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Abstract─ The shielding effectiveness of 
rectangular metallic enclosures having thin or 
thick apertures in one of their walls and possibly 
loaded with conducting bodies is studied in detail 
for internal electromagnetic sources consisting of 
electric or magnetic dipoles. The analysis is 
performed through an efficient integral-equation 
formulation based on the Method of Moments, 
which makes use of several numerical tools 
(acceleration of the enclosure Green’s function 
evaluation, its interpolation, possible use of entire-
domain basis functions, etc...) and physically-
based approximations, critically discussed. Several 
cases are studied and comparisons with results 
obtained through different full-wave commercial 
software confirm the accuracy of the proposed 
approach and its superior performance in terms of 
computational time and memory storage.  
 
Index Terms─ Shielding effectiveness (SE), 
enclosures, apertures, method of moments (MoM).  
 

I. INTRODUCTION 
The analysis of the interaction between an 

electromagnetic (EM) field and a metallic 
enclosure is a classical problem in EM shielding. 
The metallic cavity is usually adopted to shield the 
interior components from external EM radiators or 
vice versa, to protect the external environment 
from the radiation caused by interior EM sources. 
In any case, the role of the metallic enclosure is 
that of reducing the EM interference between the 
inner and the outer world. In this connection, the 
most important coupling mechanism occurs 
through the unavoidable presence of apertures on 
the enclosure walls (which are necessary for many 
practical purposes) [1]. 

A metallic enclosure behaves effectively as a 
resonant EM system, i.e., close to certain 
characteristic (resonant) frequencies the field 
amplitude can become very large (ideally infinite 
for perfectly conducting (PEC) walls). In the 
presence of apertures, the structure still remains 
resonant although the resonant frequencies can be 
shifted and the quality factor reduced (because of 
radiation losses through the apertures). In any 
case, at such resonant frequencies, the EM 
interference is maximum and the shielding 
effectiveness (SE) of the system dramatically 
deteriorates. The possible presence of internal 
loads is another crucial factor that influences the 
value of the resonant frequencies and the spatial 
distribution of the field [2]. Finally, the SE 
depends also on the considered EM source; the 
latter is usually taken as an impinging uniform 
plane wave, but, especially if radiation from the 
interior of the cavity is considered, it could be an 
electric or a magnetic finite source (e.g., a short-
wire or a small-loop antenna) [3].  

All these issues call for an efficient and 
reliable numerical tool for the EM analysis and 
many numerical techniques have been applied to 
this classical problem, e.g., analytical formulations 
[4-6], finite-element [7], mode-matching [8], 
method-of-moments [9-11], finite-difference-time-
domain [12-14], and hybrid [15] approaches.  

In this work, we adopt a standard integral-
equation (IE) approach for the analysis of metallic 
enclosures with apertures of arbitrary shape and 
thickness and possibly loaded with 2-D or 3-D 
metallic objects. Contrarily to most of the studies 
(which assume an external plane-wave excitation), 
we consider here both electric and magnetic 
dipoles with arbitrary orientation as sources of the 
incident EM field. In fact, dipoles can represent 
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practical sources such as short-linear or small-loop 
antennas. The problem is solved through a mixed-
potential formulation of the Method of Moments 
(MoM). Several numerical tools (such as 
acceleration of the enclosure Green’s function 
(GF) evaluation, its interpolation, use of different 
basis functions) and physically-based 
approximations are introduced to increase the 
efficiency of the formulation. Finally, the results 
are compared with those obtained through 
different full-wave commercial software thus 
showing the accuracy of the proposed approach 
and its superior performance. 

 
II. ELECTROMAGNETIC PROBLEM 

FORMULATION 
The EM problem under analysis is sketched in 

Fig. 1, together with the adopted reference system 
and the involved geometrical parameters. A 
rectangular metallic cavity with PEC walls and 
dimensions x y z     is excited by either an 
electric or a magnetic dipole of unit amplitude and 
directed along the direction du . The enclosure 
walls may have a finite thickness t , and one of 
them (e.g., that located at the plane zz l ) may 
have one or more apertures of arbitrary shape. 
Finally, the enclosure can also contain PEC 
objects of arbitrary shape.  

 

Fig. 1. Metallic rectangular enclosure (with an 
aperture on one of its walls and loaded with a 
conducting object) excited by arbitrarily directed 
electric and magnetic dipoles. The adopted 
reference system and the involved geometrical 
parameters are also shown. 

In the absence of loading, the incident 
electric field incE  is that radiated in free-space by 

the impressed dipole sources and it corresponds to 
a suitable combination (depending on the 
orientation of the dipoles) of the components of 
the free-space dyadic electric GFs ( fs

E J M G ) (the 
subscripts J  or M  indicate an electric or a 
magnetic source, respectively). The electric 
shielding effectiveness SEE  of the enclosure at a 
given point r  is thus defined as  
 

 
inc ( )

SE 20log
( )E 

E r
E r  (1) 

 
where  E r  is the electric field at r  due to the 
radiating dipole sources in the presence of the 
enclosure, apertures, and conducting objects.  
 
III. INTEGRAL-EQUATION APPROACH 

The set of IEs which solve the problem can 
be derived through a customary application of the 
equivalence principle [1], as illustrated in Fig. 2: 
first, for finite-thickness walls, both interfaces of 
the aperture in zz l  (section iA ) and zz l t   
(section eA ) are short-circuited and equivalent 
magnetic current densities iM  and eM  are 
introduced on them. Next, an equivalent electric 
current density J  is introduced over the surface S  
of the PEC load (which is then removed). The 
problem is thus decomposed into three-coupled 
problems: the metallic enclosure (region 1), the 
closed short-circuited aperture (region 2 ), and the 
external region (region 3 ). 

 
Fig. 2. Aperture in the thick conducting wall of the 
metallic enclosure and application of the 
equivalence principle. 
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By enforcing the boundary conditions at the 
sections iA  and eA  we have 

sc
i( ) ( ) ( )z z A       u H r H r u H r r  (2a) 

e( ) ( )z z A     u H r u H r r  (2b) 
where H  are the fields produced by i eM  and the 
   superscripts indicate evaluation just above 
and below the relevant sections. The field scH  is 
the short-circuited magnetic field, radiated by the 
impressed sources and the equivalent current J  
(existing only over the surface of the PEC load) 
when the aperture is covered by a PEC surface.  

Equations (2) can be cast into coupled IEs by 
expressing all magnetic fields as superposition 
integrals (symbol  ) between the sources and the 
relevant dyadic GFs:  

 
C Cim

iHJ HM
S M

i e iHM HM , A

   

     

H J MG G

M M rG G
 (3a) 

(3) S M
e e i eHM HM HM , A      M M M rG G G (3b) 

where the cross product with zu  is suppressed 
throughout. The magnetic field imH  is that inside 
the closed cavity due to the impressed dipole 
sources only (expressed as a suitable combination 
of components of HM-/HJ-type dyadic GFs of the 
cavity C

HMG  and C
HJG ), while M

HMG  and S
HMG  are 

the GFs of region 2 (i.e., (2)
HMG ) when observation 

and source point lie on the opposite and same 
surface, respectively. Finally, (3)

HMG  is the dyadic 
GF of the external region.  

The above formulation requires the evaluation 
of the GFs in (3); the (3)

HMG  GF is not available, 

neither is the (2)
HMG  GF of the closed aperture, 

except for simple shapes (e.g., rectangular). 
However, some approximations (discussed next) 
can be made which allow for a simple solution of 
the problem without affecting the overall 
accuracy.  

The third equation is obtained by enforcing the 
EFIE on the surface S  of the PEC load inside the 
enclosure, i.e., 
  C C

iEM EJ onn S     u M J 0G G  (4) 

where un indicates the unit vector normal to S  and 
the electric fields have been expressed as 
superposition integrals between the equivalent 

magnetic/electric currents and the EM-type/EJ-
type dyadic GFs of the cavity 

C
EMG  and 

C
EJG , 

respectively. Equations (3)-(4) form a set of 
coupled IEs which, once solved in the unknowns 

i eM  and J , allows for the computation of the EM 
field inside and outside the enclosure.  
 

IV. NUMERICAL TOOLS 
Several approximations can be made together 

with a clever use of acceleration and interpolation 
techniques to speed up the computation of all 
required quantities for the solution of the problem. 
The most important and somewhat crude and 
limiting assumption is the following: the enclosure 
wall containing the aperture is extended to infinity, 
so that region 3 coincides with the half-space 

zz l t   and the GF of the outer region (3)
HMG  can 

be substituted with twice the free-space GF fs
HMG  

(which is known in a simple closed form). As 
shown in [11] for empty enclosures excited by an 
impinging uniform plane wave, this approximation 
leads to an error on the calculated SEE  smaller 
than 2 dB, regardless of the aperture position. The 
main drawback of such an approximation is that 
the radiated field can be evaluated only inside the 
enclosure and in the half-space beyond the 
aperture. However, the field outside the enclosure 
is expected to be maximum right in such an half-
space, which thus constitutes the critical region for 
SE evaluations (as will be discussed in detail in 
the numerical results). On the other hand, the 
appealing of such an approximation is enormous, 
since otherwise the solution of the problem would 
require the discretization of all the enclosure walls 
thus introducing an unacceptable number of 
unknowns. 

It should be noted that for vanishing thickness 
t  the formulation in (3) is unstable, since both the 
GFs M

HMG  and S
HMG  diverge. As first shown in 

[16], an alternative and robust representation can 
be obtained by introducing the auxiliary variables 

e i( ) 2   M M M  and e i( ) 2   M M M  and 
the GFs S M

HM HM HM
  G G G  and 

S M
HM HM HM
  G G G  so that (3) can equivalently be 

written as  
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 
 

   

C C fs
HJ HM HM HM

fs C im
HM HM

fs fs
HM HM HM HM

2 2

2

2 2






 
 

    

    

     

J MG G G G

M HG G

M M 0G G G G

 (5) 

which will be discussed next.  
 
A. Thin Apertures 

For very thin walls, the case of a zero-
thickness aperture can be considered. In such a 
case the surfaces eA  and iA  coincide with the 
unique surface A , only one equivalent magnetic 
current M  is introduced, and (3)-(4) actually 
reduce to two coupled equations 

 

 

C Cim
HJ HM

fs
HM

C C
EM EJ

2 ,

on .n

A

S

   

   

    

H J MG G

M rG

u M J 0G G

 (6) 

B. Thick Apertures 
As already mentioned above, for thick 

apertures the system consists of three coupled 
equations. However, for not too large thicknesses, 
one can assume  M 0 ; as shown in [11] for the 
case of impinging plane waves (and based on the 
theory developed in [16]), the two coupled 
equations (5) thus reduce to the unique equation  
 
  C C fs im

HJ HM HM HM2 2
      J M HG G G G (7) 

 
which is formally the same as the first of (6) for 
the zero-thickness case except for the perturbation 
term HM

G  which accounts for the finite thickness. 
As shown in [16], an approximate general 
expression for HM

G  GF can be obtained by 
considering the short-circuited cavity as a parallel-
plate waveguide; such an expression is available in 
a simple closed form in the spectral domain and its 
calculation in the spatial domain requires only the 
evaluation of a Sommerfeld integral (for details, 
see [11]). 
 
C. Use of Different Basis Functions for 
Rectangular Apertures 

To discretize (2) and (3), the unknowns 
(equivalent electric and magnetic currents) need to 
be expanded through a suitable complete set of 
vector basis functions (BFs). In order to identify 

the most convenient representation, several BFs 
have been tested to represent the equivalent 
magnetic current on the surface of the aperture and 
the electric current on the surfaces of the interior 
conductors.  

First, classical Rao-Wilton-Glisson (RWG) 
rooftop functions [17] have been used: the 
aperture and the surfaces of the interior conductors 
have been discretized through nonoverlapping 
triangles and the unknown current densities M  (or 

M ) and J  have been expanded in RWG 
functions as  

        M J

1 1
, ,

N N

i i i i
i i

a a
 

  M r Λ r J r Λ r  (8) 

where M
ia  and J

ia  are unknown complex 
amplitudes. In the case of thick apertures, when 
the two surfaces iA  and eA  have the same shape 
(which is common in practical cases), the 
magnetic currents on both the interfaces should 
share the same mesh to make easier the 
computation of M  and M .  

Alternatively to RWG BFs, in order to achieve 
a better accuracy, first-order triangular patch (LL) 
BFs [18] have also been used. In this case, two 
BFs are associated with each interior edge i  of the 
mesh ( 1 Ei … N   ) and they are defined on two 
adjacent triangles iT   and iT  , uniquely identified 
by such i -th edge. These BFs can be expressed as 
 

 

1 1

1
1 1

1 1

2
1 1

if
2

if
2

otherwise

if
2

if
2

otherwise

i
i i i

i

i
i i i i

i

i
i i i

i

i
i i i i

i

T
A

T
A

T
A

T
A










 


 


 


 

 

 




 

 





l r

Λ l r

0

l r

Λ l r

0









 (9) 

 

where i  is the length of the i -th edge, iA  are the 
areas of the surface triangular patches, i  are the 
area coordinates, and il  is the vector associated 
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with the edge i . Following the notation used in 
[19], these BFs provide a linear normal-linear 
tangent (LN/LT) approximation of the current.  

Adding two second-order BFs local to each 
triangle j  ( 1 Tj … N   ) as suggested in [19], it is 
also possible to obtain a quadratic tangent 
(LN/QT) approximation along the edges. 
However, intense testing has demonstrated that the 
coefficients of these BFs are always two orders of 
magnitude smaller than the coefficients of the six 
linear functions, thus not providing a substantial 
improvement in the modeling of the current.  

As concerns the singularities, the GFs in the 
three regions show a singularity 1/ R  as the 
observation point approaches the source; in the 
proposed approach, such a singularity is extracted 
and analytical formulas [20] are used for the 
correct integration of the static 3-D GF times the 
linear vector BFs on source triangles. Classical 
Gaussian quadrature rules are then used to 
compute all the remaining source and testing 
integrals [21].  

Finally, entire-domain (ED) BFs have also 
been used to represent the magnetic current on 
rectangular apertures. In fact, the use of ED BFs, 
although restricted to simple geometries, is 
appealing because it allows for incorporating the 
possible diverging behavior of the current along 
the aperture edges and for significantly reducing 
the size of the MoM matrix. Using ED BFs, the 
equivalent magnetic current is expressed as 
 

 
   

   

2

02
0 0

2

02
0 0

1
1

1
1

M N
mn

x x m n
m n

M N
mn

y y m n
m n

uM M U u T v
v

vM M U v T u
u

 

 














 (10) 

 

where 0
mn
x yM   are unknown coefficients and ( )nU   

and ( )nT   are the n -th order Chebyshev 
polynomial of first and second kind, respectively. 
The normalized variables  2 x xu x     and 

2 y yv y 
 
 

     have been introduced to define 

the polynomials over the interval [ 1 1]   where 
they are orthogonal. Physically, the equivalent 
magnetic current components display an inverse 
square-root singularity at the edges tangential to 
the direction of the current, while they vanish at 

the edges normal to such a direction. This 
behavior is explicitly enforced in the functions in 
(10) so that they are expected to converge more 
rapidly to the exact solution. As concerns 
integration, numerical adaptive formulas have 
been used to carry out both the source and testing 
integrals.  

It is worth mentioning that the singular 
behavior at the edges parallel to the direction of 
the magnetic current could also be enforced over a 
triangular mesh recurring to special singular RWG 
functions [22], but with an additional increase of 
preprocessing and computational efforts. (It should 
also be noted that in the presence of thick 
apertures the degree of singularity at the edges is 
different and another set of ED BFs, involving 
Gegenbauer polynomials, should be used.) 

 
D. Acceleration of Green’s Functions 
Calculation 

Equations (2)-(3) can efficiently be solved by 
means of the MoM technique (with Galerkin’s 
method) once they have been recast in a mixed-
potential form (which is preferred because of the 
lower-order singularity in the integral kernel) [23]. 
Introducing the auxiliary potentials A , V , F , and 
W , the convolution terms can be expressed in 
terms of potential GFs A FG  and V WG   which, for 
the free-space case, are known in a simple closed 
form [1].  

From a numerical point of view, a fast 
computation of the cavity GFs is required to make 
the proposed integral procedure an efficient 
technique alternative to classical full-wave 
methods. The four enclosure GFs are the two 
dyadic potential C

A FG  (which are diagonal) and 

the two scalar potential C
V WG  . As is well known, 

the evaluation of the GFs of a rectangular cavity 
with PEC walls is a daunting task: two classical 
representations exist, the image and the modal 
representations, which are both very slowly 
converging. An efficient numerical acceleration 
scheme (based on the Ewald representation) is 
thus adopted, for which the GFs are expressed as a 
sum of two Gaussian fast-decaying convergent 
series which depend on the splitting parameter E  
[24]. The choice of the optimum E  plays a crucial 
role in determining the rapidly-converging 
character of the series (which actually are multi-
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index series and require a clever choice of the 
strategy used for their numerical summation); 
several useful details about these issues are given 
in [25]. Finally, the curls of the GFs can also be 
computed efficiently in a similar way: the relevant 
expressions can be found in [26]. 

 
E. Interpolation of the Enclosure Green’s 
Function 

To further speed-up the computation of all 
involved GFs, an interpolation technique has been 
developed in [26], extending the polynomial 
modeling previously presented in [27].  

As concerns the four enclosure GFs, they can 
be interpolated by means of a triple series of 
Chebyshev polynomials of the first kind as 
reported in [26], after extracting their singularities 
and the singularities in their first derivatives. 
However, with respect to [26] where odd and even 
Chebyshev polynomials were used, here we used 
only even polynomials (this is obtained by 
interpolating the function /qD q  defined in [26] 

instead of qD ).  
The fast computation of the coefficients of the 

resulting Chebyshev series is a key step to ensure 
the efficiency of the interpolation. This can be 
obtained by means of a clever application of the 3-
D Fast Cosine Fourier Transform, while the 
evaluation of the series can be performed by 
applying the Clenshaw algorithm (for details, see 
[26],[27]).  
 

V. NUMERICAL RESULTS 
A. Choice of the Basis Functions 

If not otherwise specified, in all the numerical 
results presented next, a rectangular x y zl l l   
metallic enclosure having a rectangular x ya a  
aperture placed in the middle of the wall in the 

zz l  plane is considered. The structure is excited 
by a y -oriented electric dipole placed in the 
middle of the cavity and the observation point for 
SE evaluations is located along an axis parallel to 
z , passing through the aperture center, and at a 
distance d  from it.  

A first interesting investigation concerns the 
determination of the best set of BFs for an 
accurate SEE  computation. Three different sets 
have been presented in Section IV.C and all of 

them have been tested in order to point out their 
advantages or drawbacks. A specific case is 
presented in Fig. 3, although the conclusions are 
general; an empty rectangular metallic enclosure 
with dimensions 30x zl l   cm and 12yl   cm 
has been considered, having a zero-thickness 
aperture with 15xa   cm and 4ya   cm, 
operating at the frequency 1 5f    GHz. In Fig. 3, 
the behavior of the amplitude M  M  is reported 
as a function of the observation point over the 
aperture for RWG BFs (a), LL BFs (b), and ED 
BFs (c).  

It can be observed that, keeping a reasonable 
number of BFs, ED BFs provide the most accurate 
representation of the current, which is instead poor 
in the case of RWG BFs. A smoother curve is 
obtained through LL BFs, but at the cost of a 
double number of BFs (compared with RWG BFs 
with the same mesh). However, when dealing with 
moderate-size problems, the use of LL BFs 
significantly improves the accuracy of the solution 
with the same number of unknowns (i.e., using 
less triangles) and provides a faster convergence. 
Despite of these differences, the results obtained 
for the radiated electric field are 
undistinguishable. In conclusion, ED BFs furnish 
the most convenient numerical representation 
because a very small number is required, which 
entails a smaller MoM matrix size and a smaller 
number of integrations. On the other hand, if 
apertures of noncanonical shape are considered, 
the use of RWG basis functions (about 24 per 
wavelength) is sufficient to obtain accurate results 
for the radiated field. 

 

 
(a) 
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(b) 

  
(c) 

Fig. 3. Modeling of the equivalent magnetic 
current using different BFs: RWG (a), LL (b), and 
ED BFs (c). Parameters are in the text. 

 
B. Thin and Thick Apertures 

After testing the use of different types of BFs, 
we focus on the SE evaluation. A rectangular 
metallic enclosure with dimensions 

15x y zl l l    cm has been considered, having 
aperture dimensions 10xa   cm and 0 5ya    cm 
(i.e., a narrow slot). In Fig. 4, the electric shielding 
effectiveness SEE  is reported as a function of 
frequency for an aperture with zero thickness 
( 0t   mm) and for a thick aperture with 5t   
mm. The observation point is located at a distance 

20d   cm (i.e., 0d   at 1 5f    GHz). It can be 
observed that, as in the case of plane-wave 
illumination [11], in the case of long slots the 
finite thickness of the aperture increases the value 
of the SEE  also by several dB, especially in the 
low-frequency range. (It should be noted that the 

enclosure presents resonant frequencies at f   
1.41, 1.73, 2.23, 2.45, 2.83, and 3 GHz, but only 
few of them are observed in Fig. 4, since for 
symmetry properties some modes are not excited 
by the source [1].) 

 

 
 
Fig. 4. Electric shielding effectiveness SEE  
obtained through the proposed approach (solid 
line) and CST (dotted line) as a function of 
frequency for a thin and a thick aperture. 
Parameters are in the text. 

 
In order to check the accuracy of the proposed 

approach, our results (solid lines) have been 
compared with those obtained through the 
commercial software CST Microwave Studio 
(based on the Finite Integration Technique in the 
time domain, dotted lines) and the agreement is 
excellent. However, even with the use of two 
planes of symmetry, CST requires a very long 
simulation time (a mesh with 71300 cells has been 
used, ensuring 20 cells for wavelength at 3 GHz). 
To accelerate the simulation, an auto-regressive 
filter could be used for calculating the frequency 
spectra without waiting for the probe time signal 
to reach the steady state, but the accuracy of the 
results strongly depends on the filter settings, 
which are very case sensitive.  

As explained at the beginning of Section IV, a 
fundamental approximation of the proposed MoM 
approach consists in the replacement of the cavity 
wall containing the aperture with an infinite PEC 
plane. In the previous results it has been shown 
that such an approximation does not affect the 
accuracy of the formulation, at least for points 
located along the axis parallel to z and passing 
through the center of the aperture and in the 
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middle of the enclosure. However, the proposed 
formulation will certainly fail in evaluating the 
SEE  for points outside the enclosure and located 
in the half-space zz l  (since for the above-
mentioned approximation the proposed approach 
gives a null field in such points). However, this is 
not a critical drawback since, by trivial 
considerations, the largest value of the electric 
field radiated by the dipoles is expected to be 
found in the half-space zz l . In any case, it 
would be interesting to know the limits of the 
region within which the proposed approach gives 
accurate results. For this reason, in Fig. 5 the same 
structure as in Fig. 3 is considered and the electric-
field value (in dBV/m) is reported as a function of 
the angle   (measured from the axis z  with the 
origin placed at the center of the aperture) on the 
xz  (a) and yz  (b) planes, respectively, for 
different distances ( d   5, 10, 20 cm) from the 
aperture center at the operating frequency 1 5f    
GHz. The results obtained through the proposed 
approach (solid lines) are compared with the full-
wave results obtained through CST (dotted lines) 
and several remarks can be made.  

First, as expected, the electric-field values are 
lower and lower by increasing the distance from 
the aperture (in Fig. 5 such values are normalized 
with respect to the maximum value present in the 

5d  -cm case).  
 
Let us consider now the xz  plane (Fig. 5(a)); 

the length of the cavity wall along x  is 30xl   
cm, while the aperture dimension is 10xa   cm so 
that the curves corresponding to 5d   cm and 

10d   cm end at 90     (for which the 
observation point lies on the cavity wall), whereas 
the curve corresponding to 20d   cm extends in 
the zz l  half-space. Interestingly, the pattern is 
almost isotropic in the very near-field region over 
the whole angular range (for 5d   cm) or in a 
very wide angular range (for 10d   cm and 

20d   cm). In any case, a very good agreement is 
always obtained in the zz l  half-space, while the 
electric-field values for zz l  when 20d   cm 
are completely negligible (about 25 dB lower than 
the maximum value occurring at 0   ).  

 

 
(a) 

 
(b) 

 
Fig. 5. Normalized electric-field amplitudes (in 
dBV/m) obtained through the proposed approach 
(solid line) and CST (dotted line) for different 
values of d  in the xz  (a) and yz  plane (b). 
Parameters are in the text. 

 
As concerns the yz  plane (Fig. 5(b)), it results 
12yl   cm and 4ya   cm; in this case only the 

curve corresponding to 5d   cm ends at 
90    . As in the xz  plane, the pattern is almost 

isotropic over the whole angular range and an 
excellent agreement is obtained between the 
results of the proposed approach and those of 
CST. The curves corresponding to 10d   cm and 

20d   cm extend in the zz l  lower half-space; 
they are nearly isotropic over the whole angular 
range for zz l  and a very good agreement is 
obtained between our formulation and the full-
wave results (the maximum error is about 5 dB 
and obviously occurs over the plane zz l ). In any 
case, the electric-field values for zz l  are lower 
than those for zz l  by about 5  10 dB, thus 
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confirming that the maximum radiation is obtained 
in the half-space above the aperture.  
 
C. Loaded Enclosures 

It is then interesting to study the effects of 
possible PEC loadings placed inside the enclosure. 
The same structure as in Fig. 5 (with a zero-
thickness aperture) has been considered but loaded 
with a PEC plate parallel to the yz  plane, with 
dimensions 8yd   cm and 20zd   cm and with 
its center located at (7, 6, 12) cm. (It should be 
noted that if the plates are connected to the cavity 
walls, suitable local basis functions defined on the 
triangles at the edges between the plates and the 
cavity walls have to be used, as done in [26].)  

First, the SEE  of the empty enclosure has 
been studied as a function of frequency for 20d   
cm. The relevant results are reported in Fig. 6(a) 
(solid line) and they are compared with those 
obtained with both CST (dotted line) and FEKO 
(based on a frequency domain MoM, dashed line), 
showing an excellent agreement.  

In Fig. 6(b), the SEE  of the loaded enclosure 
is reported, with the observation point as in Fig. 
6(a). In this case, the calculation of the SEE  has 
been performed through the definition (1), where 

 incE r  is assumed as the electric field radiated by 
the electric dipole in the presence of the plate and 
in the absence of the enclosure. Again, the results 
obtained with the proposed approach are in 
excellent agreement with those obtained with both 
CST and FEKO. However, FEKO uses 3504 
triangles (10 triangles per wavelength) and 
requires about 2 hours to compute 601 frequency 
points (on a 3 GHz Intel Quad Core CPU), while 
CST uses 75800 cells and requires about 3 hours 
(with parallelization on four threads) to extinguish 
the transient inside the enclosure with an accuracy 
of 60  dB (in this case, due to the presence of the 
loading, only one plane of symmetry can be used). 
The proposed method, with 376 overall unknowns, 
requires just 72 minutes to compute 601 frequency 
points, providing a dramatic acceleration without 
affecting the accuracy of the results. A comparison 
between Fig. 6(a) and (b) also reveals that the 
SEE  is seriously affected by the presence of the 
PEC plate, especially in the high-frequency range. 

 

 
(a) 

 
(b) 

 
Fig. 6. SEE  obtained through the proposed 
approach (solid line), CST (dotted line), and 
FEKO (dashed line) as a function of frequency. 
Empty enclosure (a); loaded enclosure (b). 
Parameters are in the text. 
 
D. Different Dipole Sources and Orientations 

Finally, different types and orientations of the 
dipole sources have been considered. In fact, while 
an electric dipole represents a short linear antenna, 
a magnetic dipole may represent a small loop 
antenna lying on the plane orthogonal to the dipole 
direction. The SEE  has been calculated as a 
function of frequency for the same structure as in 
Fig. 4 at a distance 20d   cm from the aperture. 

In Fig. 7(a), the effects of electric dipole 
sources placed in the center of the enclosure and 
directed along the main axes ( , ,x y z ) are reported. 
It can be seen that the worst case is represented by 
a y -oriented dipole (i.e., parallel to the shortest 
side of the aperture), which gives rise to values of 
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SEE  several dB lower than those corresponding to 
the other dipole orientations. The latter 
orientations present critical values of the SEE  only 
in correspondence of the resonant frequencies of 
the metallic cavity.  

 

 
(a) 

 
(b) 

 
Fig. 7. SEE  obtained through the proposed 
approach as a function of frequency for different 
kind of sources and orientations: electric dipole (a) 
and magnetic dipole (b). Parameters are in the text. 

 
In Fig. 7(b), the SEE due to magnetic dipoles 

placed in the center of the enclosure and directed 
along the main axes ( , ,x y z ) is shown. It can be 
seen that also for this excitation the worst case is 
represented by a y -oriented dipole (i.e., parallel to 
the shortest side of the aperture). It should be 
noted that no curve is reported corresponding to 
the z -oriented magnetic dipole: in fact, in such a 
case the planes containing the dipole and 
orthogonal to the xy  plane are equivalent to PEC 

planes (by symmetry), so that at the observation 
point (which lies along the intersection between 
such planes) the electric field is null [1].  
 

VI. CONCLUSIONS 
This work has presented a detailed study of 

the shielding effectiveness of rectangular metallic 
enclosures having thin or thick apertures, possibly 
loaded with conducting bodies and the problem of 
a finite-source excitation (i.e., an arbitrarily 
oriented electric or magnetic dipole placed inside 
the cavity) has been addressed, instead of the more 
conventional plane-wave excitation; in fact, the 
dipoles may represent practical sources such as 
short-linear or small-loop antennas. An efficient 
Method-of-Moment formulation has been 
developed which overcomes typical difficulties of 
the classical approach through the use of 
acceleration techniques for the computation of the 
dyadic enclosure Green’s function, interpolation 
schemes, different sets of basis functions modeling 
the apertures, and approximations which 
dramatically simplify the problem. Such 
approximations have been critically discussed and 
it has been shown how they still allow for 
maintaining a high level of accuracy in the 
problem solution. The efficiency and the accuracy 
of the proposed approach has been fully validated 
by means of comparisons with results obtained 
through independent full-wave software, thus 
showing the validity and the appealing of the 
method in solving this classical electromagnetic 
problem.  
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