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Abstract � Artificial neural networks (ANNs) have 
appeared as a very efficient alternative to time consuming 
full-wave simulations of electrical characteristics of RF 
MEMS. In this paper, a new ANN based method to be 
used in the design of RF MEMS devices is proposed. 
ANNs are trained to model dependence of the scattering 
parameters and the resonant frequency of an RF MEMS 
switch on the switch geometrical parameters, as well as 
to perform the opposite procedure, i.e., to determine 
values of the geometrical parameters to achieve the 
desired electrical resonant frequency. The developed 
models can be used for fast simulation and optimization 
of the switch characteristics replacing time consuming 
procedures in full-wave simulators, which leads to a 
significant reduction of time needed for the device 
design.   
  
Index Terms � Artificial neural networks, computer 
aided design, RF MEMS. 
 

I. INTRODUCTION 
RF MEMS switches are of growing interest for use 

in various communication and measurement systems, as 
they possess some properties superior to their 
mechanical or electronic counterparts [1-4]. They are 
lightweight, small, extremely linear, can be integrated 
and allow easy re-configurability or tunability of a 
system. A simulation of electrical parameters of RF 
MEMS components can be performed using standard 
commercial electromagnetic simulators. However, due 
to the aspect ratio of the vertical and lateral dimensions 
and the 3D topology, a full-wave simulation becomes 
time consuming. If the switch is integrated in a larger 
system, the desired overall system performance requires 
a certain behavior of the switch, e.g., in case of the 
capacitive shunt switch it is the position of the 

resonance in a given frequency range. To achieve the 
required performance, time consuming optimizations 
should be performed, i.e., calculations of the switch 
with varying parameters have to be repeated. This paper 
demonstrates how the synthesis of the required switch 
performance can be accelerated by developing an ANN 
based model of the switch.  

ANNs have been already applied to model some 
electrical or mechanical characteristics of different RF 
MEMS devices [5-11]. They have been applied mostly 
to the models of RF MEMS resonators [5, 9], and to the 
RF MEMS switches [6-8, 10, 11]. As far as the RF 
MEMS switch electrical characteristics are concerned, 
the ANNs have been applied for developing ANN 
models of the switch scattering parameters based on the 
frequency and switch geometrical parameters [6, 7], or 
for modeling the resonant frequency dependence on the 
switch geometrical parameters [11]. Also, it has been 
shown how some of the developed ANN models can be 
used in the design of circuits containing the modeled 
devices [10]. 

This contribution presents a neural modeling 
approach of a capacitive coplanar shunt switch. For the 
considered device, neural models for dependence of the 
switch electrical characteristics, i.e., the scattering 
parameters and resonant frequency, on the switch 
dimensions are developed. Also, a new approach for the 
inverse process, i.e., determination of the switch 
dimensions to achieve the desired switch performance, 
avoiding full-wave optimization procedures is proposed. 

The paper is organized as follows: after introduction, 
in Section II the considered device is described. In 
Section III, a brief background on ANNs is given. In the 
following section the ANN based feed-forward models for 
determination of switch electrical characteristics for the 
given switch geometrical parameters are described, as 
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some of them are further used for building the inverse 
models. The proposed inverse models are described in 
Section V. Further, details of the proposed modeling 
technique and the obtained numerical results are 
presented and discussed in Section VI. Finally, Section 
VII contains concluding remarks. 

 
II. DEVICE DESCRIPTION 

The considered device is an RF MEMS capacitive 
coplanar shunt switch, depicted in Fig. 1, fabricated at 
Fondazione Bruno Kessler (FBK) in Trento, Italy in an 
8 layer Silicon micromachining process [12]. The signal 
line below the bridge is realized as a thin aluminum 
layer. Adjacent to the signal line the DC actuation pads 
made of polysilicon are placed. The bridge is a thin 
membrane connecting both sides of the ground. The 
inductance of the bridge and the fixed capacitance 
between signal line and bridge form a resonant circuit 
to ground. The resonant frequency can be changed by 
varying the length of the fingered part, Lf, close to the 
anchors and the solid part, Ls. At the series resonance 
the circuit acts as a short circuit to ground, in a certain 
frequency band around the resonant frequency the 
transmission of the signal is suppressed. The bridge can 
be closed by applying the actuation voltage of around 
45 V. 
 

 

 
 
Fig. 1. Top-view of the realized RF MEMS switch and 
schematic of the cross-section with 8 layers in FBK 
technology [12]. 
 

III. ARTIFICIAL NEURAL NETWORKS 
In this work standard multilayer perceptron (MLP)  

neural networks are exploited. An MLP ANN consists 
of basic processing elements (neurons) grouped into 
layers: an input layer (IL), an output layer (OL), as well 
as several hidden layers (HL) [13]. Each neuron is 
connected to all neurons from the adjacent layers, 
whereas there are no connections among neurons 
belonging to the same layer. A neuron is characterized 
by a transfer function and each connection is weighted. 
In this work the following neuron transfer functions are 
used: linear transfer function for the input and output 
neurons and sigmoid transfer function for the hidden 
neurons. Information flows forward from the input 
layer to the output layer. An ANN learns relationship 
among sets of input-output data (training sets) by 
adjusting network connection weights and thresholds of 
activation functions. There is a number of algorithms 
for training of ANNs. The most frequently used are 
backpropagation algorithm and its modifications, as the 
Levenberg Marquardt algorithm [13], used in the 
present work. Once trained, the network provides fast 
response for various input vectors without changes in 
its structure and without additional optimizations. The 
most important feature of ANNs is their generalization 
ability, i.e., ability to generate a correct response even 
for the input parameter values not included in the 
training set. The generalization ability has qualified 
ANNs to be used as an efficient tool for modeling in the 
field of RF and microwaves [5-9, 13-24]. As examples, 
ANNs could be used as an alternative to time-consuming 
electromagnetic simulations [7, 13, 20, 23] or an 
alternative to the conventional modeling of microwave 
devices [14, 17, 22, 24]. 

 
IV. FEED-FORWARD RF MEMS SWITCH 

MODELING  
As mentioned in the introductory section, ANNs 

can be applied to develop models of the electrical 
characteristics of RF MEMS switches. It should be 
noted that in the work of the other authors, the simple 
rectangular shape membrane has been studied. This is 
the first time that a membrane with complex structure 
and shape is considered to be modeled by ANNs. 

Two types of the models are developed here. The 
first type of the models is based on ANNs trained to 
predict the switch scattering parameters dependence on 
the switch geometrical parameters and frequency, 
whereas in the second type of the models ANNs are 
exploited to model dependence of the switch electrical 
resonant frequency on the switch geometrical parameters. 
Figures 2 and 3 show the mentioned ANN models 
developed for the considered capacitive shunt switch.  

The considered geometrical parameters are the 
lengths of the fingered and solid parts, Lf and Ls, as 
illustrated in Fig. 1. 
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Fig. 2. ANN model of RF MEMS switch S-parameters. 
 

 
 
Fig. 3. ANN model of RF MEMS switch resonant 
frequency. 
 

As far as an RF MEMS switch is a symmetric and 
reciprocal device, i.e., 22S = 11S  and 12S = 21S , it is 

enough to develop only models for 11S  and 21S . For 
each of the modeled parameters, two ANNs are trained, 
one to model the magnitude ( )ijS  and the other to 

model the phase ( )ijS� . As the training data, the S-
parameters calculated in numerical full-wave simulations 
in an electromagnetic simulator are used. Each ANN 
has three input neurons corresponding to the two lateral 
dimensions of the switch and the frequency, and one 
output neuron corresponding to the modeled parameter. 
The model is validated by comparing the ANN 
response and the full-wave simulation results for the 
combination of dimensions not seen by the ANN during 
the training. Once the ANNs are trained, the S-
parameters of the switch can be easily calculated in a 
very short time by finding the ANN response. In order 
to use the developed ANN model in a circuit simulator 
for the switch S-parameter simulation and optimization, 
the expressions describing the ANNs are implemented 
in the simulator. Namely, the switch is represented by a 
two-port expression defined device. The expressions 
describing the ANNs are put into variable and equation 
blocks (VAR) having the switch lateral dimensions and 
frequency as input parameters and switch S-parameters 
as outputs. The S-parameters calculated in the VAR 
blocks are assigned to the two-port device S-parameters. 
Therefore, the two-port device and the corresponding 
VAR blocks represent the ANN model of switch with 

included dependence on the geometrical parameters. 
The overall procedure of model development and 
implementation is shown in Fig. 4. Once the ANN 
model of the switch scattering parameters is 
implemented in a circuit simulator, further simulations 
and optimizations are performed in a standard way, but 
in significantly shorter time, as will be illustrated later. 
 

 
 
Fig. 4. ANN model development and implementation. 
 

The neural model for the switch resonant frequency 
consists of an ANN trained to model the switch 
resonant frequency dependence on the two mentioned 
lateral dimensions. Therefore, the ANN has two 
neurons in the input layer and one neuron in the output 
layer. As in the previous case, the data used for training 
and validation of the ANN are obtained by the full-
wave numerical simulations. 

The developed model can be further used to 
determine the resonant frequency for given values of 
the lateral dimensions in a very short time or to 
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optimize the dimensions to achieve the desired resonant 
frequency.  

It is worth to mention that the ANN models are 
valid for the values of the lateral dimensions falling 
within their ranges used in the training set. 

 
V. INVERSE RF MEMS SWITCH 

MODELING 
With the aim to avoid optimization procedures in 

full-wave electromagnetic or circuit simulators, the 
inverse RF MEMS switch modeling approach based on 
ANNs is also proposed here. This gives the possibility 
to directly determine the necessary geometrical 
dimensions for a desired resonant frequency. The idea 
is to train ANNs with the aim to directly predict one of 
the switch geometrical parameters in order to satisfy 
working conditions around the resonance when the 
other parameter is fixed, as shown in Fig. 5. Namely, 
ANNs are trained to learn the relationship between the 
chosen lateral switch dimension and resonant frequency 
and the other switch dimension. Therefore, the ANNs 
have two input neurons and one output neuron. The 
training and test data are obtained by standard full-wave 
simulations. By using the trained ANNs, the considered 
geometrical parameter values could be determined by a 
simple calculation of the ANN response. In that way 
design of the RF MEMS switch becomes more 
efficient. 
 

 

 
 
Fig. 5. ANN based determination of RF MEMS switch 
geometrical parameters. 
 

VI. NUMERICAL RESULTS  
The data used for the ANN model development 

and validation was obtained by full-wave simulations 
within ADS software package (ADS momentum) [25] 
for the frequencies up to 40 GHz. As the number of 
hidden neurons could not be determined prior to the 
training process, for each ANN, ANNs with different 
number of hidden neurons were trained and then the 

ANN showing the best modeling results was chosen as 
the final one. 

 
A. Feed-forward RF MEMS switch models 

The S-parameters used for the model development 
were simulated in ADS momentum for 23 combinations 
of geometrical parameters Lf  and Ls. The data referring 
to 17 combinations was used for training and the data 
referring to the rest of 6 combinations was used for 
validation of the model generalization. As mentioned 
above, for each of the modeled parameters ANNs with 
different number of hidden neurons were trained and 
compared. The ANN accuracy was compared by 
assessing the errors obtained for the test values not used 
for training. It was found that among the trained ANNs 
the best test statistics gave the following two-hidden-
layer ANNs: for the magnitude of 11S : the ANN having 
8 neurons in the first layer and 6 neurons in the second 
hidden layer, and for the magnitude of 21S : the ANN 
with 8 neurons in both hidden layers. For models of the 
phases in both cases the best results were obtained by 
the two hidden-layer ANNs containing 10 neurons in 
each hidden layer. As illustration, Figs. 6 and 7 show 
comparison of the ANN simulated scattering parameters 
(lines) and the corresponding reference values obtained 
by the full-wave simulations in ADS (symbols). It can 
be concluded that the ANN responses match very well 
with the simulated values. As the ANN model directly 
relates the switch lateral dimensions to the scattering 
parameters over frequency, the S-parameters of a varied 
geometry can be calculated within seconds. 

Optimization of the dimensions for the given 
requirements in the desired frequency band lasts less 
than a second when performed by using the neural 
model implemented in the ADS circuit simulator in a 
way described in the previous section, which is 
significantly faster than the optimization in a full wave 
simulator, which lasts around 2 hours. 

To confirm further the achieved good modeling 
accuracy, magnitude of the transmission coefficient of 
the fabricated device (Ls =  174 μm and Lf = 40 μm) 
optimized for a resonant frequency of 15 GHz is depicted 
in Fig. 8. The plot shows the measured data (dashed 
line) in comparison with the results of the ANN model 
(line) and the full-wave simulations (symbols).  

To develop a model for the resonant frequency, 
first the resonant frequency for all the combinations of 
dimensions of the geometrical parameters Ls and Lf 
considered in the previous case was determined. The 
resonant frequency was found as the frequency 
corresponding to the minimum value of magnitude of 

21S  simulated in a full-wave simulator. The training 
and test set correspond to the same geometrical 
parameter combinations as in the previous case. Among 
the trained ANNs with different number of hidden 
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neurons, the best results were obtained by the ANN 
having only one hidden layer containing five neurons. 
Table 1 shows the resonant frequency determined by 
the ANN model for several combinations of the 
geometrical parameters not used for the training. It can 
be seen that the resonant frequency values simulated by 
the ANN are very close to the target values, as 
confirmed by the relative percentage error less than 1%. 
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Fig. 6. Parameter 11S  for six ( sL [μm], fL [μm]) 

combinations not used for the model development: (a) 
magnitude and (b) phase. 
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Fig. 7. Parameter 21S  for six ( sL [μm], fL [μm]) 

combinations not used for the model development: (a) 
magnitude and (b) phase. 
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Fig. 8. Isolation of the fabricated RF MEMS switch  
(Ls =  174 μm and Lf = 40 μm). 
 
Table 1: RF MEMS switch resonant frequency 

Ls 
(�m)

Lf 
(�m) 

fres-Target 
(GHz) 

fres-ANN 
(GHz) 

Rel. Error 
(%) 

250 25 13.7 13.689 0.08 
250 75 12.4 12.403 0.02 
350 25 11.6 11.550 0.43 
350 75 10.7 10.638 0.58 
450 25 10.2 10.127 0.71 
450 75 9.5 9.499 0.01 

 
B. Inverse RF MEMS switch models 

The inverse models described in Section V were 
developed using the full-wave simulated data referring 
to the same 23 combinations of the switch lateral 
dimensions as used for the development of the feed-
forward models. It appeared that the accuracy of the 
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modeling was not satisfactory, as the errors during the 
model validation achieved even several tens percent. 
This indicates that a larger training set should be used 
to build reliable inverse ANN models. Acquiring more 
training data needed for the inverse ANN models 
assumes new full-wave simulations, as the resonant 
frequency for each new combination of input 
geometrical parameters is determined by a full-wave 
simulation. To make a larger training set, but without 
significant increase of the model development time, the 
feed-forward ANN model for the resonant frequency 
described above was used. As this ANN model gives a 
response almost in a moment, building a larger data set 
does not increase significantly the duration of the model 
development procedure. For building a new larger 
training dataset, a non-uniform distribution of 
combinations of the dimensions was used. The number 
of data in the areas of the input parameter space where 
the ANN models showed higher error values was 
increased until the satisfactory accuracy of the inverse 
ANNs model was reached. The final training dataset 
referred to 814 input-output pairs. During the ANN 
model development procedure, the ANNs with different 
number of hidden neurons were trained and validated 
on the set of data not used for the training purpose. 
Among the trained ANNs, the ANNs with two hidden 
layers with 15 neurons in each hidden layer were 
chosen for the both lateral dimensions determination. 

To illustrate the accuracy of the inverse RF MEMS 
ANN models, in Tables 2 and 3 there are results of the 
model testing for the input combinations not used for 
the ANN training. It should be noted that the resonant 
frequency values given in the tables are calculated in 
the full-wave simulator for the combination of input 
dimension and target output dimension. 

It can be seen that the absolute difference of the 
predicted and expected values is less than 3 μm (which 
is already close to fabrication tolerances) in the case of 
modeling the length of fingered part, and less than  
3.5 μm, in the case of modeling the length of solid part. 
The relative errors are in most cases less than 3%. 
 
Table 2: RF MEMS switch inverse modeling: Lf 

Ls 
(�m) 

fres 
(GHz) 

Lf (Target) 
(�m) 

Lf (ANN) 
(�m) 

Relative 
Error (%) 

75 22.78 25 24.9 0.4 
75 19.17 65 65.4 0.6 
75 17.92 85 85.3 0.3 

100 17.5 75 73.6 1.9 
200 13.13 85 86.8 2.1 
350 11.67 25 23.4 6.4 
350 10.83 65 62.2 4.3 
400 10 85 87.4 2.9 

 

Table 3: RF MEMS switch inverse modeling: Ls 
Lf  

(�m)
fres 

(GHz) 
Ls (target) 

(�m) 
Ls (ANN) 

(�m) 
Relative 

Error (%) 
25 22.78 75 74.9 0.1 
65 19.17 75 75.5 0.7 
85 17.92 75 75.3 0.4 
75 17.5 100 97.9 2.1 
85 13.13 200 202.7 1.4 
25 11.67 350 347.8 0.6 
65 10.83 350 348.0 0.6 
85 10 400 403.4 0.9 

 
VII. CONCLUSION 

At the example of a capacitive coplanar shunt 
switch in RF MEMS technology, efficient ways for 
determination of the switch geometrical parameters 
based on the ANNs were presented. Usage of the 
proposed ANN models can be an efficient alternative to 
the standard optimization of the switch dimensions in 
the full-wave simulators. First, feed-forward models 
based on ANNs were trained to determine the switch 
electrical characteristics for the given values of the 
considered geometrical parameters. Then, inverse ANN 
models for determination of the switch geometrical 
parameters for the given switch resonant frequency 
were developed. 

Once developed the proposed ANN models can be 
used for obtaining further results within seconds, which 
is much faster than full-wave EM simulations and 
optimizations lasting up to 2 hours. Having in mind that 
training a number of ANNs with different number of 
hidden neurons and long numerical simulations 
performed to obtain the training data take time 
comparable to the time needed for the optimization of 
the single switch, the efficiency of the proposed method 
is not obvious for a single switch simulation and 
optimization. However, the speed of the ANN models 
comes out as an advantage for a settled technology, 
when a number of switches with slight variations have 
to be adjusted to fulfill requirements for different 
applications without using heavy and time-consuming 
full-wave simulators, thus speeding up significantly the 
fabrication cycle.  
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