PO and fringe fields around the rounded wedge  

are simulated in this section. The scenario for these 

simulations is given in Fig. 2 (b). For the calculation of 

this fringe field, first, β and a are chosen. Then, the 

receivers are located on the circle around the rounded 

wedge using the grid points (x,y) on the circle ρ=a+nλ, 

n=1,2,… with m 0  and Δψ=0.5° where, 

 
 




a
m sin . (14) 

Then, (9) is discretized and solved using the new MoM 

algorithm and the segment fringe currents rndfr
sj

,  are 

obtained. Fringe fields  yxu rndfr
s ,,  are then calculated 

using (11). Fringe fields vs. angle variations are then 

plotted. 

 

 
 

Fig. 3. Fringe fields around different SBC sharp wedges 

(for the scenario in Fig. 2 (a)). The solid (red) curve is 

calculated according to (4.18) in [6]. The dashed (blue) 

curve – by MoM. 
 

 
 

Fig. 4. Total fields around different SBC wedges (for the 

scenario in Fig. 2 (a)). The solid (red) curve is calculated 

according to (4.18) in [6]. Other curves – by MoM. 
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Fig. 5. Fringe fields around different SBC wedges (for 

the scenario in Fig. 2 (a)). 

 

 
 

Fig. 6. Fringe fields around different SBC wedges (for 

the scenario in Fig. 2 (b)). 

 

For the PO-scattered fields around the rounded 

wedge, we calculate the integral: 

 
      

L

PO
s

rndPO
s ldkrHyxj

i
yxu

)1(
0

, ,
4

, , (15) 

with L= L 0+ L1+ L2. Hence, 

 
  rndPO

Ls

rndPO

Ls

rndPO

Ls

rndPO
s uuuyxu ,

,

,

,

,

,

,

210
,  . (16) 

Here,  

 

 

 




j

j

dkrHe

ka
euyxu

ika

ikdrndPO
Ls





  0
)1(

0
cos

0
,

,

cos                

2
,

0

, (17) 

with    20
2

00 yyxxr  , 

 

   

 
















1

1
cos

0

011
)0(

0
,

,

for                                     0

0for       
        

,,,

011

1







-ikrikx

s

ikxrndPO
Ls

eeu

krveuyxu

j

j

, (18) 

    022
)0(

0
,

,
,,,

2
krveuyxu s

ikxrndPO

Ls
j , (19) 

 
 

for  222  , where 2,1  is found from 

(A.4). Also, 

 

   

   





cossin

sincos

22
2

22
1

aay

adadx

yyxxr

yyxxr

jj

jj

jj

jj









. (20) 

Notice that,  011
)0( ,, krvs  is discontinuous on the 

boundary of the reflected plane wave (  1 ). In 

summary, rndPO
su ,  is calculated from (15) and (16) for 

the specified grid points and the results are plotted as PO 

fields vs. angle. The total field will then be the sum of 

these two: 

     ),(,, ,,, yxuyxuyxu rndPO
s

rndfr
s

rndtot
s  . (21) 

Figure 6 belongs to the second scenario given in  

Fig. 2 (b) and shows fringe field distributions for four 

different wedge angles for two different a values 

(a1=/10
 
and a2=/5). Here, the receivers are located  

on a circle around the rounded wedge (not around the 

origin on the xy-plane) with the center at (0,x2) where 

sin/222 adx   and radius ρ2=λ/5+2λ. Although, 

the receivers for the computations for a1=/10
 

and 

a2=/5 are exactly at the same points, the difference of 

distances between the rounded face and the receivers for 

these two cases gets larger, for the receivers around the 

backscattering direction φ=180°. 

Figure 7 shows uniform (PO), nonuniform (fringe), 

and total currents on the surface of the wedge having  

a 30 interior angle, and a=/2 for the SBC case. This 

figure clearly demonstrates that the fringe currents 

concentrate in vicinity of the junction points, i.e., in 

vicinity of the surface curvature discontinuities. Tests 

with different sets of parameters show that the strongest 

fringe currents occur for the sharp wedge (a=0). The 

fringe current decays on both sides of the junction points 

and has a minimum at midpoint between the junctions. 
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Figure 8 compares fringe currents of both SBC  

and HBC cases a few  around junction points. Here, 

although L1=L2=50
 
is used in the MoM computations, 

only L1=L2=4.35
 
and L0=1.3

 
sections are shown in the 

figure (i.e., horizontal axis extends from -5 to 5) with 

/40 discretization. Nearly, 500 segments are used for 

the rounded part L0 (with a=/2, this corresponds to a 

nearly /400 segmentation). Very small segments are used 

just to increase the accuracy around the junctions.  

As seen there, the fringe current distributions of 

SBC and HBC cases look alike; they have maxima on 

the junction points. However, SBC fringe currents make 

sharp peaks on the junction points but HBC fringe 

currents have slight discontinuities. Also, HBC fringe 

currents are higher than SBC fringe currents. Finally, 

both fringe currents decay away from junctions but HBC 

fringe currents’ decay rate is lower than SBC fringe 

currents. 

Here, it is pertinent to remind the fringe currents 

behavior in vicinity of a sharp wedge. In SBC case, the 

fringe current tends to infinity as   
  /1

/1 kr , 

while in HBC case it is finite (    /240  uj
fr

h ) 

when 0r  and   22  [6,27]. Because fr
hj  

is finite for sharp wedges it is not surprising that it has 

only slight changes in vicinity of the junction points 

where the surface L is smooth and only its second 

derivative undergoes discontinuities. 

Remind also that, away from the edge ( 1kr ) on 

the sharp wedge (with β=15°) the SBC current fr
sj  drops 

as   2/3
/1 kr  while the HBC current fr

hj  attenuates as 

  2/1
/1 kr  [6]. The curves in Fig. 8 for 3r

 
relate to 

large values ( 18kr ) and qualitatively agree with those 

for a sharp wedge. Notice as well that at point ψ=0 (r=0 

in Fig. 8) on the circular cylinder alone (without L1, L2), 

the SBC and HBC fringe currents are determined by 

(14.53) and (14.54) of [6] where one should set 2/ 
 

and 2/  . According to these equations, fr
h

fr
s jkj  . 

For λ=10m (with f=30 MHz) taken in our calculations 

this relationship means that fr
h

fr
s jj 6.0 , while for the 

rounded wedge according to Fig. 8 we have fr
h

fr
s jj 7.0 . 

Finally, in Fig. 9 for comparison purpose we plot 

both the soft and hard fringe waves for rounded wedges 

with a=a2=/5 at the distance ρ=a2+2. They relate to 

the scenario in Fig. 2 (b). Notice that, the curves for the 

wedge with β=30° are similar to those for the sharp 

wedge given in Fig. A4.5 of [6].  

 

 
 
Fig. 7. Total, PO and PTD (fringe) surface currents of the 

30 SBC wedge. 

 

 
 

Fig. 8. PTD (fringe) surface currents of the 30 SBC and 

HBC wedges.  

 

 
 

Fig. 9. Fringe fields around different SBC/HBC wedges 

(for the scenario in Fig. 2 (b)). 
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V. CONCLUSIONS 
Fringe integral equations suitable for analysis of the 

field scattered by rounded soft and hard wedges are 

developed. Numeric results are obtained via a regular 

MoM procedure. Comparison with scattering from sharp 

wedges is illustrated and confirms that the rounded 

wedge can be considered, approximately, as the sharp 

wedge when the radius of rounding does not exceed one 

tenth of the wavelength. The results are also important 

from the theoretical/methodical point of view because 

they demonstrate the direct extension of PTD for objects 

with rounded edges.  
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Abstract ─ A self-adaptive ray tracing method for 

predicting radio propagation based on the curved surface 

ray tube (CSRT) model is proposed in this paper. The 

CSRT model is implemented in the ray tracing method 

to reduce the unnecessary consume compared with the 

four-ray tube model in complex environments. Both the 

theoretical calculation and the practical simulation were 

applied to verify the high efficiency of the CSRT model. 

The radio wave propagation in a complex scene was 

calculated by the CSRT model and the four-ray tube 

model, and the theoretical analytical result demonstrated 

that the CSRT model achieved a speed up of 4 times 

compared to the four-ray tube model. Moreover, the 

wave propagations in several different environments 

were simulated with our developed software based on  

the CSRT and four-ray tube tracing method, and the 

comparisons of the simulation time spent by the two 

methods proved the high efficiency of the CSRT model. 

In addition, the correct prediction of the propagation 

paths and E-field also validates the accuracy of the 

CSRT model.  

 

Index Terms ─ CSRT model, four-ray tube, radio wave 

propagation, ray tracing. 
 

I. INTRODUCTION 
In recent years, wave propagation prediction in the 

electrically large environment has been studied in an 

extensive published literature. A considerable interest 

has been shown in the ray tracing algorithm researches 

combined with the uniform theory of diffraction (UTD) 

[1-6]. Compared with the high accuracy but time-

consuming reverse algorithm, the time-saving shooting 

and bouncing ray (SBR) method [7-12] has attracted 

attentions widely.  

A ray tracing method based on the geometrical 

optics (GO) theory was presented to predict reflection 

and refraction rays [13-15]. A center-ray tube model was 

used in [14], which set one ray as the center of a ray cone 

and predicted the propagation of electromagnetic waves 

by only tracing the center ray of the tube. Since the 

wavefront of a center-ray tube is a circle or an ellipse, it 

overlaps with another wavefront when it is used to  

cover the spherical surface. Moreover, the radius of  

the receiving ball also determines the accuracy, and  

this model may produce abundant repeated paths. The 

lateral-ray tube model used in [5-8,14] is a good solution 

to the overlapping problem. The icosahedron model [7,8] 

and point source launching four-ray tube model [5,6,14] 

can cover the spherical wavefront seamlessly and without 

overlapping. Since the models mentioned before cannot 

be applied to trace diffraction rays, a segment source 

launching four-ray tube model combined with the UTD 

was proposed in [5,6]. This model solved the difficulties 

of the point source launching ray tube in tracing 

diffraction paths, and the cylindrical wavefront can be 

covered seamlessly and without overlap. Nevertheless, 

the segment source launching four-ray tube model cannot 

deal with complex crossing situations with the terrain 

and may produce much extra expending. Thus, a 

triangular wavefront ray tube model has been mentioned 

in the paper [16], but there are not detailed descriptions 

about the features and its application in tracing processing. 

On this basis, a three-ray curve surface ray tube 

(CSRT) model is presented in this paper, and the tracing 

process is introduced in detail using this model. The 

CSRT model can be applied to predict the propagation 

of the diffraction rays. Compared with the segment 

source launching four-ray tube model (hereinafter 

referred as four-ray tube model), the CSRT model can 

deal with more general situations accurately with less 

consumptions. Thus, the CSRT model can provide 

accurate prediction outcomes with high efficiency in 

more general environments. 

Section II gives a detailed definition of the three-ray 

CSRT model, and proves the efficiency improvement of 

the CSRT model in theory compared with the four-ray 

tube model. In Section III, different intersection situations 

with the terrain triangle facets by using the CSRT are 

listed. The description of how the tracing method runs  

is described in Section IV. Section V shows several 

simulation results of different terrains, and discusses the 

results compared between the three-ray CSRT model and 

the four-ray tube model tracing method. In Section VI, a  
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conclusion is drawn. 

 

II. COMPARISONS BETWEEN THE FOUR-

RAY TUBE MODEL AND THE THREE-RAY 

CSRT MODEL 
The four-ray tubes launched by edges are shown in 

Fig. 1 (a). Every two adjacent rays of the four-ray tubes 

determining a ray tube are in the same plane, which 

meets the characteristic of the conventional lateral-ray 

tube. The four-ray tube model is suitable to calculate the 

wave propagation in the simple city environments. The 

buildings in city models are usually assumed to be cubes 

(Fig. 1 (b)), and if the four-ray tube model partly crosses 

with a building, the wavefront of the tube ABCD will  

be divided into two quadrilaterals. However, only the 

wavefront BCFE can produce a reflection ray tube. Since 

the edges of two buildings are parallel, the rays IE and 

JF are in the same plane. So, rays IE, IB, JC and JF can 

form a new four-ray tube for reflection.  

 

   
 (a) (b) 

 

Fig. 1. (a) The four-ray tubes and three-ray CSRTs 

launching model. (b) The four-ray tube model in the city 

environment. 

 

However, for the complex environment, the terrain 

is often represented as closely spaced triangular surface. 

The situations of the ray tube crossing with a terrain 

become more complex. In Fig. 2, the wavefront of the 

four-ray tube launched from the diffraction edge is 

divided into two parts. Nevertheless, the intersecting part 

of the wavefront cannot produce one or several four-ray 

tubes. Thus, the popular solution is to assume the whole 

tube will reflect from the plane of the terrain triangular. 

The part to complete the four-ray tube wavefront does 

not produce real rays, so rays in this part belong to the 

unnecessary redundancy. When the reflection ray tube 

crosses with the terrain again, the intersecting situations 

become more complex, and the consumptions increase 

significantly. Many paths which do not exist will be 

counted in the result. 

In Fig. 2, the edge AB is the mirror edge of the 

diffraction edge of the terrain triangle, and the point O is 

the crossing point of line AC and line BE, which is 

regarded as the virtual launching point of this four-ray 

tube. 

 

 
 

Fig. 2. The four-ray tube reflects on the terrain triangle 

and crosses with the terrain. 

 

Parameters in Fig. 2 can be expressed as 𝑂𝐴 = 𝐻1, 

𝑂𝐵 = 𝐻2, 𝐴𝐶 = 𝐿11, 𝐴𝐷 = 𝐿12, 𝐵𝐸 = 𝐿21, 𝐵𝐹 = 𝐿22, 

𝐴𝐵 = 𝑊, ∠𝐴𝑂𝐵 = 𝜃, ∠𝐶𝐴𝐷 = ∠EBF = 𝛼. Use 𝑧 to 

represent the length of the segment CF. According to the 

geometric principle, 𝑧 can be calculated by the Equation 

(1): 

 𝑧 = √𝑥4
2 + 𝑥1𝑥2 +

𝑥2(𝑥3
2−𝑥2

2)

𝑥2−𝑥1
, (1) 

where 

 

{
 
 
 

 
 
 𝑥1 =

𝑊(𝐿11+𝐻1)

𝐻1

𝑥2 =
𝑊(𝐿22+𝐻2)

𝐻2

𝑥3 = √
𝐻2

2𝐿11
2

𝐻1
2 + 𝐿22

2 −
2𝐻2𝐿11𝐿22

𝐻1
𝑐𝑜𝑠 𝛼

𝑥4 = √
𝐻1

2𝐿22
2

𝐻2
2 + 𝐿11

2 −
2𝐻1𝐿11𝐿22

𝐻2
𝑐𝑜𝑠 𝛼

. (2) 

The sides of the quadrilateral CDFE are supposed 

that 𝐶𝐷 = 𝑦1, 𝐷𝐹 = 𝑦2, 𝐸𝐹 = 𝑦3, 𝐶𝐸 = 𝑦4, and the 

value of them can be calculated with Equation (3): 

{
 
 

 
 𝑦3 = √𝐿11

2 + 𝐿12
2 − 2𝐿11𝐿12 𝑐𝑜𝑠 𝛼

𝑦2 = √(𝐿12 +𝐻1)
2 + (𝐿22 +𝐻2)

2 − 2(𝐿12 +𝐻1)(𝐿22 +𝐻2) 𝑐𝑜𝑠 𝜃

𝑦3 = √𝐿21
2 + 𝐿22

2 − 2𝐿21𝐿22 𝑐𝑜𝑠 𝛼

𝑦4 = √(𝐿11 +𝐻1)
2 + (𝐿21 +𝐻2)

2 − 2(𝐿11 +𝐻1)(𝐿21 +𝐻2) 𝑐𝑜𝑠 𝜃

. (3) 

The area of the wavefront CDEF is expressed as 𝑆𝑓. 

Hence, 

 𝑆𝑓 = √𝑝1(𝑝1 − 𝑦1)(𝑝1 − 𝑦2)(𝑝1 − 𝑧) +

                     √𝑝2(𝑝2 − 𝑦3)(𝑝2 − 𝑦4)(𝑝2 − 𝑧), (4) 

where 

 {
𝑝1 =

1

2
(𝑦1 + 𝑦2 + 𝑧)

𝑝2 =
1

2
(𝑦3 + 𝑦4 + 𝑧)

. (5) 

If the area of every terrain triangle is 𝑎, the crossing 

situation cannot be processed directly when the area of 

the wavefront of a ray tube is larger than 𝑎. So, the ray 

tube should be subdivided into several new ray tubes 

with smaller wavefront, and the number of the new ray 

tubes for every subdivision is 𝑐. Provided that every 

subdivision time is 𝑡1 and the intersection time of every 
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ray tube is 𝑡2, the processing time of this ray tube for the 

intersection 𝑇𝑓 can be expressed as follows: 

 𝑇𝑓 = ⌈
𝑙𝑛⌈

𝑆𝑓

𝑎
⌉

𝑙𝑛 𝑐
⌉ 𝑡1 + ⌈

𝑆𝑓

𝑎
⌉ 𝑡2. (6) 

However, since the ratio of the crossing part of  

the wavefront on the terrain triangle to the completed 

wavefront is r, the ratio of the area of the shadow on the 

quadrilateral CDFE to the area of the wavefront CDFE 

is also 𝑟. So, only the rays crossing with the shadow part 

in the four-ray tube are real rays produced by reflection. 

To reduce the unnecessary cost, we define a CSRT 

model in which every two adjacent rays in a ray tube are 

not required to be in the same plane. So the profile of a 

CSRT could be a curve surface. All the rays in the CSRT 

model must be launched by a same diffraction edge, and 

there will be a common virtual point source for them. In 

this paper, the three-ray CSRT model is introduced. 

The three-ray CSRT model is produced by 

connecting the opposite vertex of the quadrilateral 

wavefront to divide the four-ray tube into two ray tubes 

with triangular wavefront (Fig. 1 (a)), so the wavefront 

of the three-ray CSRTs launched from an edge can also 

cover the cylindrical diffraction wavefront. The CSRT 

model in Fig. 3 is launched from diffraction edge AB. 

Supposing that the rays AC and BD are in the same 

plane, so the ray AE is in the different plane with ray BD. 

The profile ABDE is a curve surface consisted of the rays 

launched from the edge AB to the line DE. For all the 

rays in this tube, there must be a common virtual launch 

point before the diffraction. Combined with the UTD, 

diffraction rays in CSRT launched by edge AB will never 

cross with each other during the propagation process 

(except the points on the edge AB). So there will be  

no rays passing through the curve surface and go into 

another ray tube, which proves the three-ray CSRT 

model to be appropriate for wave propagation prediction.  

 

 
 

Fig. 3. The CSRT model. 

 

The CSRT model has no strict requirements on 

whether the adjacent rays are in the same plane. So when 

a three-ray CSRT intersects with the terrain triangles, no 

matter what the shape of the intersection wavefront is, it 

always can be divided into some triangle wavefronts. 

Thus, all the rays in reflection three-ray tubes are real 

rays produced by reflection. 

If the CSRT model is used in Fig. 2, only the 

crossing part will reflect. The crossing part of the 

wavefront of the CSRT and the terrain is the shadow part 

exactly. So the area of the wavefront of the CSRT 𝑆𝐶𝑆𝑅𝑇  

is: 

 𝑆𝐶𝑆𝑅𝑇 = 𝑟𝑆𝑓, (7) 

and the handling time 𝑇𝐶𝑆𝑅𝑇  of the CSRT method can be 

calculated as follows: 

 𝑇𝐶𝑆𝑅𝑇 = ⌈
ln⌈

𝑆𝐶𝑆𝑅𝑇
𝑎
⌉

ln 𝑐
⌉ 𝑡1 + ⌈

𝑆𝐶𝑆𝑅𝑇

𝑎
⌉ 𝑡2. (8) 

So, the time ratio of the four-ray tube and the three-

ray CSRT is indicated as: 

 𝜂 =
𝑇𝑓

𝑇𝐶𝑆𝑅𝑇
. (9) 

The parameters and the constants in the Equations 

(1) - (8) are assumed as the following values: 𝐻1 = 𝐻2 =
10 m, 𝐿11 = 𝐿21 = 10000 𝑚, 𝐿12 = 𝐿22 = 1000 𝑚, 

𝑊 = 10 𝑚, 𝜃 = 𝜋/3, 𝛼 = 𝜋/6, 𝑟 = 1/4, 𝑎 = 100 𝑚2, 

𝑐 = 4. It can be calculated that 𝑇𝑓 = 10𝑡1 + 438831𝑡2, 

𝑇𝐶𝑆𝑅𝑇 = 9𝑡1 + 109708𝑡2. Since that 𝑡1 is very small and 

can be ignored when compared with 𝑡2, it is concluded 

that 𝜂 ≈ 4. 

Thus, the calculation efficiency of the three-ray 

CSRT model has been increased by 4 times compared 

with the four-ray tube model in the above scenario. It is 

an efficient way with the CSRT model for ray tracing 

process in the complex terrain. 

 

III. DIFFRENT SITUATIONS OF RAY TUBE 

CROSSING WITH THE TERRAIN 
When a CSRT crosses with terrain triangles, there 

will be several different crossing situations for the 

wavefront of the ray tube. The three-ray CSRT model 

can self-adaptively deal with the situations as follows.  

 

A. Completely crossing 

When the three-ray CSRT model intersects with a 

terrain triangle completely (Fig. 4 (a)), all the rays in the 

tube will reflect from this triangle. It just needs to obtain 

the reflection rays of the three rays AC, AD and BE to 

form the new reflection three-ray CSRT. At the same 

time, it is also necessary to get mirror point O' of O about 

the terrain triangle as well as mirror edge A'B'. O' and 

A'B' will be applied to the next tracing step as virtual 

launching point and virtual launching edge. 

 

B. Partly crossing with a terrain triangle 

When the ray tube partly intersects with a terrain 

triangle, different treatments will be applied to different 

situations of intersection. If the wavefront of the 

intersecting part is triangular, it only needs to find the 

diffraction points of the vertexes of the triangular 

wavefront and to restructure the three-ray CSRT. For  

the new CSRT, a reflection ray tube can be produced 

according to the steps of Subsection A. However, if the 
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wavefront of the intersecting part is not a triangle, the ray 

tube should be segmented. The polygon wavefront can 

be divided into several triangular wavefronts. In Fig.  

4 (b), the wavefront of the crossing part is an irregular 

polygon DEGH. The irregular polygon wavefront is 

divided into two triangular DEH and EGH by connecting 

points H and E. Find the diffraction points A and G of 

the new vertexes of wavefronts H and G on the edge AB, 

and two CSRTs determined by rays AH, AD, BE and 

rays AH, FG, BE are formed. The reflection ray tubes  

of this two new CSRTs can be produced based on the 

treatment in Subsection A. 

 

    
  (a)    (b) 

 

Fig. 4. (a) Completely crossing with terrain triangle. (b) 

Partly crossing with a terrain triangle. 

 

C. Intersecting with adjacent terrain triangles 

When the ray tube intersects with two adjacent 

terrain triangles (Fig. 5 (a)), the wavefronts CFG and 

DEGF are on two terrain triangles, so the two wavefronts 

can be treated as method in Subsection B respectively. 

 

  
 (a)  (b) 

 
   (c) 

 

Fig. 5. (a) Crossing with two terrain triangle. (b) 

Crossing with several terrain triangles. (c) Subdivide ray 

tube. 

 

D. Intersecting with several terrain triangles 

If the ray tube intersects with several terrain 

triangles (Fig. 5 (b)), since the terrain triangles are not 

closely associated, it is difficult to determine the specific 

situations of intersection usually. To reduce the 

complexity of crossing situations, it is necessary to get 

the ray tube segmented. First, we suppose a wavefront of 

the three-ray CSRT, and then get the midpoints of each 

edge of it (Fig. 5 (c)). Connection of the midpoints A,  

B and C will divide the triangle wavefront into four 

triangles. Next, we get the launching points of these three 

points on the launching edge, so the ray tube will be 

segmented into four new three-ray CSRTs with smaller 

wavefronts.  

 

IV. RAY TRACING PROCESS 
The three-ray CSRT model proposed in this paper is 

mainly used to trace diffraction rays. So the actual ray 

tracing process considering transmission and reflection 

should combine this model with the point source 

launching three-ray tube model. For simplification, this 

paper only considers the situations in which only one 

diffraction and multiple reflections occur. The flow chart 

of the ray tracing is shown as Fig. 6. 

 

 
 

Fig. 6. The flow chart of the ray tracing. 

 

A. Produce initial ray tube 

The initial point source launching three-ray rubes 

are generated through the icosahedron method proposed 

by [8]. During the process of tracing, all the ray tubes 

will have triangular wavefronts and same crossing 

situations with the terrain triangles. So different kinds of 

ray tubes can be processed in a unified way. 

 

B. Diffraction and reflection 

The initial ray tubes or the high order reflection ray 

tubes will diffract from the crossing lines of the terrain 

triangles if the lines are diffraction edges, so the three-

ray CSRTs will be produced. Besides, the other parts of 

these ray tubes crossing with terrain will reflect from the 

terrain and produce reflected ray tubes.  
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C. Judgment of the reception 

During the ray tracing, it should be determined 

whether the ray tube illuminates the receiver. The ray 

tube illuminates the receiver when the receiver is in the 

area covered by the ray tube and the ray tube does not 

cross with other terrain triangles before arriving it. 
 

V. SIMULATIONS AND COMPARISONS 
The simulation software was developed by putting 

the ray tracing process based on the CSRT model and the 

four-ray tube model into the codes. Simulation results  

of several different terrains using this software are 

displayed in this part. The typical terrain formed by 

several terrain triangles and the actual complex terrain 

from the electric map were both investigated.  

In Fig. 7, there are two parallel diffraction edges  

in the terrain. A transmitter (Tx (17.86, 576.55, 223.46)) 

and a receiver (Rx (330.89, 269.15, 172.70)) were placed 

on the terrain. The distance between the Tx and the Rx  

is 441.65 m. The paths simulated by the tracing methods 

based on the CSRT model and the four-ray tube model 

are exactly same, which are shown in Fig. 7. There are  

7 paths totally, which are in accord with the theoretical 

result obviously. From Fig. 7 we can see that several 

diffraction paths are included, which prove that the 

CSRT model works well in predicting diffraction paths. 
 

 
 

Fig. 7. Terrain with parallel diffraction edges. 

 

The terrain in Fig. 8 is same as that in Fig. 7. The 

only difference is that one of the diffraction edges in  

Fig. 8 is rotated so that the two diffraction edges are  

not parallel. All the 5 possible paths are predicted and 

displayed in Fig. 8. The method based on the CSRT 

model is accurate and applicable in different diffraction 

environment. 
 

 
 

Fig. 8. Terrain with nonparallel diffraction edges. 

Table 1 shows the computational time and E-field  

at the point of Rx in four different environments 

simulated by the CSRT model tracing method and the 

conventional four-ray tube model tracing method. The 

excitation frequency is 1000 MHz. In the Table 1, the 

Terrain 3 and the Terrain 4 are both actual environment 

cut from the real electric map. The size of the Terrain 3 

is 2×2.2 km2 (from 42°19'26.6035"N and 82°50'25.8125"E 

to 42°18'25.7818"N and 82°52'4.7458"E), and the distance 

between the Tx and the Rx was 609.63 m. The size of  

the Terrain 4 is 9.5×10 km2 (from 42°21'31.6139"N and 

82°48'28.3466"E to 42°16'44.1722"N and 82°55'40.7631"E) 

and the distance between the Tx and Rx is 439.60 m.  

 

Table 1: The comparison of calculation time and E-field  

Scenario 

Computational 

Time(s) 

E-field 

(V/m) 

Error The 

CSRT 

Model 

The Four-

Ray Tube 

Model 

The 

CSRT 

Model 

The Four-

Ray Tube 

Model 

Fig. 7 

(0.75×0.56km2) 
90 91 2.23 2.2 1.36% 

Fig. 8 

(0.75×0.56km2) 
116 112 1.86 1.86 0 

Terrain 3 

(2×2.2km2) 
1003 1683 0.95 1.01 5.94% 

Terrain 4 

(9.5×10km2) 
8090 9523 1.54 1.62 4.94% 

 
The complexity of the scenarios in the Table 1 

increases with the increase of the terrain size. The results 

show that the four-ray tube model tracing method and the 

CSRT model tracing method use similar computational 

time when they are applied in the simple scenarios in  

Fig. 7 and Fig. 8. However, as the scenarios become 

more complex, the CSRT model tracing method spent 

less computational time. The errors of the E-field at the 

point of Rx between the CSRT model and the four-ray 

tube model are also listed in the Table 1. The average 

error is only 3.06%, which proves the high accuracy of 

the CSRT model tracing method. 

 

VI. CONCLUSION 
This paper introduced a three-ray CSRT model, 

which is suitable for the diffraction calculation in ray 

tracing. The CSRT model is accurate and has great 

advantages over the segment source launching four-ray 

rube model in efficiency. 

The algorithm presented in this paper just considers 

one diffraction and multiple reflections. In practice,  

the CSRT model can be used to calculate high order 

diffraction paths. When the CSRT model is used to 

produce high order diffraction ray tubes, the rays in new 

tubes may cross with others, so it is necessary to do some 

special treatment which can be studied in the next steps. 
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Abstract ─ Shooting and bouncing ray tracing method 

(SBR) is widely adopted in radio wave propagation 

simulations. Compared with the center-ray tube model, 

the lateral-ray tube model is more accurate but more time 

consuming. As a result, we use graphics processing unit 

(GPU) to accelerate the lateral-ray tube model. In this 

paper, we proposed a GPU-Based shooting and bouncing 

lateral-ray tube tracing method that is applied to predicting 

the radio wave propagation. The numerical experiment 

demonstrates that the GPU-based SBR can significantly 

improve the computational efficiency of lateral-ray tube 

model about 16 times faster, while providing the same 

accuracy as the CPU-based SBR. The most efficient 

mode of transferring the data of triangle faces is also 

discussed. 

 

Index Terms ─ Compute unified device architecture 

(CUDA), graphics processing unit (GPU), radio wave 

propagation, ray tracing, shooting and bouncing ray 

(SBR). 
 

I. INTRODUCTION 
In the past few decades, electromagnetic environment 

(EME) simulation technology has been growing in its 

popularity, for it is significant both for military use  

and for civil use. As a result, various computational 

electromagnetic methods have been applied in this field. 

Among all kinds of computational methods, the shooting 

and bouncing ray (SBR) [1, 2] tracing method is a high 

frequency asymptotic one for calculating the radio  

wave propagation through environments with regions of 

reflecting surfaces, diffracting edges and so on [3]. At 

present, there are several models proposed, which have 

their own characteristics. Tube creating can be categorized 

into two different schemes using center-ray tubes (a ray 

is shot from the center of the patch wavefront) or lateral-

ray tubes (rays are shot from vertices of the patch 

wavefront), depending on the number of rays chosen to 

build a tube. The ray cone is a kind of center-ray tube. 

When the rays transmitted are treated as ray cones, 

overlap and double counting are unavoidable because of 

the spherical wavefront during the propagation process 

[4-7]. But regular polygons such as triangles, squares and 

hexagons can completely cover an area without leaving 

gaps or existing overlaps. Using lateral-ray tube tracing 

methods can get a more accurate result than using center-

ray tube tracing methods. However, the cost of tracing 

lateral-ray tubes is much higher than tracing center-ray 

tubes [8]. Therefore, we propose to use the graphics 

processing unit (GPU) to accelerate the shooting and 

bouncing lateral-ray tube method. 

It is obvious that ray tracing is well suitable for 

parallel processing due to the independence of rays [9]. 

Carr et al. first implemented the ray-triangle intersection 

on the GPU in 2002 [10]. Tao used center-ray tube model 

to trace the valid tubes in the radar cross section (RCS) 

prediction on the GPU in 2010 [11]. In this paper, 

abandoning the inaccurate center-ray tube model, we use 

the lateral-ray tube model and fully implement the 

shooting and bouncing lateral-ray tube tracing method 

on the GPU. 

This paper is organized as follows. Section II 

discusses the method of GPU-Based shooting and 

bouncing lateral-ray tube tracing. In Section III, modeling 

and implementation details is introduced. In Section IV, 

the results and discussion are given. Last section is the 

conclusion. 

 

II. GPU-BASED SBR 
GPU is a specialized device that has many cores 

working together. Typically, every 32 threads compose a 

warp which is the basic executing unit of the GPU, and 

the 32 threads execute the same instruction on different 

data simultaneously [12]. This effectively reduces the 

memory access delay by 32 times. 

In software, a typical compute unified device 

architecture (CUDA) program consists of two parts. One 

part is the CPU codes that control the process of the 

whole program, and the other part is the GPU part that 

does the parallel work [13]. A function that executes on 

the GPU is typically called a “kernel” [14]. 

The procedure of the GPU-Based shooting and 

bouncing lateral-ray tube tracing method is divided into 

three steps. They are, generating original ray tubes, 
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reflecting calculation, and diffracting calculation. Among 

all the steps, reflecting calculation and diffracting 

calculation executes their kernels separately. The details 

of these steps are discussed in Section II-A through 

Section II-C. 

 

A. Generating lateral-ray tubes from a transmitter 

The transmitter is modeled as a point source, and for 

purpose of considering all possible angles of departure 

of rays, a regular icosahedron is inscribed inside the unit 

sphere. To achieve better resolution, each face of the 

icosahedron is tessellated into N equal segments where 

N is the tessellation. Rays are launched through 

icosahedron vertices and at the intersection points of 

tessellated triangle faces. Figure 1 shows an example 

with N = 32, which is used in our model. This method of 

launching the source rays provides wavefronts that 

completely subdivide the surface of the unit sphere with 

nearly equal shape and area [4]. An original ray tube is 

composed of three adjacent rays as Fig. 1 illustrates. 

 

 
 
Fig. 1. A regular icosahedron and tessellation of 

icosahedron face. 

 

B. Intersection tests and reflecting calculation 

The CUDA program traces all original ray tubes 

synchronously. Parallelism is introduced by running 

main threads scheduling child thread that accomplishes 

the calculation, and each child thread shows up as a 

separate process. 

The heart of the matter is to distribute the 

computation to over ten thousand of individual, 

controllable, and analogous threads. Since every thread is 

supposed to perform almost the same task, the distribution 

appears particularly significant, which signifies that we 

should ensure every distributed computation process 

resembles each other so that a universal kernel function 

(consistent input and output, same calculation formula, 

etc.) can be the template for every child thread. 

Therefore, we assign a CUDA thread to a single ray tube. 

A thread merely traces one single ray tube, which 

ensures the independence and the similarity of different 

CUDA threads. 

The most time-consuming part is the intersection 

tests of ray tubes as follows: 

1) Calculating the reflection point 

Any point on the ray can be represented as 𝑶⃗⃗ + 𝒕𝒓⃗  

(where 𝑶⃗⃗  represents the original point of the ray, 𝒓⃗  
represents the direction vector of the ray, 𝒕 represents  

the distance coefficient, if 𝒕 > 𝟎, then it represents the 

point is in the positive direction) as Fig. 2 shows, and  

any point inside a triangle face can be represented as 

𝒖𝑨𝑩⃗⃗⃗⃗⃗⃗ + 𝒗𝑨𝑪⃗⃗⃗⃗  ⃗ + 𝑨⃗⃗  (where 𝒖 and 𝒗 represent the distance 

coefficient of 𝑨𝑩⃗⃗⃗⃗⃗⃗  and 𝑨𝑪⃗⃗⃗⃗  ⃗, if 𝟎 < 𝒖 < 𝟏, 𝟎 < 𝒗 < 𝟏,
𝟎 < 𝒖 + 𝒗 < 𝟏, then it represents the point is inside the 

triangle ABC as Fig. 3 shows: 

 𝑂⃗ + 𝑡𝑟 =  𝑢(𝐵⃗ − 𝐴 ) + 𝑣(𝐶 − 𝐴 ) + 𝐴 , (1) 

 𝑡𝑟 −  𝑢(𝐵⃗ − 𝐴 ) − 𝑣(𝐶 − 𝐴 ) = 𝐴 − 𝑂⃗ . (2) 

Let 𝜶𝟏 = 𝑟 , 𝜶𝟐 = 𝐵⃗ − 𝐴 , 𝜶𝟑 = 𝐶 − 𝐴 , 𝜷 = 𝐴 − 𝑂⃗ , 
then, 

 𝜶𝟏𝑡 − 𝜶𝟐𝑢 − 𝜶𝟑𝑣 = 𝜷. 

Let 𝑑 = |𝜶𝟏  𝜶𝟐  𝜶𝟑|, if 𝑑 ≠ 0, on the basis of 

Cramer’s Rule [15]: 

𝑡 =
|𝜷   𝜶𝟐  𝜶𝟑|

𝑑
, 𝑢 =

|𝜶𝟏   𝜷  𝜶𝟑|

𝑑
, 𝑣 =

|𝜶𝟏   𝜶𝟐  𝜷|

𝑑
. 

 If 0 < 𝑢 < 1,   0 < 𝑣 < 1    0 < 𝑢 + 𝑣 < 1. (3) 

 

 
 

Fig. 2. Point 𝑃⃗  on a ray 𝑟 . 
 

 
 

Fig. 3. Point P⃗⃗  inside a triangle ABC. 

 

Then it represents the intersection point is in the 

positive direction of the ray and inside the triangle face 

as well, where 𝑡 represents the distance between the 

original point and the reflection point. Loop the 

computation with all faces, then compare 𝑡, intersection 

point with minimum 𝑡 value is the reflection point and 

go to step 2). However, if the result does not meet (3), it 

represents that the ray has not intersected with the 

buildings or terrains, and step 2) is supposed to be 

skipped. 
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2) Calculating the reflection vector 

As is shown in Fig. 4, 𝑖  is the normalized incident 

vector, r  is the normalized reflection vector, and 𝑛⃗  is the 

normal vector of a triangle face. Angle of incidence 

equals to the angle of reflection, therefore quadrangle 

MONQ is a rhombus, so OQ = 2OP. On basis of step 1), 

the coordinate of O is deterministic. 

Solve the equation to calculate 𝑟 : 

 𝑟 = 𝑖 − 2𝑃𝑂⃗⃗⃗⃗  ⃗ = 𝑖 − 2(𝑖 ∙ 𝑛⃗ )𝑛⃗ , (4) 

where 𝑛⃗ =
𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝐴𝐶⃗⃗⃗⃗  ⃗

|𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝐴𝐶⃗⃗⃗⃗  ⃗|
, 𝐴 , 𝐵⃗ , 𝐶  are the vertices of a triangle 

face. 

 

3) Case analysis 

If neither of a ray of the ray tube has an intersection 

point (case 0), this ray tube is discarded. If some or all 

three rays have intersection points (case 1, 2, 3, 4 and 5), 

it is necessary to consider all kinds of reflection and 

diffraction cases based on the coordinate of intersection 

points: 

0. three rays do not intersect a building; 

1. three rays intersect the same face of a building; 

2. one rays intersect a face of a building while the other 

two do not; 

3. two rays intersect the same face of a building while 

the other one does not; 

4. two rays intersect two adjacent face of a building 

while the other one does not; 

5. two rays intersect the same face of a building while 

the other one intersects an adjacent face of a building. 
 

 
 

Fig. 4. A ray 𝑖  intersects with a plane. 

 

We mainly consider six cases above. It is obvious 

that the reflection exists in all cases except case 0 while 

diffraction does not exist in case 0 and 1. Figure 5 shows 

five cases of ray tubes intersecting the building faces. As 

for case 2, 3, 4, 5, each thread will calculate the 

coordinates of diffraction edges. 

GPU specializes in tedious repetitive numerical 

calculation and is weak in dealing with complicated logic 

structure; hence it is reasonable to run highly intensive 

computational task on the GPU like solving equations in 

step 1) and 2). Parallel numerical calculation indicates 

that when the amount of incident ray tubes is large and 

the formulas are complex, the acceleration effect is 

particularly obvious compared with CPU serial programs. 

 

 

 

 
 

Fig. 5. Five cases that ray tubes intersect with building 

faces. 

 
C. Generating diffracting rays 

Once the wavefront of a ray tube illuminates an edge 

of two adjacent faces and the two adjacent faces make up 

a wedge, this ray tube will generate diffraction rays. The 

following paragraphs will show the procedure. 

A single GPU thread represents an incident ray tube 

to be diffracted. Based on the incident ray tube and the 

diffraction edge, we can get an original point of the 

incident ray tube and two intersections of the wavefront 

of the incident ray tube with diffraction edge. Then, two 

virtual incident rays are created. Each of them generates 

a group of diffraction rays. We need to specify the count 

N of the generated diffraction rays. Suppose the dihedral 

angle of the two adjacent faces, which can make up a 

wedge, is θ. The cross section of the circular cone, which 

is a sector, can be divided into N-1 parts with the angle 

of 
360−θ

N−1
. As a result, the N-1 parts are able to construct 

N-1 ray tubes of which the wavefront is a quadrangle, as 

is shown in Fig. 6. Considering the consecutive thread 

ID, we can get three arrays, A[i], B[i] and R[i]. Among 
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the three arrays, A[i] and B[i] contain the diffraction rays 

to be generated, and the other one R[i] contains the 

diffraction ray tubes which consist of the diffraction rays 

in the first two arrays. As is shown in Fig. 7, we use i to 

represent the ray tube number. The relationship between 

diffraction rays and diffraction ray tubes is also shown. 

Besides, the ray tube number i is in a loop from (idx * N) 

to (idx+1) * N, in which idx means thread ID. 

Different with original ray tubes and reflection ray 

tubes, the diffraction ray tubes are quadrangle ray tubes, 

which means each lateral-ray tube consist of four rays. 
 

 
 

Fig. 6. Generating ray tubes from diffracting edge. 

 

 
 

Fig. 7. Data structure of diffraction rays and ray tubes. 

 

III. MODELING AND IMPLEMENTATION  
To verify the efficiency of the proposed GPU-based 

shooting and bouncing lateral-ray tube tracing method, a 

CPU-based version is also implemented for comparison. 

A model is established, and several numerical examples 

are tested. The GPU hardware used in this research is 

Quadro K620 of Compute Capability 5.0, with 2 GB of 

memory. The CPU hardware used in this research is 

Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60 GHz with 6 

cores. Our implementation runs atop Windows 7 with the 

CUDA Toolkit 7.5. As all future NVIDIA GPUs will 

support CUDA, the proposed GPU-based SBR is scalable 

across future generations. 

CUDA provides a simple and general C/C++ language 

interface to the programmers and the programming  

on GPU does not have much difference from using 

application programming interfaces. 

The GPU-based shooting and bouncing lateral-ray  

tube tracing method is applied to a sample environment. 

There are 4 buildings set on the terrain. All the buildings 

are with the same height, which is 100 m above the 

terrain. The entire model is made up of 19650 triangle 

faces. The material parameter of the buildings is 𝜀𝑟 = 15,
𝜎 = 0.015. The material parameter of the ground is  
𝜀𝑟 = 25, 𝜎 = 0.02. Considering the architecture of the 

transmitter is a regular icosahedron, we can estimate the 

complexity according to the subdivision coefficient. In 

this sample, we set the subdivision coefficient to 32. As 

a result, 20480 original triangle ray tubes are generated 

from the transmitter. There are 2 groups of receivers. 

One is made up of receivers ranging from (0, 0, 50) to (0, 

160, 50) with a 20 - m step. The other group is made up 

of receivers ranging from (0, 0, 20) to (0, 0, 100) with a 

10 - m step. The modeling is shown in Fig. 8. 

 

 
 

Fig. 8. A sample model of propagation environment. 

 

The data of the terrain and the buildings are 

imported from the electronic map. All the data necessary 

in the experiment including the terrain and buildings are 

saved in the global memory. In CUDA programming, the 

number of blocks and threads per block is specified by 

the programmer, and each thread has a unique thread ID 

and block ID to identify the unique data assigned to each 

thread. As a result, each lateral-ray tube can be specified 

through thread ID and block ID. In our experiment, 

considering the 20480 original triangle ray tubes, the 

maximum block size and the thread count in per block  

in our implementation is 32 × 640. In addition, because 

of the limited device memory, we cannot transfer all  

the triangle faces data into the GPU. We resolve this 

problem by transferring the data in batches. 

 

IV. RESULTS AND DISCUSSION  
Last part we introduced the modeling, knowing that 

there are 19650 triangle faces and 20480 original triangle 

ray tubes. Figure 9 and Fig. 10 show the E field vs. 

receiver distance and E field vs. receiver height. Both  
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are compared with the commercial electromagnetic 

simulation software Wireless Insite.  

 

 
 

Fig. 9. Comparison of E field vs. receiver distance with 

proposed method and Wireless Insite simulation. 

 

In Fig. 9, the heights of the transmitter and the 

receivers are all 50 m. Since the distance between the 

transmitter and the receivers varies from 30 m to 190 m 

with a 20 - m step, the E field decreases in general. 

However, under the influence of the building reflection, 

the E field decreases slowly even grows a little when the 

distance becomes longer and longer. 

 

 
 

Fig. 10. Comparison of E field vs. receiver height with 

proposed method and Wireless Insite simulation. 

 

In Fig. 10, the height of the transmitter is 50 m. The 

horizontal distance between the transmitter and all the 

receivers is 30 m. Since the height of the receivers varies 

from 20 m to 100 m with a 10 - m step, the distance 

between the transmitter and the receivers decreases at 

first and then increases with the receiver height. As a 

result, the electric field increases at first for the receiver 

becomes closer to the transmitter. However, for the 

receivers above 50 m, the electric field decreases with 

the increase of receiver height. 

From the Table 1, we can get the information that 

the execution speed on the GPU is more than 16 times 

higher than CPU. 

 

Table 1: Comparisons between execution time for CPU 

and GPU 

Type Time  

Executing on CPU 140122 ms 

Executing on GPU 8706 ms 

 

Below we will put emphasis on analyzing the factors 

which affect the executing time. 

The executing time on the CPU is as follow: 

 𝑡𝐶𝑃𝑈 =
𝑁

𝑓𝐶𝑃𝑈
×

1

𝐶𝐶𝑃𝑈
×

1

𝜂
, (5) 

where 𝑁 represents the data scale inputted, 𝑓𝐶𝑃𝑈 

represents the CPU frequency and 𝐶𝐶𝑃𝑈 represents  

the CPU’s capability of calculation, η represents the 

efficiency of the algorithm. 

We pay more attention to the factors which affect 

the executing time on the GPU. The formula is shown as 

follow: 

𝑡𝐺𝑃𝑈 = 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 + 𝑡𝑚𝑒𝑚𝑐𝑝𝑦                                    

 = 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ + 𝑡𝑁 𝑚𝑜𝑑 𝑛 + 𝑡𝑚 × ⌈

𝑁

𝑛
⌉, (6) 

 𝑡𝑛 =
𝑛

𝑓𝐺𝑃𝑈
×

1

𝐶𝐺𝑃𝑈
×

1

𝜂
+ 𝑛 × 𝑎, (7) 

 𝑡0 = 0, (8) 

where 𝑡𝐺𝑃𝑈 represents the total execution time on the 

GPU, 𝑡𝑘𝑒𝑟𝑛𝑒𝑙 represents the execution time cost in the 

kernel functions, 𝑡𝑚𝑒𝑚𝑐𝑝𝑦 represents the time spent on 

copying data from the GPU to the CPU, 𝑁 represents the 

data scale inputted, 𝑛 represents the data scale inputted 

per time, ⌊
𝑁

𝑛
⌋ represents rounding down to 

𝑁

𝑛
, ⌈

𝑁

𝑛
⌉ 

represents rounding up to 
𝑁

𝑛
, 𝑡𝑛 represents the computation 

time with 𝑛 triangle faces transferred, 𝑡𝑚 represents the 

time spent on copying the data once, 𝑓𝐺𝑃𝑈 represents the 

GPU frequency, 𝐶𝐺𝑃𝑈 represents the GPU’s capability of 

calculation, 𝜂 represents the efficiency of the algorithm, 

and 𝑎 is a constant which affects the speed of copying 

memory changing with different GPUs. 

Because of the limited GPU memory, we cannot 

copy all the data from the CPU to the GPU. As a result, 

we should divide the data into several parts. Then we 

copy each part from the CPU to the GPU. We do not 

copy the second part of the data until the first part of the 

data has been calculated. So do the rest parts of the data. 

This is the reason why 
𝑁

𝑛
 is in the formula. The GPU 

frequency influences the memory clock rate so the 

frequency is higher the more time is saved. Additionally, 

the capability of the GPU is stronger, the more time is 

saved. 

In the formula (6), 
𝑁

𝑛
 is decided by programmers. In 

our experiment, 𝑁 depends on the count of triangle faces 

and the count of original ray tubes. We divide all the 

19626 triangle faces into several groups. Meanwhile, we 

test the time of the intersection test which is the most 
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time-consuming part of the whole experiment. As is 

shown in Fig. 11. 
 

 
 

Fig. 11. Computation time on the GPU predicted and 

measured. 
 

In the formula (6), as the 𝑛 grows, 𝑡𝑛 × ⌊
𝑁

𝑛
⌋ +

𝑡𝑁 𝑚𝑜𝑑 𝑛, which is 𝑡𝑘𝑒𝑟𝑛𝑒𝑙, does not change. 𝑡𝑚 changes 

slightly, too. So the formula (6) mainly depends on ⌈
𝑁

𝑛
⌉. 

Therefore, we should try our best to get the biggest 𝑛 to 

enhance the efficiency. We treat 𝑛 = 200 as a basic unit. 

Then we predict the calculation time by the formula (6), 

as is shown in Fig. 11. For our GPU, the biggest 𝑛 is up 

to 4500. If 𝑛 > 4500, there will not be enough space to 

save the data. So in the example of the comparisons of 

the CPU and the GPU, the 𝑛 of the GPU is chosen as 

4500. 

For the efficiency of algorithm, we can use the 

shared memory to store the triangle face information 

instead of global memory to save time. Proper distribution 

way of blocks and threads also reduces the total execution 

time. In addition, improvement of access mode can 

increase the operation efficiency, too. 

 

V. CONCLUSION 
This paper mainly introduced a GPU-Based 

shooting and bouncing lateral-ray tube tracing method 

that is applied to predicting the radio wave propagation. 

This method can be applied in electrically large scenes 

which is time-consuming. Then we discussed the most 

efficient mode of transferring the data of triangle faces, 

which is a necessary part in the shooting and bouncing 

ray tracing algorithm. The results proved that the method 

can greatly reduce the computation time. Moreover, this 

proposed method can be implemented on the future GPU 

devices which support the CUDA programming. 
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Abstract ─ Low reflectivity of microwave absorbers is 

important to improve the performance of anechoic 

chamber measurements. The shape of the absorber as 

well as the material used are among the main components 

to provide desired low reflection performance. Pyramidal 

and wedge-shaped absorbers are two of the most well-

known microwave absorber types. We discuss the  

effect of a convex shape on reflection performance  

of microwave absorbers and show that convex shape 

structure has significantly performance by absorbing 

most of the electromagnetic energy of the incident wave. 

We used a concavity theorem based design method  

to obtain a function for a convex shape. Absorbing 

structures have been analyzed by using the periodic 

moment method (PMM). An optimization method is 

employed to find coefficients of the convex function, 

which provides better absorption performance than the 

wedge type absorber. Reflection performances of the 

wedge and convex absorbers for the 2­12 GHz frequency 

band are compared. Their reflection performances at  

2 GHz for different angles of incidence are presented. An 

important implication of this study is that the alternative 

absorber shapes other than the wedge shape are 

demonstrated by using simple mathematical methods to 

have the optimal reflection characteristics.  

 

Index Terms ─ Anechoic chamber, electromagnetic 

scattering, electromagnetic wave absorption, microwave 

absorber, periodic moment method, periodic structures 

wedge diffraction.  
 

I. INTRODUCTION 
Unwanted or stray electromagnetic signal radiation 

such as electromagnetic interference (EMI), which usually 

radiate from electronic devices, can be a serious threat to 

living beings and cause faults on other electronics devices 

located nearby when radiation is strong [1-3]. Therefore, 

detection of them is very important. Microwave absorbers 

are used to eliminate these signals in microwave 

applications [4]. Many electronic systems are evaluated 

by using absorbers [5]. They are essential components 

for performing electromagnetic compatibility (EMC), 

EMI, radar cross section and antenna radiation pattern 

measurements accurately in a chamber instead of open 

field [1,4,6-10]. This chamber is called an “anechoic 

chamber” and is used to simulate a free space environment 

[4,11]. Microwave absorbers have dielectric or magnetic 

losses to absorb electromagnetic waves. The absorption 

capability of an absorber is depended on permittivity and 

permeability properties of the absorber material [12]. 

Absorbed electromagnetic waves are attenuated and 

their energy transformed into heat energy [4,13]. The 

two main categories of absorbers according to the 

working mechanism are resonating and graded (non-

resonating) absorber structures [14]. Absorbers are used 

inside anechoic chamber surfaces (wall, ceiling, floor) to 

minimize reflection of incident electromagnetic waves 

and to perform measurements [14-18]. Absorbers having 

low reflectivity are preferable to trap most of the incident 

electromagnetic waves. Thus, almost perfect free space 

conditions are obtained in a chamber [6,19]. Various 

factors such as the electrical properties of the absorber 

material have an essential role in absorption performance 

of microwave absorbers [16]. The relative permittivity 

(dielectric constant) of the material used in an absorber 

is one of the most important factors [20]. It is a measure 

of the electrostatic energy stored in the material and 

affects the propagation speed of electromagnetic wave in 

the material [15,21].  

The shape of the absorber used in the chamber also 

has significant importance on absorption performance in 

addition to other factors [22]. There are many types of 

absorber having different shapes, such as pyramidal, 

wedge, convoluted, among many others. The wedge-

shaped absorber is one of the most well-known type 

which is also commonly used for EMC/EMI measurements 

[23,24]. Its wedge shape provides a suitable impedance 

match from free space to the base of the absorber [16]. 
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Gradually impedance transition acts as an impedance 

matching network in order to have minimum amount  

of reflected EM wave [25]. On the other hand, while 

wedges are larger compared to a wavelength, incident 

EM waves are reflected numerous times between the 

sides of adjacent wedges before being reflected back 

[16]. Thus, a significant portion of its energy is absorbed 

upon each reflection due to the wedge-shape [26]. At 

higher frequencies, diffraction due to edges of wedge 

absorber contribute electric field significantly, which 

effects absorption performance of the absorber [27]. 

Therefore, numerical analysis of such structures need to 

take diffraction into account and Method of Moments 

(MoM) is one of techniques that can effectively 

incorporate such effects as well [28-30].  

Here, we discuss obtaining an absorber shape by 

using a methodology that provides better impedance 

matching. Alternatively, obtaining a shape that will 

provide many bounces of an EM wave between sides of 

wedges before reflecting back.  

Impedance transition of the wedge-shape absorber 

varies linearly from free space to the base of the 

absorber. For better impedance transition and multiple 

reflections between the sides of wedges, increasing of 

height of the wedge absorber is required. However, 

absorber height limits usable measurement space of the 

chamber and restricts usage of absorbers in small and 

semi-anechoic chambers [31,32]. Increasing available 

measurement space of the anechoic chamber is possible 

by using different absorber shapes that have the same or 

better absorption performance with lower height. Using 

nonlinear (curved) absorber shapes instead of a wedge 

type helps to improve the performance of the EMI/EMC 

measurements and available space in the chamber [32]. 

In addition, nonlinear absorber shapes provide smoother 

nonlinear impedance transition and/or many more 

reflections between the wedge sides [32].  

Within this framework, the contribution of this 

study is proposing a method to obtain surface functions 

for absorbers that have better absorption performance 

than a wedge-shape absorber. Scattered electric fields 

from absorber structures have been analyzed by using the 

PMM. Reflection values of the plane electromagnetic 

wave that is E-field polarized along the axes of the 

absorber structure (TM case) are calculated. Since the 

TM case reflection performances are worse than the TE 

case performances, the scope of the study is limited for 

the TM case only [27].  

Organization of the paper is as follows: Analyzing 

periodic absorber structures by using PMM is briefly 

explained to provide a background, followed by a 

discussion of the reflection performance and impedance 

transition relation. Then, a general method is proposed 

to obtain surface functions of the periodic structure by 

using the concavity theorem. Obtaining second order 

convex polynomial functions is demonstrated as a simple 

example. Numerical results of the wedge and convex 

absorber structures are presented in the results section, 

and finally conclusions given in the following section. 
 

II. METHODS 

A. Analyzing periodic absorber structures 

Reflection performances of periodic absorber 

structures illuminated by a plane wave can be obtained 

by employing the PMM. Assuming that a TM polarized 

plane electromagnetic wave which has 𝑒𝑗𝜔𝑡 time 

dependency is incident upon singly-periodic structure 

having a period “L”. Spectral domain expression of 

scattered E-field from structure is given by a well-known 

equation [33]: 

𝑬𝑠(𝒙, 𝒚) = −(𝑗
𝑘2

2𝐿
) ∑ ∬(𝜀𝑟 −∞

𝑝=−∞

1)𝐸0(𝒙′, 𝒚′)
𝑒−𝑗(𝒙−𝒙′)𝛽1𝑝 .𝑒−𝑗|𝒚−𝒚′|𝛾1𝑝

𝛾1𝑝
𝑑𝑥′𝑑𝑦′, 

(1) 

 

where 

𝛽1 = 𝑘𝑠𝑥 , 𝛽1𝑝 = 𝛽1 + 𝑝
2𝜋

𝐿
, 𝛾1𝑝 = √𝑘2 − 𝛽1𝑝

2 . (2) 

Since the vector sum of the scattered and incident 

electric field vectors is equal to the total electric field at 

any point as given in expression (3), the scattered field 

can be calculated by using PMM: 

𝑬 = 𝑬𝑖 + 𝑬𝑠. (3) 

PMM is based on dividing a cross section of the 

reference element into small size cells and calculating 

the scattered field by solving linear independent 

algebraic equations. The size of cells is selected in order 

to be small enough to consider dielectric constant and 

electric field density in each cell to be constant. A 

detailed explanation of the PMM is given in study [32].  

MATLAB code is developed based on PMM in 

order to obtain reflection performances. Since MATLAB 

performs vector and matrix operations efficiently, 

complex matrix operations are calculated rapidly. 
 

B. Reflection performance and impedance transition 

relation  

Microwave absorbers need a smooth transition from 

air into the absorber in order to enhance impedance 

matching and complete absorption of the wave inside the 

absorber in order to achieve the desired low reflectivity 

properties [34,35]. Wedge or pyramidal-shaped absorbers 

have linear surfaces and they have good reflection 

performances because of linear impedance matching 

between air and absorber. Reflection performances of 

absorbers that have non-linear surfaces and impedance 

matching properties are different. Comparison of the 

reflection performances of the absorbers that have 

wedge, concave and convex surfaces are shown in Fig. 1 

to specify the differences between them. The reflection 

performance of a wedge-shaped absorber is better than  

a concave-shaped one, and a convex-shaped absorber  

has the best reflection performance. A convex-shaped 
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absorber also has smoother impedance transition than 

both of concave-shaped and wedge-shaped absorbers.  

It is possible to obtain better impedance transitions by 

changing parameters of the related convex surface 

function such as polynomial functions, power function, 

exponential function etc.  
 

 
 

Fig. 1. Comparison of the reflection performances of 

absorbers that have wedge, concave and convex surfaces. 

 

C. Design of convex shape 1-D microwave absorber 

function 

Assume that the cross-section of the reference 

element of any lossy structure at the origin of the  

x­y plane, which has period “L”. It consists of two 

symmetrical half parts in the interval [­L/2,L/2]. Finding 

the function for the half in the interval [0,L/2] as a 

function of “x” defines the symmetrical half of the 

reference element in the interval [­L/2,0].  

Any function f(x), which has a second derivative at 

each point in the interval [0,L/2] and meets the f''' (x)>0 

condition in this interval, is a convex (or concave 

upward) function according to the concavity theorem. 

Boundary values of the function are f(0)=h and (L/2)≥0. 

Where “h” is height of the reference element. Several 

convex functions such as polynomial functions, power 

function, exponential function etc… could be observed 

to satisfy conditions of the concavity theorem. Second 

order convex polynomial functions, as an example, are 

one of the simplest such functions for which determine 

coefficients.  

A second order convex polynomial function f(x) 

which has a constant positive second derivative value, 

f'''(x)=a in the interval [0,L/2] is shown in the expression 

below: 

𝑓 (𝑥)  =  
𝑎

2
𝑥2 + 𝑏𝑥 + ℎ. (4) 

A convex function with a local minimum point 

outside the interval [0,L/2], is shown in expression (5) 

and satisfies the f(0)=h and f(L/2)=0 boundary conditions. 

It is a decreasing function. The condition for the first 

order derivative at the point (L/2,0) is ­2h/L≤f''(L/2)≤0. 

Thus, the condition for “a” values is 0≤a≤8h/L2, 

𝑓 (𝑥)  =  
𝑎

2
𝑥2 + (−

𝑎𝐿

4
−

2ℎ

𝐿
) 𝑥 + ℎ. (5) 

For a convex function, which has its local minimum 

point (xm,ym) inside the interval [0,L/2], is shown in 

expression (6). It satisfies f(xm)=0 and f''(xm)=0 conditions. 

Thus, a≥8h/L2 for “a” values are obtained by using these 

conditions, 

𝑓(𝑥) =
𝑎

2
𝑥2 − √2𝑎ℎ𝑥 + ℎ. (6) 

Various convex periodic surface functions with 

different absorption performances satisfying the 

concavity theorem can be derived by using different 

second derivative functions. 

 

D. Periodic structure based on second order convex 

polynomial function  

Absorber structure configuration based on second 

order convex polynomial function is designed as an 

example by adding 2 inches of base thickness. 

Constrained nonlinear optimization method is used to 

obtain the “a” value indicated in expressions (5) and (6). 

Optimized convex functions provide the best reflection 

result. Reflection values of several frequencies along 

2­12 GHz frequency band are calculated. Reflection 

values at these frequencies are limited to be better than a 

predetermined limit value. This limit value is determined 

to satisfy the stated condition. The average value of them 

is considered as the objective function for optimization.   

The absorption performance of the structure with the 

obtained “a” value by using optimization as shown in the 

Fig. 2 (b).  

 

 
 (a) (b) 

 
Fig. 2. Dimensions of the compared periodic structures: 

(a) wedge structure, and (b) second order convex 

polynomial function based structure.  

 

The “a” value indicated in expressions (5) and (6) is 

obtained as a=20.7439 for the analyzed structure. The 

local minimum of the function is inside the interval 

[0,L/2] which is seen in Fig. 2 (b). This “a” value 

provides the best absorption performance for TM mode 

plane electromagnetic wave normal incident case.  
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Total calculation time of the PMM is an important 

factor while performing optimization and reflection 

calculations. The Conjugate Gradients Squared Method 

with precondition is used in MATLAB PMM code to 

enhance calculation time while calculating matrix 

inverses.  

 

III. RESULTS & DISCUSSION 
Reflection coefficients of the wedge type and 

designed convex absorber structures are calculated by 

using PMM. Interpolation is used before plotting graphs 

of the reflection performances to obtain smooth curves. 

The base width of the periodic structures is three inches, 

base thickness is two inches and wedge height is 8.5 

inches. The dielectric constant of the black wedge 

material shown in studies [27,32] has been used for 

PMM calculations. 

Dimensions (base widths, base thicknesses and 

wedge heights) based on the black wedge absorber in 

studies [27,32] are used for analysis of the wedge type 

absorber in this study to validate developed MATLAB 

PMM code. The specular reflection coefficient versus 

frequency plot of the black wedge absorber shown in Fig. 

73 on page 117 in study [27] is obtained with extended 

frequency band (2­12 GHz frequency band instead of  

2­8 GHz). Same base widths, base thicknesses and wedge 

heights with the wedge type absorber are used for analysis 

of the designed absorber to compare their reflection 

performances.  

Comparison of the reflection performances are 

shown in Fig. 3. Absorber structures are illuminated by 

normally incident TM mode plane electromagnetic wave 

at the 2­12 GHz frequency range with a step of 0.1 GHz. 

By comparing the wedge type and convex absorber 

structures, the results in the figure show a significant 

improvement in performance for the designed convex 

absorber structure relative to the wedge type. It has almost 

17 dB better reflection performance, which is ­46 dB, at 

2 GHz. It also provides better reflection more than 14 dB 

at several frequencies such as 2.4 GHz, 6.6 GHz and  

10 GHz. Its reflection values at 3.7 GHz, 8.1 GHz and 

12 GHz frequencies are not more than reflection values 

of the wedge absorber.  

It is clear that the proposed absorber has a sharper 

geometry than conventional wedge absorbers. It also has 

more edges. Therefore, edge diffraction has much more 

dominant effects on the absorption performance of the 

proposed absorber. On the other hand, for arbitrary 

shaped parametric surfaces, it is not straightforward  

to formulate absorption performance which includes 

diffraction effects. In this context, the basis of this 

research is optimizing absorption performance through 

incorporating diffraction effects numerically.  

Figure 4 shows the reflection coefficient versus the 

angle of incidence for the wedge type and convex absorber 

structures at 2 GHz. The convex absorber structure 

provides reflection performance of ­46 dB for normal 

incidence case. Its performance is almost 17 dB better 

than the wedge absorber, which has approximate ­29 dB 

reflection performance. The convex absorber structure 

also provides better reflection performance values for  

the oblique incidence case than the wedge type. For a  

70 degrees angle of incidence, while the wedge type 

provides approximately a ­7 dB reflection value, the 

convex absorber structure gives ­9.3 dB reflection 

performances. It has almost a 2 dB better value than the 

wedge type. The convex absorber has almost a 10 dB 

better reflection performance for angles of incidence of 

less than 30 degrees.  
 

 
 

Fig. 3. Comparison between the wedge type and convex 

absorber structures for the 2­12 GHz frequency range.  

 

 
 

Fig. 4. Comparison of the bistatic pattern performances 

for the wedge type and convex absorber structure.  

 

IV. SUMMARY & CONCLUSIONS 
A design method for obtaining absorber geometry 

for better reflection performance, among the wedge 

types has been explained in this study. The concavity 

theorem is used to obtain convex function for determining 

absorber geometry. Absorber structure configuration 

based on second order convex polynomial function is 

designed as an example. The range of the unknown 
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parameters of the function are calculated by using 

boundary conditions. Optimization is used to obtain 

specific values of the parameters of the function which 

give optimum results. By considering the optimized 

parameters of the function associated with the boundary 

conditions of the periodic structure, absorption 

performance values for the total frequency range have 

been calculated. Also, reflection values versus angle of 

incidence are obtained. Comparison of the reflection 

performances of the absorber structures have been 

presented.  

A designed convex absorber structure has 

significantly better absorption performance and it is an 

ideal absorber to enhance measurements at low signal 

levels. It can be used to increase the available measurement 

space of the chamber. For a wide frequency range, a 

designed absorber structure has better performance than 

the wedge type for both, the normal and oblique incidence 

cases.  

In terms of manufacturing of absorbers, non-wedge 

shape of absorbers as design in this study can be produced 

with CNC controlled foam cutting equipment for smaller 

quantities. They can be produced with mould fabrication 

for mass production. However, a single cut through a 

foam block with foam cutting technique and obtaining 

two similar absorber panel to maximize factory production 

cannot be performed because of non-complementary 

geometry of non-wedge shapes. Thus, small amount of 

unused material is wasted during production.  

The results of experimental works based on 

theoretical studies presented in this work are planned to 

be verified as future studies. Calculation of unknown 

parameters of the higher order functions and design of 

absorber structures will be discussed in a future study as 

well. 
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Abstract ─ Parabolic equation (PE) has been widely 

used for EM propagating and scattering problems for its 

high efficiency. By using the finite differential (FD) 

method, the calculation can be taken in a series of 

transverse planes in a marching manner. In this paper, 

the alternating group explicit iterative (AGEI) method 

is applied to solve the alternating direction implicit 

based parabolic equation (ADI-PE). As a result, the 

CPU time can be further saved when compared with the 

CN-PE and ADI-PE methods. Numerical results are 

shown for demonstrating the accuracy and efficiency. 

 

Index Terms ─ Alternating group explicit iterative 

(AGEI) method, electromagnetic scattering, parabolic 

equation. 
 

I. INTRODUCTION 
The rigorous numerical methods, such as the Finite 

Difference Time Domain (FDTD), the Method of 

Moment (MoM) and the Finite Element Method (FEM) 

are widely used for electromagnetic analysis. However, 

a huge number of computational resources are needed 

with the number of unknowns increasing, thus the 

efficiency will become low. On the other hand, the  

high frequency methods have low accuracy with few 

computational resources. The parabolic equation (PE) 

[1-11] is an approximation of the wave equation,  

which can give encouraging accuracy with limited 

computational resources. Therefore, the PE method 

takes a bridge between rigorous numerical methods and 

high frequency methods.  

By using the finite differential (FD) method along 

the paraxial direction, the calculation can be taken 

plane by plane. As a result, the computational resources 

can be saved largely. There are several methods that 

have been used to solve the parabolic equation, such as 

the Split-Step Fourier Transform (SSFT) [1], the Crank-

Nicolson (CN) [2-4], the Alternate Direction Implicit 

(ADI) [5-7], and the Alternate Group Explicit (AGE) 

[8-9, 20]. Moreover, several kinds of high-order 

approximations have been introduced to get the wide-

angle prosperities [10-11, 19]. Furthermore, some other 

numerical algorithms, including the Method of Moment 

(MoM) [12-13], the Geometrical Theory of Diffraction 

(GTD) [14], and other techniques [15-16] are combined 

with the PE method, which broaden the application of 

the PE method. It should be noted here that the PE can 

only model the object does not undergo large changes 

in direction. Moreover, the objects, which are small 

compared to the wavelength, cannot be simulated by PE 

method. Since the creeping waves cannot be captured 

by the PE method.  

The implicit FD methods are widely used for their 

simplicity, stability and efficiency [2-7]. The CN scheme 

is one of the most popular implicit FD methods [2-4]. 

Nevertheless, a huge computer resource is required with 

the electrical size of the targets increasing. Then the 

ADI method is proposed to accelerate the calculation of 

the PE method [8-9]. By using the ADI scheme, the 

fields in any transverse plane can be calculated line by 

line, which reduce the computation complexity by 

solving the unknowns in one dimension. On the other 

hand, the explicit FD methods can achieve high 

computational efficiency, but may result in instability. 

Therefore, the development of methods with both the 

high efficiency and stability has a practical significance.  

In this paper, the ADI-based parabolic equations 

are derived firstly. In this way, a series of tridiagonal 

matrix equations are needed to be solved in each 

transverse plane. Then the alternating group explicit 

iterative (AGEI) method [17-18] is used to solve these 

equations. As a result, all the unknown fields in each 

transverse plane can be computed explicitly without 

solving any matrix equation. Therefore, the CPU time 

can be saved significantly than the traditional ADI-PE 

method. Several numerical examples are given to 

demonstrate the accuracy and efficiency of the proposed 

AGEI-PE method.  

 

II. THEORY AND FORMULATIONS 

A. ADI-PE method  

Considering a PEC object illuminated by a plane 

wave in free space, a reduced function associated with a 

field component is introduced as follows: 

 ( , , ) ( , , )ikxu x y z e E x y z , (1) 

ACES JOURNAL, Vol. 32, No. 7, July 2017

1054-4887 © ACES 

Submitted On: July 15, 2016 
Accepted On: April 18, 2017

628



 

where k  is the wave number.  

The standard forward parabolic equation can be 

obtained via substituting Equation (1) into the wave 

equation and factorization, 

 (1 )
u

ik Q u
x





  , (2) 

where Q  is the pseudo-differential operator, which can 

be expressed as: 

 

2 2
2

2 2 2

1
Q n

k y z

  
   

  
. (3) 

Equation (2) is one order differential along the x 

axis. The FD scheme along the paraxial direction can be 

easily applied, and the calculation can be taken plane by 

plane.  

The ADI-PE can be derived directly from the CN-

PE as indicated in [5-6]. The matrix form of the ADI-

PE is: 
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, (5) 

where 
2/ ,yr x y    2/ ,zr x z    ,

n

j ku  denotes the 

reduced scattered field at the point of ( , , ).n x j y k z    

As a result, there is an intermediate plane 

introduced between the n th  and n+1 th planes with 

less unknowns. Moreover the scattered fields can be 

calculated line by line. Finally, a series of tridiagonal 

matrices are to be solved by the ADI-PE method in 

each transverse plane.  

 
B. AGEI solution of ADI-PE 

Both the Equations (4) and (5) are tridiagonal 

matrix equations. Therefore, they can be solved by 

using the AGEI scheme. Suppose the impedance matrix 

can be written as: 

 

a b

b a b

b a b
A

b a b

b a

 
 
 
 

  
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. (6) 

It should be noted that =1 ,
2

yir
a

k
  =

4

yir
b

k
  for 

Equation (4), and =1 ,
2

zir
a

k
  =

4

zir
b

k
  for Equation (5). 

Then the impedance matrix is split into two parts, which 

can be expressed as: 
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,(7) 

Then the impedance matrix equation to be solved 

can be simplified as: 

 
1 2( ) .Au G G u f    (8) 

Furthermore, the following equivalent matrix 

equations can be obtained: 

    1 2 ,I G u I G u f      (9) 

or 

    2 1 .I G u I G u f      (10) 

At last, an alternating group explicit iterative 

(AGEI) method is applied to (8), 
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, (11) 

where 0,1,2...,k    is the Peaceman-Rachford constant. 

More specifically, the iterative method can be 

rewritten as: 

 
   

   

11

1 2

11 1

2 1

k k

k k

v I G I G u f
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

      

. (12) 

Substitute 1kv   into the second matrix equation,  
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then the following result can be obtained: 
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For the first line of 
1ku 
, the calculation can be 

taken as: 
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For the second line of 
1ku 
, the calculation can be 

taken as: 
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where 
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Similarly, for i=3, 5, 7, 9, … , the solution can be 

expressed as: 
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where 
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It should be noted that the Peaceman-Rachford 

constant is set to be 0.5 for all the numerical results.  
 

C. Implementation aspects 

The three scalar parabolic equations of x, y, z, 

directions are coupled through the inhomogeneous 

boundary conditions. For the conducting targets, the 

tangential component of the total field equals zero on 

the surface of the scattering target. Moreover, the 

divergence-free condition is used for the unicity [2]. In 

each transverse plane, the perfectly matched layer 

(PML) is introduced to truncate the computational 

domain. The computation begins before the scattering 

target and stops beyond it. Finally, the scattering 

properties can be obtained by applying the near-far field 

conversion. Furthermore, the full bistatic RCS result are 

calculated by several rotating PE runs.  

Then the RCS in direction  ,   along polarization 

t can be written as: 
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where u is the reduced scattered fields in the last 

transverse plane for a specified frequency. 

 

III. NUMERICAL RESULTS 
At first, the electromagnetic scattering from a PEC 

cylinder with 5 m radius and 6 m height is considered at 

the frequency of 300 MHz. The paraxial direction is 

along the x axis and the incident angle is fixed at 

90inc  。, 0inc  。. There are totally 60 transverse planes 

to be calculated with 150 150  nodes in each transverse 

plane. The range steps are set to be 0.1 m. As shown in 

Fig. 1, the bistatic RCS results are compared between 

the MoM accelerated by the multilevel fast multipole 

method (MLFMM) and the proposed AGEI-PE method. 

There is a good agreement between them. Moreover, as 

shown in Table 1, both the comparisons of both the 

memory requirement and the CPU time are made among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods. It 

can be seen that higher efficiency can be achieved for 

the proposed AGEI-PE method when compared with 

other methods.  
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Fig. 1. Bistatic RCS result for the PEC cylinder.  

 

Table 1: Comparisons of computational resources among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods for 

the PEC cylinder 

 
Memory 

(MB) 

CPU Time 

(s) 

MoM 562 3958 

CN-PE 515 475 

ADI-PE 105 273 

AGEI-PE 91 120 

 
Secondly, the analysis is taken for a PEC block  

at the frequency of 300 MHz with the length of 8 m.  

The incident angle is fixed at 90inc  。, 0inc  。. In this 

example, the range steps are chosen to be 0.1 m. As a 

result, there are 40 transverse planes to be calculated 

with 150 150  nodes in each transverse plane. As 

shown in Fig. 2, the bistatic RCS curves of the PEC 

block are compared between the MoM accelerated by 

MLFMM and the proposed AGEI-PE method. There  

is a good agreement between them. Additionally, as 

shown in Table 2, the computational resources are 

compared among the MoM, CN-PE, ADI-PE and AGEI-

PE methods. 
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Fig. 2. Bistatic RCS result for the PEC block. 

 

Table 2: Comparisons of computational resources among 

the MoM, CN-PE, ADI-PE and AGEI-PE methods for 

the PEC clock 

 
Memory 

(MB) 

CPU Time 

(s) 

MoM 667 7648 

CN 559 586 

ADI 127 348 

AGEI 119 147 

 
At last, a complicated model is considered, an 

aircraft at the frequency of 5 GHz. The incident angle  

is fixed at 90inc  。, 0inc  。
. There are 167 transverse 

planes to be calculated with the range steps of 0.06 m 

and 100 100  nodes in each transverse plane. As shown 

in Fig. 3, the full bistatic RCS results are given. It can 

be found that the proposed AGEI-PE method can be 

used as an efficient tool to analyze the electromagnetic 

scattering from arbitrary structures.  

 

TAO: A NOVEL AGEI SOLUTION OF PARABOLIC EQUATION FOR EM SCATTERING PROBLEMS 631



 

0

10

20

30

40

50

0 30 60 90 120 150 180

B
is

ta
ti

c
 R

C
S

 
(d

B
s
m

)

Phi (Degree)

AGEI_PE

MoM

 

Fig. 3. Bistatic RCS result for the PEC aircraft. 

 

IV. CONCLUSION 
An AGEI solution of ADI-PE is proposed in the 

paper. By splitting the tridiagonal matrix into two parts 

and proper transformation, the matrix equations of 

ADI-PE method can be solved explicitly. Moreover, the 

proposed AGEI-PE method is easily to be paralleled. In 

this way, high computational efficiency can be achieved 

with encouraging accuracy. Numerical results are given 

to demonstrate the accuracy and efficiency of the 

proposed AGEI-PE scheme.  
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Abstract ─ In this paper, we investigate the near-field 

enhanced optical absorption and far-field radiation 

characteristics of plasmonic dipole nano-antenna with 

different geometries which are rectangular, square, 

circular, and ellipse dipoles. Localized E-field 

enhancement at the excitation gap and reflection profile 

in an infinite 2D array of each nano-antenna are 

characterized and optimized at the resonant frequency 

of 375 THz, which corresponds to the incident wavelength 

of 800 nm. Numerical results show that the ellipse 

nano-antenna produces the most enhanced electric field 

at the excitation gap whereas the circular nano-antenna 

yields the best reflection and far-field radiation 

characteristics. This research is useful for the researchers 

and designers in choosing appropriate plasmonic dipole 

nano-antennas when incorporating with a photoconductive 

antenna for terahertz radiation enhancement. 

 

Index Terms ─ Absorption, far-field power pattern, 

localized electric field, nano-antenna, reflection, surface 

plasmon resonance. 
 

I. INTRODUCTION 
The interaction of light with plasmonic nano-

structures has constituted a central research topic in 

current science and engineering and has been finding 

several interesting applications in nanophotonic 

technology [1–4]. Two main demands for existing and 

emerging nano-optical applications are an optical spot 

beyond the diffraction limit and a high transparent 

efficiency. Plasmonic nano-antennas can concentrate 

the excitation light beam based on the localized surface 

plasmon resonance and thus can be used in the nano-

optical system because of their ability to obtain a very 

small optical spot. In addition, the enhanced intensity of 

light confinement into a high index substrate can be 

achieved by asymmetric scattering due to surface 

plasmon excited on metallic nanostructures. Consequently, 

plasmonic nano-antenna can provide high transmission 

efficiency for practical applications. Recent reports  

on applications of plasmonic nano-antennas include 

sensitive photodetection [5], plasmon-emitting diode  

[6, 7], photovoltaic devices [8], surface enhanced 

Raman spectroscopy [9], bio-sensing [10], terahertz 

photoconductive antenna [11–13], etc. 

To maximize the field enhancement in the high 

field region of the optical nano-antenna, which is well-

known as the most important parameter to characterize 

the performance of the nano-antenna, parameters such 

as antenna geometry, dielectric loading, as well as the 

polarization of incident light have to be carefully 

optimized and fined-tune [14, 15]. The optical properties 

of different types of nano-antennas for the enhancement 

of fluorescence of molecules have been discussed and 

demonstrated over the last decades [16–21]. However, a 

detailed comparison of nano-antennas having different 

geometries in term of near-field optical absorption and 

far-field radiation characteristics is still lack in the 

literature. Therefore, the aim of this paper is to provide 

such a detailed study and comparison. Four plasmonic 

dipole nano-antennas with different geometries are 

chosen for the study and comparison; they are 

rectangular dipole, square dipole, circular dipole, and 

ellipse dipole. Absorption and reflection profiles of 

each nano-antenna are characterized and optimized at 

the resonant frequency of 375 THz which corresponds 

to the incident wavelength of 800 nm. The paper is 

organized as follows: Section 2 presents the nano-

antenna geometries and simulation approach; Section 3 

presents the results and discussion; Section 4 gives a  
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conclusion. 
 

II. GEOMETRY AND MODELLING OF THE 

NANO-ANTENNAS 
Figure 1 shows the geometry of the four nano-

antennas under examination in the side and top views. 

Both the four dipoles and the ground are made of gold. 

The dipole nano-antenna and the ground are separated 

by a SiO2 substrate which having a thickness of T. The 

widths and the lengths of the rectangular dipole are 

designated as WR and LR, while those of the square 

dipole are WS and LS, those of the circular dipole are WC 

and LC, and those of the ellipse dipole are WE and LE, 

respectively. The SiO2 thicknesses of each nano-antenna 

are denoted as TR, TS, TC, TE whereas the periodicities 

of each nano-antenna in their arrays are denoted as PR, 

PS, PC, PE for the rectangular, square, circular, and 

ellipse dipoles, respectively. The excitation gap and the 

gold metal thickness of each nano-antenna are g and  

TAu = 25 nm, respectively. Design parameters of the 

four antennas for the optimized localized E-field and 

reflection coefficient at the desired frequency of 375 THz 

are as follows: for the rectangular dipole (g = 10 nm, 

WR = 35 nm, LR = 174 nm, TR = 100 nm, PR = 550 nm); 

for the square dipole (g = 10 nm, WS = 78 nm, LS = 166 nm, 

TS = 40 nm, PS = 600 nm); for the circular dipole  

(g = 10 nm, WC = 94 nm, LC = 198 nm, TC = 60 nm,  

PC = 590 nm); for the ellipse dipole (g = 10 nm,  

WE = 40 nm, LE = 190 nm, TE = 70 nm, PE = 570 nm). 

In this paper, a full-wave electromagnetic simulator 

Microwave Studio by CST based on Finite Integration 

Technique (FIT) was used to analyze the characteristics 

of the nano-antennas [22]. Figure 2 (a) shows the model 

to study the localized E-field response at the excitation 

gap of the dipoles in which the excitation source is a 

plane wave incident from the top with an electric field 

amplitude of 1 V/m and with a polarization along the 

main axis, i.e., x-axis, of the nano-antennas. To detect 

the localized E-field, a probe was placed in the gap 

between the dipole arms and oriented along the x-axis. 

This simulation model also allows calculating the  

far-field power patterns of the nano-antennas. The 

transmission/reflection coefficient of the nano-antenna 

was studied by using a unit cell model that employed a 

two-Floquet-port model with electric and magnetic 

boundary conditions enforced along the ±x and ±y 

directions, seen in Fig. 2 (b). The Au metal and SiO2 

substrates used in the simulation can be defined in the 

material library of the CST MWS software. Figure 3 

shows the electric dispersion curves of Au and SiO2 

within the frequency range of interest, i.e., 200 THz - 

500 THz which these close to the measured values in 

the previously reported studies [23, 24]. 

 

  
  (a) (b) 

   
 (c) (d) (e) 

 
Fig. 1. (a) Side view of the nano-antennas; (b-e) geometries of the rectangular dipole, square dipole, circular dipole, 

and ellipse dipole. 
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 (a) (b) 
 

Fig. 2. Simulation models: (a) to calculate the localized E-field and far-field power pattern, and (b) to calculate the 

reflection coefficient of an infinite 2D array. 
 

      
   (a) (b) 

 

Fig. 3. Dispersion curves of: (a) gold and (b) SiO2 in the frequency of interest from 200 THz to 500 THz. 
 

III. RESULTS AND DISCUSSION 
We select the ellipse dipole nano-antenna to 

investigate the frequency response on the design 

parameters (g, TE, LE, and PE) since other three nano-

antennas was observed to behave identically. It is noted 

that in this parameter study, one parameter was varied 

whereas others were fixed. In addition, hereinafter Fpeak 

denotes the frequency where occurring the maximum 

localized electric field Epeak. Figure 4 (a) shows that the 

excitation gap, g, strongly influences the electric field 

confinement. The narrower the g is, the lower the 

resonant frequency occurred, and the significantly better 

the localized Epeak presented. Maximum Epeak could 

reach to approximately 400 V/m when g decreases to  

7 nm. For the optimized design, we chose g = 10 nm 

because of the two reasons: first, if g = 10 nm, the 

resonant frequency occurring the maximum Epeak was 

mostly close to the desired frequency of 375 THz; 

second, if g is so small, we would encounter a short 

circuit problem after the fabrication process. Figure  

4 (b) shows that when the thickness of the SiO2 layer TE 

changed, both Fpeak and Epeak significantly changed, and 

clearly demonstrated a resonance behavior. When TE 

increased from 20 nm to 100 nm with a step of 20 nm, 

Fpeak increased, reached a maximum value, and then 

decreased and similarly for Epeak. At TE = 70 nm, Fpeak 

was mostly close to the desired frequency of 375 THz, 

and Epeak reached the maximum value. This behavior is 

interesting, which was proven in [14] and said that the 

distance from the nano-antenna to the reflective surface 

(Au ground) must be selected to satisfy the resonance 

condition if we consider the SiO2 substrate layer as an 

Fabry-Perot resonator cavity. 

Figure 4 (c) shows that when LE increased, Fpeak 

decreased, which follows the theory that the antenna 

length is inversely proportional to its operating 

frequency. We can calculate the effective wavelength 

according to the formula as: 

 0

eff

eff 0 eff

c
,

f


  

 
 (1) 

where c is the speed of light (3 × 108 m/s), fo is the  
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resonant frequency (~ 375 THz), and εeff the effective 

dielectric constant of SiO2 (~ 2.4). Accordingly, the 

effective wavelength is approximately 510 nm. In theory, 

the antenna has a length of about a half of the effective 

wavelength (Ltotal ~ λeff/2 ~ 260 nm) will present the 

first resonance mode. The resulted nano-antenna length 

in our simulation is approximately of 200 nm which is 

shorter than the theoretically predicted length. This can 

be attributed to an increase of the effective permittivity 

of the whole structure due to the presence of the reflecting 

mirror Au. When we consider the localized E-field, the 

total length of the nano-antennas also influenced the 

Epeak. The value of LE = 190 nm exhibited the maximum 

Epeak of 150 V/m at the Fpeak of 374 THz. Figure 4 (d) 

shows that if the width PE of the SiO2 layer, i.e., the 

periodicity in a 2D infinite array, increased, the resonant 

frequency decreased, however Epeak at the gap increased. 

The increased width of the semiconductor layer resulted 

in an increase of the effective permittivity of the whole 

structure. For the desired resonant frequency around the 

375 THz, PE was chosen to be 570 nm. It can be seen 

that this parameter is the least influence factor on either 

Epeak or Fpeak. By investigating the design parameter 

study of the ellipse geometry, we can conclude that the 

excitation gap area significantly influenced the localized 

E-field, while the dipole length decided the resonant 

frequency of the nano-antennas. More importantly, the 

thickness of the semiconductor layer must be 

appropriately chosen to obtain the additional E-field 

enhancement thanks to the mechanism similar to a 

Fabry-Perot resonant cavity. These characteristics are 

identical for the rectangular, square, and circular dipoles. 
 

       
   (a)  (b) 

        
  (c)  (d) 
 

Fig. 4. Parameter study in terms of Fpeak and Epeak of the ellipse dipole: (a) gap between dipole arms, (b) SiO2 

thickness, (c) total dipole length, and (d) lateral size of the SiO2 substrate. 
 

Figure 5 shows the localized E-field checked at the 

excitation gap, and the reflection coefficient checked 

for a 2D infinite array of the four nano-antennas. The 

optimized results show that the localized E-field of the 

rectangular dipole was 110.3 V/m at 374.9 THz, while 

that of the square dipole was 92.2 V/m at 372.8 THz, 

that of the circular dipole was 125 V/m at 374.3 THz, 

and that of the ellipse dipole was 150 V/m at 374 THz, 

seen in Fig. 5 (a). It should be noted that the incident E-

field was chosen of 1 V/m. All the four nano-antennas 

produced a significantly enhanced localized E-field at 

the gap between the dipole arms. The ellipse dipole 

produced the highest localized E-field while the square 

dipole presented the lowest value. In the perspective of 

the reflection coefficient, the behavior was different. 

The reflection coefficient of the rectangular dipole was 
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about 0.19 whereas that of the square dipole, circular 

dipole and ellipse dipole were about 0.28, 0.11, and 

0.25, respectively, seen in Fig. 5 (b) (refer to Table 1). 

Therefore, the circular dipole produced the best 

reflection characteristic while the square dipole presented 

the worst case. It is obvious that the resonant frequency 

Fpeak, the frequency occurring Epeak, almost coincided 

with the frequency occurring the minimum reflection 

coefficient. This indicates that the four nano-antenna 

structures operate well at the desired frequency of  

375 THz and thereby maximizing the incident light 

absorption efficiency. 

Figures 6 and 7 respectively present the near-field 

distribution and the far-field power patterns of the four 

nano-antennas at their resonant frequencies. The field 

was mostly distributed in the excitation gaps and at the 

dipole ends as in a conventional RF dipole. It is obvious 

that the circular dipole exhibited the best power patterns 

with the least back radiation in comparison with the 

three remains. Generally, the ellipse dipole nano-antenna 

produces the best localized E-field enhancement at the 

excitation gap whereas the circular dipole nano-antenna 

yields the best reflection and far-field radiation 

characteristics. In other words, the circular nano-

antenna should be chosen regarding the far-field radiated 

power while the ellipse nano-antenna should be chosen 

for the demand of highly localized E-field. 

 

   
 (a) (b) 

 

Fig. 5. (a) Localized E-field and (b) reflection coefficient as a function of frequency of the four nano-antennas. 

 

                   
 (a)  (b) 

                   
 (c)  (d) 
 

Fig. 6. Field distributions checked at the resonant frequencies of the four nano-antennas: (a) rectangular, (b) square, 

(c) circular, and (d) ellipse dipoles. The resonant frequencies for each nano-antenna can be refered in Table 1. 
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    (a)   (b) 

                   
    (c)   (d) 

 

Fig. 7. Normalized far-field E-patterns calculated at the resonant frequencies of the four nano-antennas: (a) rectangular, 

(b) square, (c) circular, (d) ellipse dipoles. The resonant frequency for each nano-antenna can be referred in Table 1. 

 

Table 1: Optimized results of the four nano-antennas 

Geometry Resonant Frequency Fpeak (THz) Localized E-field Epeak (V/m) Reflection Coefficient 

Rectangular 374.9 110.3 0.19 

Square 372.8 92.2 0.28 

Circular 374.3 125.0 0.11 

Ellipse 374 150 0.25 

 

IV. CONCLUSION 
We have investigated and compared the 

performance of plasmonic nano-antennas for different 

geometries such as rectangular, square, circular, and 

ellipse dipoles. The excitation gap area significantly 

influenced the localized E-field enhancement, while the 

dipole length decided the resonant frequency of the 

nano-antennas. More importantly, the thickness of the 

semiconductor layers must be appropriately chosen to 

obtain the additional E-field enhancement thanks to the 

mechanism similar to a Fabry-Perot resonant cavity. The 

optimized results show that the ellipse dipole exhibits 

its outstanding performance regarding the localized E-

field enhancement, whereas the circular dipole yields  

its outstanding performance in terms of the reflection 

coefficient and the far-field power pattern. This study 

could be useful for the incorporation of an array of  

such plasmonic nano-antennas at the active area of 

photomixer/photoconductive antenna for an efficiency 

improvement. 
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