
  

Abstract- The analysis of chiral materials has been 
an important subject in computational 
electromagnetics. In this paper, the method of 
moments technique is used to solve the problem of 
transmission through an arbitrarily shaped aperture 
separating air and a chiral medium. The aperture is 
in an infinite PEC (perfect electric conductor) 
plane. The excitation is assumed to be a plane 
wave in air. The equivalence principle is used to 
replace the aperture with a conducting surface with 
an equivalent magnetic current on each side of it. 
By enforcing the continuity of the tangential 
components of the total electric and magnetic 
fields across the aperture, coupled integral 
equations are obtained. The aperture has been 
modeled by triangular patches. The equivalent 
magnetic currents are approximated by linear 
combinations of expansion functions. The mixed 
potential formulation for a homogeneous chiral 
medium is used to obtain the electric and the 
magnetic fields produced by these expansion 
functions. The coefficients of these expansion 
functions are obtained by using the method of 
moments to solve the coupled integral equations. 
 
Index Terms- Apertures, chiral media, conductors, 
moment methods.  
 

I. INTRODUCTION 
     In this work, an aperture problem is solved 
using some electromagnetic simulation tools and 
numerical analysis. More specifically, a numerical 
technique is used to solve an electromagnetic 

transmission problem involving a chiral medium. 
Before the development of fast software and 
hardware technologies, analytical solutions were 
possible and popular for solving simple numerical 
electromagnetic problems. After the new era of 
computing tools arose, it was possible to do 
extensive numerical analysis to solve more 
electromagnetic problems especially those of 
transmission and/or scattering. 
    Numerical analysis of chiral materials has been 
done using a variety of numerical methods, such as 
the method of moments (MoM) [1], the finite-
difference time-domain (FDTD) method [2], the 
finite element method-boundary element method 
(FEM-BEM) [3], and the transmission line 
modeling (TLM) method [4]. In this paper, a MoM 
formulation has been developed for chiral material 
and this formulation has been verified for 
transmission through an aperture by comparing the 
numerical results with other solutions. In Section 
II, the constitutive relations and the field of 
sources in an unbounded chiral medium are 
discussed. The basic formulation which leads to 
the detailed formulation in Section III is developed 
in Section II. Section IV contains numerical results 
and discussion. Some of the numerical results are 
compared with results obtained elsewhere. The 
conclusion and final comments are given in 
Section V.   
 

II. CHIRAL MEDIA 
The constitutive relations for a chiral medium 

are given in [5] as: 
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D E j H        )  
B H j E                         (2) 

where is the permittivity,  is the permeability, 
and is the chirality. These constitutive relations 
reduce to those for a simple dielectric medium 
when = 0. A chiral material is defined by its 
constitutive relations (1) and (2). The constitutive 
relations (1) and (2) completely define the 
electromagnetic behavior of a chiral material. 

The electromagnetic fields must satisfy the 
Maxwell equations given by 

       E j B M                   
(3) 

            H j D J   .               (4) 
     The field in a chiral medium is a right-handed 
field plus a left-handed field. In order to get 
Maxwell’s equations for the right- and left-handed 
fields and current sources of the wavefield 
decomposition [1], [5], [6] one can put these 
constitutive relations into (3) and (4) and get that, 
 

 E j H M
   

              (5) 

 H j E J
   

                      (6) 
Equations (5) and (6) are called the equivalent 

Maxwell equations for the right-handed and left-
handed fields. These equations, and hence their 
solutions, are very similar to those of sources 
radiating in an unbounded regular (achiral) 
medium. The mixed potential formulation [7] is 
used to obtain the fields of these kinds of sources.   

III. 3-D VIEW OF THE PROBLEM AND 
FORMULATION 

Figure 1 shows a plane wave, coming from the 
direction specified by i and i incident upon an 
arbitrarily shaped aperture in the PEC plane. This 
plane separates the half-space filled with air (0, 
0), from that filled with a homogeneous chiral 
medium (b,b,).  

The equivalence principle [8], which is that for 
an achiral-achiral separation with one of the 
achiral mediums replaced by the chiral medium, is 
applied. An equivalent problem is obtained by 
closing the aperture with a PEC and placing 
magnetic currents M E z   

  immediately above 
and below the closed aperture as shown in Fig. 2.     
Continuity of E z   across the aperture is one 

boundary condition that is satisfied by putting M  
and M  in Fig. 2. Another boundary condition that 
must be satisfied is continuity of z H across the 
aperture. By image theory, the field of M  above 
the PEC plane is that of 2 M  in air. Figure 3 is for 
determining the field of M  in the chiral medium. 
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Fig. 1. Three dimensional depiction of the 
problem. 
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ẑ
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Fig. 2. Equivalence for regions a and b. 

 
below the PEC plane in Fig. 2. If, in Fig. 2, 
radiation for z > 0 was not restricted to air and 
radiation for z < 0 was not restricted to the chiral 
medium, Fig. 2 would be valid for the separation 
of any two different mediums. In the image 
principle for a chiral medium, the image of the 
chiral medium is the chiral medium with the sign 
of its chirality changed. Therefore, application of 
the image principle does not result in a 
hypothetical situation where all space is filled with 
the same chiral medium. Instead of applying the 
image principle for a chiral medium, we deal with 
the infinite PEC plane directly. In order to apply 
the method of moments, we have to approximate 
the infinite PEC plane by a finite PEC plane. The 
finite PEC plane has to be so large that the electric 
current induced on it is nearly the same as the 
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electric current that would be induced on the 
infinite PEC plane. The effect of the finite PEC 
plane is that of the electric current J that flows on 
it in Fig. 3. Of course, J must be such that, on the 
finite PEC plane, the electric field of the 
combination of J and M has no component 
tangent to the PEC plane.  Because there should be 
no field in Region a of Fig. 3, the medium in 
Region a of Fig. 3 is of no consequence. Liberty 
was taken to put the chiral medium(b,b,) in 
Region a of Fig. 3.  
 

 
Fig. 3. Finite PEC plane just above M . 

 
Now,    

  tan ( , ) 0b J ME               (7) 
just above M , on the whole finite PEC plane in 
Fig. 3, and continuity of the tangential magnetic 
field across the aperture in the original problem of 
Fig. 1 is expressed as,  

 
 

0 0tan tan tan(0, ( , )2 )        
z z

inc a bH H H J MM
  

        (8) 

over the aperture. The superscript a indicates 
radiation in all space filled with the medium (0, 
0) of Region a, and the superscript b indicates 
radiation in all space filled with the medium 
(b,b,) of Region b. Also, incH  is the free-space 
incident magnetic field. Although the left-hand 
side of (7) and the right-hand side of (8) are 
obtained by using the finite PEC plane, the left-
hand side of (8) is, in view of application of the 
method of images, obtained by using the infinite 
PEC plane. 

The left-hand side of (7) and the right-hand side 
of (8) could not be obtained by using the infinite 
PEC plane because the usual method of images 
does not apply to an infinite PEC plane in a chiral 
medium. 

Equations (7) and (8) are solved for J  and M  
by using the method of moments.  

  
1

( ) ( )
N

n n
n

J r I f r




           (9) 

1

( ) ( )
N

n n
n

M r V f r


           (10) 

where  ( ),  1, 2, ...nf r n   are the RWG [9] 
expansion functions, nI  and nV  are unknown 
coefficients to be calculated, N is the number of 
expansion functions in the aperture, and N  = is the 
number of expansion functions on the whole finite 
PEC plane. RWG stands for the last names of the 
authors of [9]. 

The only difference between the equivalence 
principle where one or both regions are chiral and 
the equivalence principle where both regions are 
achiral is that in the equivalence principle where 
one or both regions are chiral, the equivalent 
currents radiate in the chiral region or regions. In 
the manuscript, the equivalence principle is merely 
applied; its derivation and explanation appears in 
[8]. 

Our MoM approach is not with a dyadic Green’s 
function but with the mixed potential formulation. 
The dyadic Green’s function approach for 
obtaining the electric field of an electric current 
involves an integral whose integrand contains the 
Green’s function and its second order derivative. 
This integral is difficult to evaluate because its 
integrand is singular. In the mixed potential 
approach [7], there is an integral whose integrand 
contains the Green’s function and there is the 
gradient of an integral whose integrand contains 
the Green’s function. By manipulation, one can 
trade the gradient operation on the latter integral 
for the surface divergence operation on the MoM 
testing function and arrive at a formulation that is 
more suitable for computation than the dyadic 
Green’s formulation.  

It is difficult to obtain a good estimate of the 
error incurred by the use of a finite ground plane. 
We did a crude convergence study where we began 
with a small ground plane and made it larger and 
larger until the magnitude of the electric current 
near its edges was less than 11% of its maximum 
value in the vicinity of the magnetic current. 
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IV. NUMERICAL RESULTS 
A. Square Aperture 

Figure 4 shows a square conducting plate of side 
length 2.  At its center is a square aperture of side 
length L=0.25.   The plate and the aperture are 
modeled by triangular patches, with a finer mesh 
around the aperture. Figures 5 8 show currents 

yM  and xJ  due to a normally incident plane 
wave traveling in the negative z-direction. The 
electric field of this plane wave is  

 
Fig. 4. Square aperture in a finite conducting 
plane. 
 

Fig. 5. Equivalent magnetic current when  =0. 
 

ojk zinc inc
xE a E e  . Figures 5 and 6 are for the 

special case where the chiral material is replaced 
by air (0, 0). This case was considered to 
compare our results with those of [10]. In Figs. 
510 the units along each horizontal axis are 
those of the ratio of length to wavelength. The 

units of M y  are those of the incident electric field 

and the units of J x  are those of the incident 
magnetic field. The phase of M y  is plotted in 

degrees. Our computed results shown in Figs. 5 
and 6 are in good agreement with [10]. 
 

 
Fig. 6. Phase of equivalent magnetic current when 
 =0. 
 
In [10], only 32 triangles were used in the aperture 
region while we have 241 triangles, and finer mesh 
around the edges. The finer mesh, easily 
obtainable with computational facilities of our day, 
should give better accuracy than that in [10]. For 
achiral media, the present approach still uses the 
finite PEC plane for radiation in the Region b half 
space whereas the approach in [10] uses an infinite 
PEC plane. For the achiral cases, agreement of 
results of the present approach with results in [10] 
therefore shows that, at least for these achiral 
cases, the finite PEC plane was large enough to be 
a good approximation of an infinite PEC plane. A 
22542254 matrix was used. The computation 
time for a 4GHz processor machine in MATLAB 
was 16 minutes. Figure 7 shows the effect of 
chirality on the equivalent magnetic current in the 
aperture, and Fig. 8 shows xJ , the x-component of 
J, on the finite PEC plane. In Figs. 7 and 8, r = 2 , 
r = 1 and /r    where r,  r  and  r are, 
respectively, relative permittivity, permeability 
and chirality of Region b. No results for 
comparison with the curves of Figs. 7 and 8 were 
available in the literature. We observe that as 
chirality gets smaller, the results in Fig. 7 seem to 
approach those in Fig. 5 despite the difference in 
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permittivities. In Fig. 8, 0 0 0/   . It is noted 
that the current in Fig. 8 is very small as one 
moves away from the aperture by only half a 
wavelength. This is justification for approximating 
an infinite PEC plane with one that is a square of 
side length only  2. 

Co-polarized and cross-polarized bistatic radar 
cross sections (RCS) are shown in Figs. 9 and 10. 
The co-polarized RCS is called   because the 
incident electric field is  -polarized and only the 
 -component of the diffracted electric field is 
received. The RCS is a measure of the square of 
the magnitude of the diffracted field in Region a. 
The diffracted electric field is the electric field due 
to the aperture. That is, the diffracted electric field 
is the electric field that exists when the aperture is 
in the PEC screen minus the electric field that 
would exist if the aperture were not in the PEC 
screen. The cross-polarized RCS is called 

 because the incident electric field is  -
polarized and only the  -component of the 
diffracted electric field is received. For both Figs. 
9 and 10, the excitation is a normally incident 
( inc =0) plane wave with its electric field 
polarized in the –x-direction. In Fig. 9, the  -
component of the diffracted electric field is 
received at   in the  =0 plane. In Fig.10, the  -
component of the diffracted electric field is 
received at  in the  =0 plane. The   component 
in the  =0 plane is the y component in the xz 
plane. All figures which have “along Y-axis” at the 
bottom are versus y /  along the y-axis. 

 The internal field has been calculated along 
the z-axis, from the center of the aperture at z/ = 
0 down to z/ = 1. The side length of the square 
aperture is L = /4 and the side length of the 
conducting plane is 2. The excitation is again a 
normally incident plane wave whose electric field 
is  ojk zinc inc

xE a E e  . Computed values are the 

magnitudes of / inc
xE E  and  / inc

yE E  and their 
phases with and without chirality. In Fig. 11 where 
the chirality is zero, / inc

xE E  approaches 

/ inc
yM E  in the aperture in Fig. 5. In Fig. 12 

where the chirality is also zero, the phase of 

 
Fig. 7. Equivalent magnetic current with different 
chiralities.
 

Fig. 8. Equivalent electric current with different 
chiralities. 
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Fig. 9.  of square aperture with r =0.4, r = 2, 

r =1. 
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Fig. 10.  of square aperture with r =0.4, r = 2, 

r =1. 

/ inc
xE E  approaches the phase of / inc

yM E  in 

the aperture in Fig. 6.  In Fig. 13, / inc
yE E  is well 

below / inc
xE E  as expected. Figures 14 and 15 

show / inc
xE E  and / inc

yE E  when r =0.5.  

 

 
 Fig. 11. / inc

xE E in Region b behind aperture when 

r =0. 
 

Figure 16 shows the transmission cross section 
patterns,   in the x = 0 plane, and   in the y = 0 
plane where, 

22
02 / incr H E             (11) 

22
02 /  incr H E           (12) 

 

 
Fig. 12. Phase of xE in Region b behind aperture 
when r =0. 

 

 
Fig. 13. / inc

yE E in Region b behind aperture when 

r =0. 

 
Fig. 14. / inc

xE E in Region b behind aperture when 

r =0.5. 

592IMECI, ALTUNKILIÇ, MAUTZ, ARVAS: TRANSMISSION THROUGH ARBITRARILY SHAPED APERTURE IN CONDUCTING PLANE



  

 
Fig. 15. / inc

yE E in Region b behind aperture when 

r =0.5. 

 
Fig. 16. Transmission cross section patterns when 

r =0.      
  
These patterns are in good agreement with those in 
[10]. Direct comparison with patterns shown in 
[11] is not possible because all patterns shown in 
[11] are for the dual problem of scattering by a 
rectangular plate. Figures 17 and 18 show the 
patterns with various chiralities. Table 1 shows the 

transmission coefficient comparison results, which 
agree with those in [10], and also shows the 
change with various chiralities. The transmission 
coefficient is Ptrans /Pinc. Ptrans is the transmitted 
power going through the aperture. Pinc is the 
incident power in free space on the aperture.  

 
.

ˆ  
1 Re
2trans

apert

E H z dsP 
        (13) 

2
 c  inc inc

inc H S osP          (14) 
where S  is the area of the aperture. 

If the PEC plane was really finite, then, very far 
into the chiral material, the PEC plane would have 
no effect. As a result, only the effect of the 
incident field on the interface between air and the 
chiral material would be seen. This effect would 
mask any transmission cross section. However, 
because the left-hand side of (8) is obtained by 
using the infinite PEC plane, the PEC plane does 
not look small very far into the chiral material so 
that transmission cross sections can be  obtained. 
Chiral materials are also used to reduce the radar 
cross section [12],[13]. 
 

  
Fig. 17. Transmission cross section pattern 

)(  with various chiralities. 
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Table 1: Transmission coefficient for square aperture. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 18. Transmission cross section pattern 

)(  with various chiralities. 
 
B. Slot Aperture 

As a second check, an aperture which is a thin 
slot is meshed. The mesh starts fine and gets 
coarser near the edges of the finite conducting 
plane. The excitation is a normally incident unit  

 

 

 

 

 

 

 
plane wave traveling in the  z direction. The 
mesh is finer than that for the square aperture 
because of the thin width (W = /20) shape. This 
time, 3972 unknowns took 23 minutes on the same 
machine mentioned previously in Figs. 2028, 
where the units along each horizontal axis are 
those of the ratio of length to wavelength, the units 
of My are those of the incident electric field and 
the phase of My is plotted in degrees. Three 
different slot lengths are considered. The width is 
always /20, but the lengths are /4, /2, and . In 
the case of the length /2, the magnetic current is 
large because of a resonance. When the chirality is 
equal to zero, the magnetic current magnitude and 
phase agree with those in [10] and [14] in all 
cases. Table 2, for which r =r =1, gives 
transmission coefficients for  =0, 0.3 and 0.6. In 
Table 2, the computed transmission coefficients 
for  r =0 compare favorably with the transmission 
coefficients in [10].  

        
Fig. 19. Slot with W = /20 and L = /4. 

SQUARE    
APERT. 
W=L=/4 

CHIH  LIN I COMPTD. 
(r=0) 

COMPTD. 
  (r=0.3) 

COMPTD. 
(r=0.6) 

APERT. 
AREA  

0.0625    
(2) 

0.0625 
(2) 

0.0625     
(2) 0.0625 (2) 

 TRANS. 
COEFF. 0.21483 0.21228 0.33157 0.41391 

 TRANS.     
AREA 

0.01342 
(2) 

0.01326 
(2) 

0.02072     
(2) 0.02586 (2) 

594IMECI, ALTUNKILIÇ, MAUTZ, ARVAS: TRANSMISSION THROUGH ARBITRARILY SHAPED APERTURE IN CONDUCTING PLANE



  

 
Fig. 20. Magnetic current comparison for slot 
aperture of  W = /20 and L = /4. 
 

Fig. 21. Phase comparison for slot aperture of L = 
/4. 

 
Fig. 22.  Magnetic current with different chirality 
values. 

 
Fig. 23. Magnetic current comparison for slot 
aperture of W = /20 and L = /2. 

Fig. 24. Phase comparison for slot aperture of L = 
/2. 

Fig. 25.Magnetic current with different chirality 
values. 
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Fig. 26. Mag. current comparison for slot aperture 
of L=. 

 

Fig. 27. Phase comparison for slot aperture of L = 
.  

 

 
Fig. 28. Magnetic current with different chirality 
values. 

Table 2: Transmission coefficent for slot aperture. 
 

 
 

 
Fig. 29. Finite conducting plane with 2267 
unknowns. 
 
C. Circular Aperture 

As a third check, a circular mesh is applied to a 
circular aperture. As it is seen in Fig. 29, the mesh 
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is fine at the edge of the aperture and is coarse at 
the end of the finite conducting plane. The incident  

 

 
Fig. 30. Magnetic current with different chirality 
values.     

Fig. 31. Electric current with different chirality 
values. 
 
field is again a normally incident unit plane wave 
traveling in the  z direction. The radius of the 
aperture is R=/4. The mesh size is close to that of 
the square aperture. This time, 3267 unknowns 
took 19 minutes on the same machine mentioned 
previously. When the chirality is equal to zero, the 

maximum value of the magnetic current agrees 
with that in [10]. In Figs. 30 and 31, the dominant 
components of the equivalent electric and the 
magnetic currents are plotted for various 
chiralities. The magnetic current decreases with 
increasing chirality as for the square aperture. 
Again chirality affects the current at the center of 
the aperture more than that at the edges. 

V. CONCLUSION 
In this work, the method of moments technique 

is used to solve the problem of transmission 
through an arbitrarily shaped aperture in a 
perfectly conducting plane separating air and a 
chiral medium.  Excitation is assumed to be a 
plane wave. The equivalence principle is used to 
replace the aperture with a conducting surface with 
an equivalent magnetic current on each side of it. 
By enforcing the continuity of the tangential 
components of the total electric and magnetic 
fields across the aperture, coupled integral 
equations are obtained. Triangular patches have 
been used to model the current in the aperture and 
on the conductor. The equivalent magnetic 
currents are approximated by linear combinations 
of expansion functions. The mixed potential 
formulation for a homogeneous chiral medium is 
used to obtain the electric and the magnetic fields 
produced by these expansion functions. In the 
mixed potential formulation, the expression for the 
electric field of an electric current contains the 
electric scalar potential as well as the magnetic 
vector potential. The coefficients of these 
expansion functions are obtained by using the 
method of moments to solve the coupled integral 
equations. 
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