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Abstract ─ An efficient finite-element time-
domain (FETD) method based on the hierarchical 
(-) matrix algorithm is presented. The FETD 
method is on the basis of the second-order vector 
wave equation, obtained by eliminating one of the 
field variables from Maxwell’s equations. The 
time-dependent formulation employs the 
Newmark-beta method which is known as an 
unconditional stable time-integration method. -
matrix algorithm is introduced for the direct 
solution of a large sparse linear system at each 
time step, which is a serious handicap in 
conventional FETD method. -matrix algorithm 
provides a data-sparse way to approximate the LU 
triangular factors of the FETD system matrix. 
Using the -matrix arithmetic, the computational 
complexity and memory requirement of -LU 
decomposition can be significantly reduced to 
almost logarithmic-linear. Once the -LU factors 
are obtained, the FETD method can be computed 
very efficiently at each time step by the -matrix 
formatted forward and backward substitution (-
FBS). Numerical examples are provided to 
illustrate the accuracy and efficiency of the 
proposed FETD method for the simulation of 
three-dimension (3D) electromagnetic problems. 
  
Index Terms ─ Direct solution, finite-element 
time-domain (FETD) method, -matrix algorithm, 
reduced complexity. 
 

I. INTRODUCTION 
As one of the most efficient numerical 

methods for the electromagnetic simulation, the 
finite-element time-domain (FETD) method has 
been widely applied to the analysis of various 

problems in the field of computational electro-
magnetics (CEM) recently. The FETD method 
holds the advantages of the finite element method 
(FEM) by combining the geometrical adaptability 
and material generality for modeling arbitrary 
shaped and inhomogeneously dielectric-filled 
objects. Moreover, it can also obtain a wideband 
response like the finite-difference time-domain 
(FDTD) method [1]. Therefore, a variety of FETD 
schemes have been developed during the past 
decades [ 2 - 11 ]. These schemes fall into two 
categories. The first scheme solves the time-
dependent Maxwell’s equations directly. The other 
scheme discretizes the second-order vector wave 
equation, known as the curl-curl equation, 
involving one of the field variables from the 
Maxwell’s equations. It is similar to the traditional 
frequency-domain FEM in spatial discretization 
and can be made unconditionally stable by using 
the Newmark-beta method for the temporal 
discretization [7].  

Due to the attractive advantage of the 
unconditionally stable scheme, the implicit 
methods are popularly used in the FETD to solve 
the second-order vector wave equation. However, 
the capability of an implicit scheme is highly 
limited since a large sparse linear system needs to 
be solved at each time step [12,13]. There are two 
categories of methods for the solution of this 
sparse linear system, i.e., iterative methods and 
direct methods. The iterative methods are widely 
used for large-scale problems due to their O(N) 
computational complexity, with N being the 
matrix size [ 14 , 15 ]. However, the iterative 
methods encounter two obstacles. One is the slow 
convergence rate when the FETD system matrix is 
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ill-conditioned, the other is the heavy redundant 
computational consumption for dealing with 
problems with multiple right-hand-side (RHS) 
vectors. These obstacles can be overcome by 
direct methods. However, the direct methods face 
the high computational complexity and memory 
requirement. Nonlinear complexity is familiar in 
electrodynamic filed, even for existing state-of-
the-art sparse matrix solvers. As reported in [16], 
the optimal complexity of the FEM-based direct 
solvers was shown to be O(N1.5). This means that 
the direct methods will face a great challenge or 
even become impractical with the number of 
unknowns increasing.  

In this paper, a direct method based on the 
hierarchical (-) matrix algorithm is proposed to 
yield an efficient FETD scheme with reduced 
complexity. -matrices have first been introduced 
in 1999 [17], and subsequently they were widely 
used for different applications [18,19]. -matrices 
provide an inexpensive but sufficiently accurate 
approximation to fully populated matrices arising 
from an integral operator or from the inverse of 
the finite element discretisation of an elliptic or 
hyperbolic partial differential operator [20 -23 ]. 
These matrices are not sparse in the sense that 
there are only few non-zero entries, but they are 
data-sparse in the sense that these matrices are 
described by only a few data, that is, certain sub-
blocks of these matrices can be described by low-
rank approximations which are represented by a 
product of two low-rank matrices [24 , 25 ]. -
matrix arithmetic allows the LU decomposition 
multiplication to be implemented with nearly 
optimal complexity O(kaNlogbN) with appropriate 
parameters a,b and a blockwise rank k. The FETD 
system matrix is sparse and can be represented by 
an -matrix without approximation, while its LU-
factors can be approximated in data-sparse 
representations by -matrices [26]. Based on this, 
in this paper, an efficient -LU decomposition 
algorithm is developed for solving the sparse 
linear system of the FETD with computational 
complexity and memory requirement being close 
to O(Nlog2N) and O(NlogN) respectively. It 
should be noted that the -LU decomposition 
multiplication only needs to be performed once, 
and then the -LU-factors are stored and enter the 
subsequent FETD computation by the fast - 

forward and backward substitutions (FBS) at each 
time step.  

This paper is structured as follows: in Section 
II, the theory of the FETD method based on the 
second-order vector wave equation is outlined, 
along with the Newmark-beta method yielding an 
unconditional stable FETD scheme. Then, the -
matrix algorithm is presented in detail for the 
efficient solution of the sparse linear FETD system 
in Section III. In Section IV, some numerical 
results are presented to demonstrate the 
performance of the resulting FETD method. 
Finally, conclusions are presented in Section V. 
 

II. FETD FORMULATION WITH THE 
NEWMARK-BETA METHOD 

In the FETD method, the whole computational 
domain is terminated by the anisotropic perfectly 
matched layer (PML) backed with perfect 
electronic conductor (PEC) wall. From the 
Maxwell’s equations in the anisotropic material, 
the curl-curl equation can be derived as follows 

 1 21
[ ] [ ] 0E E 


      ,       (1)  

where [ ]  is a diagonal matrix that describes the 
anisotropic permittivity and permeability of the 
PML region [27,28].  

To get the FETD solution, the frequency-
domain formulation is converted to the time-
domain version by using the following 
relationships

2
2

2 2
0 0 0

1 1t t t

j
t t j

 
 

  
    

     (2) 

Then, the computational domain is discretized 
with tetrahedral elements [ 29 ] and the electric 
field is expressed in terms of the basis functions 
associated with the edges of each element as 

N

1
i i

i

E W e


 ,                        (3) 

where N is the total number of the edges in an 
element, iW  is the vector basis function associated 
with edge i, and ie  is the unknown coefficient, 
which is the circulation of the electric field along 
the edge i. After the Galerkin testing, a weak form 
can be obtained as follows 

         
2

2
0

de d e
A e B C D f E g

dt dt
     , (4) 

where 
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 I ,  J ,  K and  L are PML-related matrices 

[30]. Using the Newmark-Beta formulation, (4) 
can be approximated as 
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It has been proven that unconditional stability 
is achievable by choosing the interpolation 
parameter 1/ 4  , and it is further shown that 
this choice of 1/ 4  minimizes the solution error 

[5]. Equation (6) can be simplified as  
1[ ] [ ]nM e b  ,                         (7) 

where [ ]M  and [ ]b  denote the resultant system 
matrix and right-hand-side (RHS) vector, 
respectively. At each time step, the updating of the 
electric field requires solving equation (7). 
Obviously, [ ]M  keeps invariable while [ ]b  
changes with the time steps. For such multi-RHS-

vector problem, direct solution is a good choice. 
Here, an -LU decomposition algorithm is 
introduced for the direct solution of (7). Although 
[ ]M  is sparse, its LU-factors are in general dense. 
However, -matrix algorithm provides a data-
sparse way to compute and store the LU-factors of 
[ ]M  at a low cost. After the -LU decomposition, 
the update can be fast computed by -FBS as 
follows 

1 1 1ne U L b     ,                       (8) 

where L  and U  are the approximate LU-factors 
with -matrix representations. 
 

III. -MATRIX ALGORITHM 

-matrix algorithm can be applied to the 
FETD method in the following five steps: 1. 
Construct the cluster tree by a hierarchical 
partitioning of the set of edge-based basis 
functions. 2. Construct the block cluster tree from 
a given cluster tree using appropriate admissibility 
condition. 3. Generate the -matrix representation 
of the FETD system matrix [ ]M . 4. Compute the 
-LU decomposition in -matrix formatted 
arithmetic to obtain the -LU-factors. 5. Perform 
the -FBS to obtain the solution of (7) at each 
time step. 

 

A. Construction of the cluster tree 
Let I={1,2,……N} be a finite index set, which 

includes the indices of all edge-based basis 
functions iW (i=1,2,…N) in the entire 
computational domain. Obviously, the FETD 
system matrix [ ]M  has the I I  matrix indices. 
The construction of an -matrix representation of 
[ ]M  starts from the construction of a cluster tree. 
A tree IT  satisfying the following conditions is 
called a cluster tree to I: 

1. I  is the root of IT . 
2. If It T  is a leaf, then mint n , where t  
denotes the number of elements in the set I  and 

minn  is a relatively small number which is 
predetermined. 
3. If It T  is not a leaf, then t has two sons 

1 2, It t T , and 1 2t t t  . 
The set of sons of It T  is denoted by  S t , 

and  IL T  stands for the set of leaves of  IT . 
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A cluster tree IT  is usually obtained by 
recursive subdivision of I . In this paper, binary 
trees are generated by subdividing an index set 
into two subsets recursively. This process 
continues until the size of the subset is smaller 
than a threshold parameter minn . minn  is used to 
control the depth of the cluster tree, i.e., the 
maximum distance of a vertex to the root of the 
tree increased by one. In addition, :t i t i    is 
defined as the support of a cluster It T  where i  
is the support of the basis functions iW . i  can be 
chosen to be the bounding box iB  that comprises 
all the elements sharing iW . A simple method for 
building a cluster tree is bisection based on 
geometry-based subdivisions of the index sets. Fig. 
1 shows the process of bisection using bounding 
boxes and a simple example of a cluster tree is 
shown in Fig. 2. 

 
B. Construction of the block cluster tree 

A block cluster tree I IT   arises from the 
grouping of pairs of clusters from the cluster tree 

IT , as depicted in Fig. 3. I IT   can be structured by 
recursively subdividing each block v t s    (
, It s T ) into four disjoint subblocks 1 1t s , 1 2t s

, 2 1t s  and 1 2t s  (  1 2,t t S t , 1 2,s s    S s ). 
This subdivision stops when 
1. mint n  or mins n . 
2. Clusters t and s satisfy admissibility condition. 

The admissibility condition is a criterion for us 
to judge whether a block cluster I Iv T   allows for 

a low-rank approximation. As shown in Fig. 4, a 
standard admissibility condition is given by 

      max , ,t s t sdiam B diam B dist B B   (9) 
where tB  and sB  denote the minimal bounding 
box for the support of cluster t and s, diam and dist 
denote the Euclidean diameter and distance of 
cluster t and s respectively, and   controls 
the trade-off. Blocks I Iv T   satisfying (9) are 
called admissible blocks, as shown in Fig. 3, 
which can be approximated by low-rank represent-
tation in the following Rk-matrices as follows 

T
m n

M AB  , m kA  , n kB  ,       (10) 
with A, B in full matrix representation, and k is 
much smaller than m and n. 
 

C. Generate the -matrix representation of the 
FETD system matrix 

Based on the block cluster tree I IT  , the class 
of -matrices with blockwise rank k and 
minimum block size minn  of the FETD system 
matrix [ ]M  can be defined as 

 
min min

( , ) : :

    rank( )     

I I

t s

H T k M t s L T

M k or t n or s n





    

  


. (11) 

An -matrix induced by the block cluster tree 
I IT   is on the basis of two cluster trees, named row 

cluster tree, and column cluster tree. In the -
matrix structure of [ ]M generated from the 
Galerkin method, the row and column cluster tree 
can be seen as the trees of the sets of original basis 
functions and testing basis functions respectively. 
Hence, all entries of [ ]M  can be filled into the 

Fig. 1. Subdivision of  a finite set using bounding 

boxes.  

{1,2,3,4}       {5,6,7,8} 

{1,2}    {3,4}     {5,6}    {7,8} 

{1} {2} {3} {4} {5} {6} {7} {8} 

I={1,2,3,4,5,6,7,8} 

Fig. 2. A simple binary cluster tree IT . 

sW
tW

s
t

 

( )td ia m W( ),s td is t W W  
( )sd ia m W

Fig. 3. Construction of a block cluster I IT  . 
Inadmissible blocks are dark grey and admissible
blocks are white.  

Fig. 4. Model graph of the admissibility condition. 
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blocks of an -matrix compatibly. It should be 
pointed that, in the -matrix representation of 
[ ]M , all the nonzero matrix entries of [ ]M  are 
filled in inadmissible leaves while admissible 
leaves keep empty. This is because the partial 
differential operator is local, the nonzero entries of  
[ ]M  appear only in the case that the associated 
pair of bounding boxes tB  and sB  have a 
nonempty intersection. However, if the 
admissibility condition is satisfied,  ,t sdist B B  
must be larger than zero since   is positive. 
Therefore, to generate the -matrix representation 
of [ ]M , one only needs to fill the inadmissible 
leaves with the nonzero entries of  [ ]M  while 
keeps the admissible leaves empty. Inadmissible 
leaves are blocks stored as full matrices exactly so 
that [ ]M  can be represented by an -matrix 
without approximation. 

 

D. -LU decomposition and -FBS 
The obtained-matrix representation of the 

FETD system matrix [ ]M  has a structure of a 

quad tree based on a binary tree IT . [ ]M  can be 

written as 11 12

21 22

M MM M M
    

. The -LU decomp-

osition can be computed recursively from this 
2 2  block-matrix as follows 

11 12 11 11 12

21 22 21 22 22

M M L U U
M

M M L L U
                

 (12) 

whose process can be expressed in detail as the 
following pseudo-code. 
 
Procedure -LU decomposition (M, r, L, U) 
if  Son r r    then 

calculate the LU decomposition r r r r r rM L U    
exactly  
else 

(    1 2,Son r r r , 11 12

21 22

M M
M

M M
   

, 11

21 22

L
L

L L
   

, 

11 12

22

U U
U

U
   

) 

call -LU decomposition (M11, r1, L11, U11) 
call Block -Forward Substitution (L12, M12, r1, 

r2, U12) 
call Block -Backward Substitution (U21, M21, 

r2, r1, L21) 

call -LU decomposition ( 22 21 12M L U , r2, L22, 
U22) 
end 
 

In the above procedure, a triangular solver 
PX=Q or XP=Q is required for a given lower or 
upper triangular matrix P and a given right-hand-
side (RHS) matrix Q. The lower triangular solver 
can be viewed as a block -forward substitution 
recursively implemented as the following pseudo-
code and the upper case as well as the block -
backward substitution is similar. When X and Q 
are vector, the process of solving PX=Q and XP=Q 
is the -FBS. 
 
Procedure Block -Forward Substitution (L, Q, ri, 
rj, X) 
if  i jSon r r    then 

calculate the i i i j i jr r r r r rL X Q    exactly 
else 

(    1 2,Son r r r , 11

21 22

L
L

L L
   

, 11 12

21 22

Q Q
Q

Q Q
   

,

11 12

21 22

X X
X

X X
   

) 

call Block -Forward Substitution (L11, Q11, r1, 
r1, X11) 

call Block -Forward Substitution (L11, Q12, r1, 
r2, X12) 

call Block -Forward Substitution (L22, Q21   
L21X11, r2, r1, X21) 

call Block -Forward Substitution (L22, Q22   
L21X12, r2, r2, X22) 
end 
 

In all the procedures above, the exact addition 
and multiplication are replaced by the formatted 
-matrix counterparts (  and  ). Truncation 

operator 'k k
  based on truncated versions of the 

QR-decomposition and SVD is used to define -

matrix addition '1 2 1 2( )
k k       and -

matrix multiplication '1 2 1 2( )
k k      . In 

this paper, an adaptive truncation scheme with a 
relative truncation error   is adopted, i.e., the 
rank of each admissible block is determined 
adaptively based on a required level of accuracy. 
The resulting -LU-factors L  and U  have the 
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same tree-structure as the -matrix representation 

of [ ]M , whereas the Rk-matrices may be not 
empty but filled with non-zero items during the 
recursion. The computational complexity of the 
-LU has been proven to be O(k2Nlog2N) [25] 

with blockwise rank k. Once L  and U  have 

been obtained, we only need to perform the -

FBS as (8) at each time step of the FETD, whose 
computational complexity is O(kNlogN). 
 

IV. NUMERICAL RESULTS 
In this section, some numerical examples of 

microwave circuits are simulated to demonstrate 
the performance of the proposed FETD method 
based on the -matrix algorithm. All compu-
tations are performed on an Intel Xeon E5405 
workstation with 2.0GHz CPU and 16GB RAM in 
double precision. 

 

A. A waveguide example 

w/2 

a 

   

 

 

L 

 
Fig. 5. Configuration of the full-height dielectric-
filled rectangular waveguide. 

The first example considers a waveguide filled 
with a full-height dielectric [31], as shown in Fig. 
5. The rectangular waveguide has a width of 
a=22.86mm, and a height of b=10.16mm and the 
inserted dielectric material slab has a dimension of 

w=12mm and L=6mm and a relative permittivity 
of 8.2r  . In order to obtain an input reflection 
coefficient, two blocks of PML are placed at the 
input port and the out port to simulate the input 
and output matched loads. A modulated Gaussian 
pulse is applied, with mid-frequency 0 10.0f   
GHz and bandwidth 4.0GHz . The -matrix 
algorithm associated parameter   in the admissi-
bility condition (9) is set to be 1.0   and the 
minimal block size is chosen as min 32n  . First, 
the unknown number is fixed at N=4,290 to test 
the performance of the -LU decomposition for 
solving the FETD system. The relative error of the 
-LU factors L and U  is defined as 

1 1 /I U L M I      , where I is identity matrix 
and   denotes 2-Norm. For different choices of 
the relative truncation error  , the relative error 
of L and U , the time used for the -LU 
decomposition and the -FBS and the memory 
needed for the -LU decomposition are given in 
Table 1. Obviously, the relative error   exponent-
tially decreases with the   decreasing, while the 
time and memory required for the -LU 
decomposition and the -FBS increase gradually. 
Fig. 6 shows the S parameter computed by the 
proposed -LU decomposition-based FETD 
method compared with that simulated by HFSS 
software in the case of 1. 3e   . Then, the 
relative truncation error is fixed 1. 4e    and 
the unknown number increases from 19,317 to 
609,364 by increasing the electric size of the 
waveguide to test the large-scale modeling 
capability. As shown in Figs. 7 and 8, the time 
complexity and the memory requirement can be 
observed to be very close to O(Nlog2N) and 
O(NlogN), respectively. 

 

Table 1: Performance of the -matrix algorithm 

  -LU Time(s) Memory(MB) -FBS Time(s) 

1.0e-1 1.39e-4 0.26 6.32 6.62e-3 

1.0e-2 2.07e-5 0.36 8.69 7.88e-3 

1.0e-3 1.12e-6 0.58 11.17 9.39e-3 

1.0e-4 1.73e-8 0.84 14.64 1.08e-2 

1.0e-5 2.29e-11 1.25 17.11 1.30e-2 
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Fig. 6. S parameter of the waveguide filled with a 
full-height dielectric. 

Fig. 7. Time required for the -LU decomposition.  

 
B. A microstrip lowpass filter example 
The second example deals with a microstrip 
lowpass filter. The detailed geometry of the 
metallization is shown in Fig. 9. The dielectric 
substrate has a thickness of 0.76mmd   and a 
relative permittivity of 2.43r  . 

Fig. 8. Memory required for the -LU factors. 

A modulated Gaussian pulse with mid-
frequency 0 9.0GHzf   and 
bandwidth 16.0GHz  is applied. The -matrix 
algorithm associated parameters are set to be 

1.0  , min 64n  . The relative truncation error is 
set to be 1. 4e   . To test the performance of 
the -LU decomposition algorithm, the number of 
unknowns N increases from 42,927 to 412,863 by 
increasing the electric size of this microstrip. As 
shown in Figs. 10 and 11, the CPU time and 
memory requirements for the -LU are presented 
to be close to O(Nlog2N) and O(NlogN), 
respectively. Moreover, the time requirements for 
the-FBS are also shown in Fig. 10, which are 
close to O(NlogN). As can be seen from Fig. 10, 
even in the case N =231,263, the computational 
time of the -FBS is only 3.15s, which means that  
once -LU factors are obtained, the computation 
of the FETD method at each time step can be 
finished with no more than 3.15s CPU time. 
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Fig. 9. Geometry and dimensions of the microstrip lowpass filter. 
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Fig. 10. Time required for the -LU decompo-
sition and the -FBS. 
 

 
Fig. 11. Memory required for the -LU factors. 

 
Meanwhile, good accuracy is achieved and the 
relative error is relatively stable as shown in Fig. 
  
12, which is accurate enough for a correct 
solution. Figure 13 presents the S parameters 
computed by the -LU decomposition-based  
 

 
Fig. 12. Relative error of the -LU 
decomposition. 

 
Fig. 13. S parameters of the microstrip lowpass 
filter. 

 

FETD method in the case N =231,263 compared 
with that computed by the finite-difference time-
domain (FDTD) method. 

C. A fractal-shaped UWB bandpass filter 
example 

The last example deals with a fractal-shaped 
ultra-wideband (UWB) bandpass filter (BPF). 
Figure 14 shows the topology and detailed sizes of 
the UWB-BPF structure. The UWB-BPF has been 
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fabricated on a substrate with relative permittivity 
2.43r   and thickness 0.76mmd  . A modu-

lated Gaussian pulse with mid-frequency 0f   
7.0GHz and bandwidth=12.0GHz is applied. The 
total number of unknowns is 310,035. The -
matrix algorithm associated parameters are set to 
be 1.0  , min 64n  . Table 2 shows the relative 
error of L  and U , the time used for the -LU 
decomposition and the -FBS and the memory 
needed for the -LU decomposition with the 
relative truncation error   decreasing. Figure 15 
presents the S parameters computed by the -LU 
decomposition-based FETD method in the case 
compared with that simulated by HFSS software. 
As can be seen from Fig. 15, reasonable agreement 
can be observed in the whole frequency band. The 
-10dB return loss bandwidth is from 3.2 GHz to 
10.8GHz with mid-frequency 7.0GHz. What’s 
more, in the bandwidth of interest, the designed 
UWB filter achieves an almost flat frequency 
response of insertion loss close to 0 dB. 

 
V. CONCLUSION 

In this paper, an efficient FETD method based on 
the second-order vector wave equation is 
generated by using the -matrix algorithm to 
directly solve the large sparse linear FETD system. 
The Newmark-beta scheme is implemented 
leading to an unconditionally stable FETD 
method. The -matrix algorithm provides a data-
sparse way to compute and store the LU-factors of 
the FETD system matrix. This -LU 
decomposition can be implemented with reduced 
complexity, which highly improves the capability 
of the FETD method for large-scale modeling. Via 
the -FBS, the FETD system can be computed 
rapidly at each time step. Numerical results 
validate that the -LU-based direct solver 
significantly reduces the computational 
complexity and memory require-ment to be close 
to O(Nlog2N) and O(NlogN), respectively, and 

demonstrate the validity and efficiency of the 
proposed FETD method in the applications of 
electromagnetic simulation.  
 

Fig. 15. S parameters of the fractal-shaped UWB 
bandpass filter. 
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