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Abstract – This article introduces an ultra-compact four-
way quadrature power splitter (4W-QPS) based on a
novel transmission-line compression technique called
double-path zigzag microstrip line (DP-ZML). Detailed
design techniques with modular approach are disclosed
for the state-of-the-art 5G low-band applications. The
theoretical predictions are verified with experimental re-
sults through a fabricated prototype that operates from
696.55 to 876.03 MHz with >15 dB return-losses and
isolations, and 90◦±4◦ quadrature phase between ad-
jacent outputs. The compact size of this 4W-QPS is
achieved at 0.21λ g×0.21λ g at a center frequency of 786
MHz.

Index Terms – 5G low-band, miniaturization, quadrature
power splitter (QPS), Z-shaped microstrip line.

I. INTRODUCTION
According to 3GPP TS38.101-1 V15.3.0 [1], New

Radio Frequency Ranges (NR-FRs) are being rolled
out into fifth generation (5G) mobile communications,
where power dividers/splitters play a vital role in 5G low
frequency bands. The 5G low-band spectrum is classi-
fied as any spectrum that operates below 1 GHz, e.g.,
700∼800 MHz, like n12, n14, n18, and n20 [1]. A four-
way quadrature power splitter (4W-QPS) with constant
phase-shifts is in high demand by circularly-polarized
antennas, multiple-beam antennas and power amplifiers
due to its simplicity and low power loss. On one hand,
conventional power dividers are known to occupy a
large physical size due to restriction of multiple quarter-
wavelength (λ /4) transmission lines. On the other hand,
a large foot-print is required for the QPSs operating

in the 5G low-band NR at frequencies of 800 MHz
or so.

Over the years, many miniaturization techniques of
power splitter circuits and or feeding networks using var-
ious types of transmission lines have been reported in the
literature [2–5]. In [4–5], broadband QPSs using meta-
material lines were proposed for circularly-polarized an-
tenna array, wherein the quadrature (90◦) phase differ-
ence between output ports was realized by space-saving
metamaterial lines. Based on half-wavelength slot-lines
coupling, a compact four-way out-of-phase power split-
ter was proposed in [6]. However, the isolations between
output ports are identified to be insufficient (<15 dB),
which may not be suitable for certain applications that
require high isolations. To address this issue, a new ra-
dial power divider was reported in [7], wherein an iso-
lation network composed of RLC and LC topologies
was used. Very good isolation levels (>20 dB) and its
associated bandwidth were obtained; however, the air
bridges used will increase fabrication cost as its foot-
print is big (80×80 mm2) at 1 GHz. In [8], a four-
way microstrip power splitter using lumped elements
was proposed for dual-band (1 and 2 GHz) applica-
tion. However, its electrical size (0.54λ g × 0.45λ g) is
found to be large. Recently, an interesting chained slot-
ted power divider using half-mode substrate-integrated
waveguide at X-band was presented [9], where compact
size can be achieved at the cost of low isolation levels
of about 12 dB. More recently, a very compact (0.17λ g
× 0.22λ g) quasi-planar four-way power splitter was re-
ported [10], wherein high isolation (20 dB) bandwidth
of 58% was achieved but with equal phases at its output
ports. Similarly, a wideband (60%) equal-phase power
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splitter (EPS) using multi-stage connection lines was re-
ported in [11]. However, both the extra loss and broad
size are found to be large.

In this paper, a highly compact four-way power
splitter with quadrature phases using double-path Z-
shaped microstrip line (DP-ZML) in the form of a dou-
ble layer is presented. The goal of this compact design is
to enable 5G low-band operation at a low cost. The pre-
dicted results are validated by a fabricated prototype pre-
senting an operating bandwidth from 696.55 to 876.03
MHz, where its return losses and isolation are of >15 dB
with phase-difference of 90◦±4◦ between adjacent out-
put ports. The ultra-compact size is achieved at 0.21λ g
× 0.21λ g.

II. GEOMETRY OF POWER SPLITTER
USING DOUBLE-PATH ZIGZAG

MICROSTRIP LINES
The initial geometry of the proposed double-path

zigzag microstrip line in the form of four sections of
ZML is shown in Fig. 1, which mimics a phase delay
of 90◦ as in the single straight ML case (Fig. 1 (a)).
The DP-ZML makes full use of PCB area and a com-
mon ground plane, wherein the ZMLs (zigzag traces)
are positioned anti-symmetrically at the top- and bottom-
side of the dual-layer FR4 substrate and electrically con-
nected through three copper vias as shown in Figs. 1 (b)
and 1 (c). In this way, the required length (phase delay)
can be generated with an extremely small footprint on
the circuit board. Meanwhile, owing to the short lines of
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DP-ZML that owns a silent feature in reduction of cou-
pling between microstrip lines printed on the same plane
in comparison with parallel microstrip lines and or me-
ander lines.

Figure 2 shows and compares the simulated per-
formance of a four-section-plus-three-via (4S+3V) ZML
design and a twelve-section-with-eleven-via (12S+11V)
ZML design. The computed results are obtained by using
a High Frequency Structure Simulator (HFSS) [12] in the
frequency range of 0-2000 MHz. As seen, both the input
and output reflection coefficients (S11 and S22) are tuned
below -30dB within the frequency range, whereas the ne-
glectable insertion loss (S21) has been obtained, though
a number of vias and zigzag sections have been used.
These show that the internal impedance matching be-
tween the DP-ZML sections are well matched, whereas
the tight schematic of the ZML shown perfect features
low loss. More importantly, a quadrature phase delay
at 800 MHz was obtained in both cases, and the phase
delays varied linearly with frequency, viz., in the same
manner with the single microstrip line.

III. QPS DESIGN METHODOLOGY AND
LOGIC OPERATION

A stepwise design approach is employed to build the
4W-QPS as illustrated in Fig. 3, wherein four essential
steps are described as follows:

• Step (a): design of 50-Ω and 70.7-Ω lines with dif-
ferent line widths.

• Step (b): design of 90◦ and 180◦ phase-delay (50-Ω)
lines with optimized number of metallic vias.

• Step (c): modular design of 2-way Wilkinson power
splitter (2W-PS).

• Step (d): combination of PD lines with 2W-PSs by
directly appending the PD lines to the outputs of
PSs.
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be seen, the overlapped fractional bandwidth (FBW) was
achieved from 580 to 1050 MHz (57.7%), wherein its re-
turn losses (-S11 and -S22) and isolation (-S23) were ob-
tained higher than 15 dB, whereas the in-band insertion
losses (-S21 and -S31) were about 3.4 dB. Viz., an extra
loss of 0.4 dB was produced when 23 ZML sections and
22 vias were used.
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discussed design approach, a prototype of 4W-QPS was
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bands. Meanwhile, the isolation of the circuit configura-
tion is enhanced by three isolation resistors (IR) of 100-
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a very simple and compact scale to be accommodated in
integrated systems that cannot accommodate the area re-
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Table 1: Size and performance comparison of various four-way power splitters
Ref. fc (GHz) 4W-PSdesign εr Board size

(λ g×λ g)
Max EIL

(dB)
15-dB FBW

(%)
Ison. at
fc (dB)

[4] 7.5 OPS 2.95 0.77 × 1.36 1.2 failed 17
[5] 1.0 EPS 4.5 0.52 × 0.52 2.0 24.4 25
[6] 1 & 2 EPS 3.66 0.54 × 0.45 0.2 42 & 14 24
[7] 9.3 EPS 3.5 2.21 × 0.27 1.5 failed 12
[8] 2.1 EPS 3.5 0.22 × 0.17 0.23 26.1 27
[9] 1.0 EPS 4.5 0.63 × 0.35 3.2 ∼60 32

This
work

0.786 QPS 4.4 0.21 × 0.21 1.7 57.7 30
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Fig. 6. Simulated and measured performance of the pro-
posed 4W-QPS. (a) Output reflection coefficients (S22,
S33, S44 and S55), (b) input reflection coefficient (S11),
insertion losses (S21, S31), and isolation (|S32|), (c) in-
sertion losses (S41, S51) and isolations (S42, S52), (d)
output phase delays with respect to port-2.

magnitudes were recorded when exciting at the input
(Port 1) with four outputs Port 2 to Port 5 (Fig. 5). An
overlapped fractional bandwidth (FWB) is defined from
696.55 to 876.03 MHz, where the input and output re-
turn losses (viz., -S11, -S22, -S33, -S44, -S55) and iso-
lations between output ports (viz., -S32, -S42, -S52) are
all obtained better than 15 dB, as shown in Figs. 6 (a)
to 6 (c). Moreover, the insertion losses among input and
output less than 7.7 dB (maximum). Meanwhile, Fig.
6 (d) shows that the three output Ports (3, 4, and 5) of
the 4W-QPS accomplish the phase difference of 0, 90◦,
176◦, 268◦ at 800 MHz (corresponding ideal values are
0, 90◦, 180◦, 270◦) with respect to Port 2. These values
imply a maximum phase error of 4◦ and a quadrature
phase difference between adjacent outputs. Owing to the
novel miniaturizing technique of DP-ZML, the footprint
of the 4W-QPS circuit can realize a dramatic size reduc-

tion to 45 mm × 45 mm at a center frequency of 786
MHz from measurement.

Since 4-way quadrature power splitters/combiners
are in high demand in RF/microwave circularly-
polarized antenna arrays, but designs of 4W-QPS are
hardly available from the literature, Table 1 shows the
size and performance of 4-way power splitters with
different output phases. Most of them are equal-phase
power splitters (EPSs) and one is for a 180◦ out of
phase power splitter (OPS). In our design, the phase de-
lays were implemented outside the PSs using DP-ZMLs,
nonetheless, with the smallest electrical size (0.21λ g
× 0.21λ g) in the Table. Meanwhile, two of the listed
designs failed to commit the common 15-dB overlap-
ping fractional bandwidth (FBW) with low levels of port
isolation at center frequencies. Our design committed
57.7% FBW with an isolation of 30 dB. Moreover, the
maximum extra insertion loss (Max EIL) was achieved
at 1.7 dB within the measured FBW, which is an accept-
able level in the comparison.

V. CONCLUSION
An ultra-compact four-way quadrature power split-

ter using novel DP-ZML technique is presented in this
paper. Unlike broadband 4W-QPSs that typically have
no specific application for 5G low-band in the literature,
the design objective here is a small footprint for dedi-
cated applications at 5G low-band NR frequencies. As
considered, the devised power splitter strikes a balance
between remarkable transmission characteristics, phase
deviation and minimum losses. Thanks to novel com-
pression techniques, the overall circuit size is greatly re-
duced (45 mm × 45 mm) compared to conventional pla-
nar microstrip lines for an operating bandwidth of 697
to 876 MHz with a maximum quadrature phase error of
4◦, which is sufficient to cover 5G low-band NR n12,
n14 and n20. This experiment shows that this novel two-
layer Z-shaped microstrip line structure can also be ap-
plied to other passive components for miniaturization at
low cost.
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