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Abstract ─ In this paper, the radar target recognition  

is given by machine learning of K-NN (K-nearest 

neighbors) regression on angular diversity RCS (radar 

cross section). The bistatic RCS of a target at a fixed 

elevation angle and different azimuth angles are 

collected to constitute an angular diversity RCS vector. 

Such angular diversity RCS vectors are chosen as 

features to identify the target. Different RCS vectors  

are collected and processed by the K-NN regression.  

The machine learning belongs to the scope of artificial 

intelligence, which has attracted the attention of 

researchers all over the world. In this study, the K-NN 

rule is extended to achieve regression and is then applied 

to radar target recognition. With the use of K-NN 

regression, the radar target recognition is very simple, 

efficient, and accurate. Numerical simulation results 

show that our target recognition scheme is not only 

accurate, but also has good ability to tolerate random 

fluctuations. 

 

Index Terms ─ Machine learning, radar cross section, 

radar target recognition. 
 

I. INTRODUCTION 
Radar target recognition means to identify a target 

from features of electromagnetic signals. It plays a very 

important role in both military detection and non-

destructive testing. There have been many techniques of 

radar target recognition. The electromagnetic imaging 

[1-3], i.e., inverse scattering, is the most direct approach 

for identification. However, this is often practically 

difficult because the phase information of the scattered 

electric field is required [1-2] and is difficult in 

measurement. Theoretically, the electromagnetic 

imaging requires rigorous numerical procedures of 

solving integral equations which are complicated and 

time-consuming [3]. Note that the efficiency is very 

important for practical target recognition. In [4], the 

radar target recognition is successfully achieved by using 

pattern recognition techniques [5] on RCS (radar cross 

section) [6]. Practically, measurement of RCS is easier 

than that of electric field phase. Moreover, the pattern 

recognition computation is easier than that of inverse 

scattering. 

Recently, machine learning [7] has attracted interest 

of researchers in different fields all over the world. 

Machine learning belongs to the scope of artificial 

intelligence. It teaches a computer to predict the response 

of a system by learning from experiences. The goal is to 

build an intelligent system. A machine learning 

technique is basically a black box, which can achieve 

both pattern recognition and regression. The term “black 

box” means that the relation between the input and 

output of a system is very complex. This study plans to 

predict the type of a target from scattered RCS. The 

relation between the target’s information and its RCS is 

complicated and strongly nonlinear. Therefore, machine 

learning is a good candidate for radar target recognition, 

e.g., [8-10]. 

In this paper, the radar target recognition is given by 

machine learning of K-NN (K-nearest neighbors) [11-

14] regression [15] on angular diversity RCS. The K-NN 

algorithm is a fundamental machine learning algorithm. 

It is a non-parametric method used for both classification 

[11-14] and regression [15]. In both cases, the input 

consists of the K closest training examples in the feature 

space and the output is predicted accordingly. Similar to 

[4], the bistatic RCS of a target at a fixed elevation angle 

and different azimuth angles are collected to constitute 

an angular diversity RCS vector. Such angular diversity 

RCS vectors are chosen as features to identify the target. 

The target recognition procedures are divided into  

two stages, which are off-line (training) and on-line 

(predicting). In the off-line (training) stage, different 

RCS vectors from reference (known) targets are 

collected to constitute the RCS signal map. In the on-line 

(predicting) stage, an angular diversity RCS vector from 

an unknown target is detected. This on-line RCS vector 

is compared with the off-line RCS signal map by K-NN 

regression to identify the unknown target. With the use 

of K-NN regression, the radar target recognition is very 

simple and efficient. Numerical simulation results show 

that our target recognition scheme is not only accurate, 

but also has good ability to tolerate random fluctuations. 
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II. RCS COLLECTION 

As a target is illuminated by an electric field iE , a 

current J  will be induced and this current will then 

radiate a scattered electric field SE  as [16],  
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In (1),   is the angular frequency, 0  is the 

permeability, r  represents the location, and 'V  represents 

the target body. Note that the notation prime denotes the 

source region. The G  is the dyadic Green’s function as 

[16],  
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where ko is the wavenumber and I  is the identity matrix. 

By using numerical techniques, e.g., moment methods 

[17], and boundary conditions on (1), the induced current 

J  and then the scattered electric field SE  can be 

calculated accordingly. 

Without loss of generality, this study selects the 

ship-shaped scatterer as the target for simplicity. 

Consider a ship-shaped target on the sea level (X-Y 

plane) located at the origin of coordinate, as shown in 

Fig. 1. The front end of the ship is in the x̂  direction 

and the broadside of the ship is in the ŷ  directions.  

 

 
 

Fig. 1. Schematic diagram of a ship-shaped target 

illuminated by an incident plane wave. 

 

The spherical coordinate system is defined as 

),,( R  where R is the distance from observation 

position to origin,  is the elevation angle and  is the 

azimuth angle. The target is illuminated by a ẑ -polarized 

plane wave iE . The bistatic RCS in the direction of 

),(   is defined as [6], 
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where ),( SE  is given in equation (1). The bistatic 

RCS data of a ship at a fixed elevation angle  and 

different azimuth angles of  are collected to constitute 

an RCS vector. This is just the angular-diversity RCS 

because measurement is taken by sweeping the spatial 

angles. Such angular-diversity RCS vectors are chosen 

as features to identify the target. Different RCS vectors 

are collected and processed by the K-NN regression of 

the next section. 

 

III. K-NN REGRESSION 
The K-NN (K-nearest neighbors) rule is first 

proposed by Cover & Hart [11] for classification. The 

basic concept of K-NN rule is very simple [11-14]. 

Figure 2 illustrates the K-NN rule for two categories. In 

Fig. 2, there are many known objects, which are blue 

triangles (label #1) and red rectangles (label #2), from 

two categories. Note that the label is an integer to 

represent a category. The problem is to predict which 

category a new unknown object (green circle) belongs to. 

In classical K-NN rule [11-14], a new object is classified 

by a majority vote of its neighbors. In other words, a new 

object is assigned to the category which is the most 

common among its K nearest neighbors. In Fig. 2, the 

solid contour line represents K=3 because it surrounds 

three known objects, which are one blue triangle (label 

#1) and two red rectangles (label #2). Thus, we predict 

that the new unknown (green) object belongs to the 

category of red rectangles (label #2). Similarly, the dash 

contour line represents K=5 because it surrounds five 

known objects, which are three blue triangles (label #1) 

and two red rectangles (label #2). Thus, we predict that 

the new unknown (green) object belongs to the category 

of blue triangles (label #1). 

 

 
 

Fig. 2. Illustration of the K-nearest neighbors rule for 

two categories. 
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The above classical K-NN rule can be further 

extended to achieve regression [15]. In K-NN regression, 

the output is a continuous real number, but not an integer, 

to represent the property value of an object. This property 

value can be calculated from the weighted average on  

the property values of its K nearest neighbors. The 

procedures are divided into two stages, which are off-

line (training) and on-line (predicting). For convenience, 

each object in Fig. 2 is viewed as a vector. In the off-line 

(training) stage, there are N known vectors ir  (i = 1, 

2, …, N) from different M categories (labeled as #1, 

#2, … , #M). Each vector ir  (i = 1, 2, … , N) has a 

property value 
iq  {1, 2, … , M} to represent which 

category ir  belongs to. Note that ir  and 
iq  (i = 1, 2, …, 

N) are known off-line data. In the on-line (predicting) 

stage, there is a new vector r . The problem is to predict 

the property value for this new vector r . Among the N 

known objects, assume the K nearest neighbors (with 

respect to the new vector r ) have vectors k and 

corresponding property values k , where k = 1, 2, …, K. 

The property value for this new vector r  is predicted as: 
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where )(d  represents the Euclidean distance between 

two vectors. Equation (5) means that the weight (i.e., 

impact) of a neighbor is proportional to the reciprocal of 

distance. That is, near neighbors have larger impact, and 

vice versa. The parameter K is a user-defined parameter. 

The result of equation (4) is the K-NN regression. 

In this study, components of a vector represent the 

RCS data collected at different azimuth angles under  

the same elevation angle, i.e., an angular diversity RCS 

vector. Vectors of the same category mean the RCS 

vectors scattered from the same type of target. Off-line 

training vectors are the RCS data from reference 

(known) targets. The property value represents the type 

of a target. The new vector r  represents the on-line RCS 

data scattered from an unknown target. Note that the 

predicted property value q in equation (4) is a real 

number, but not an integer. Taking the integer that is the 

closest to q, the resulting integer is just the predicted 

label (i.e., type) of the unknown target. 
 

IV. NUMERICAL RESULTS 
In this section, numerical examples are given to 

illustrate the above formulations. To easily obtain the 

scattering RCS data, all targets are assumed to be ship-

shaped models. There are three types of reference 

(known) targets (M=3) including type #1 (to simulate a 

ship of container vessel), type #2 (to simulate a naval 

ship) and type #3 (to simulate a fishing boat). The 

geometrical models for the three types of reference 

(known) targets are shown in Fig. 3. The ship length a is 

chosen as koa = 9.4 for the reference target of type #1, 

koa = 6.3 for the reference target of type #2, and koa = 

3.1 for the reference target of type #3. All targets are laid 

on a rough seawater surface (X-Y plane). The seawater 

has dielectric constant r = 81 and conductivity = 4 S/m. 

The characteristic for surface roughness of the seawater 

is assumed to be: 
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Fig. 3. Geometrical models for the three types of 

reference (known) targets: (a) type #1, (b) type #2, and 

(c) type #3. 

 

The arrangement of RCS collection is illustrated in 

Fig. 1. Initially, the bistatic RCS data from the reference 

target of type #1 at the elevation angle 61o and 

azimuth angles  = 0o, 1o, …, 180o, are collected to 

constitute a 181-dimensional RCS vector, i.e., an angular 

diversity RCS vector. Next, the elevation angle is 
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changed to be 63o, 65o, …, and 89o, respectively. 

Thus, we have 15 training vectors for the reference target 

of type #1. Similarly, the reference targets of type #2 and 

type #3 both have 15 training vectors. Therefore, we 

have 45 (N = 15×3) training vectors in total. 

The RCS is simulated by the commercial software 

Ansys HFSS. Initially, the operation of Ansys HFSS 

software is verified. The bistatic RCS from a perfectly 

conducting sphere centered at the coordinate origin is 

computed by the Ansys HFSS software. The dimension 

of the perfectly conducting sphere is chosen to be  

kob =1.1 and kob =7.7 (b is the sphere radius) so that  

the results of RCS by Ansys HFSS software can be 

compared with those of reference [6] under the same 

parameters. Our simulation results show they are 

consistent. Thus, we conclude that our operation of 

Ansys HFSS software is correct. Next, the Ansys HFSS 

software is utilized to compute the RCS data in this 

study. Figure 4 shows the distribution of trained RCS 

data for the three known ships. The two horizontal axes 

represent the azimuth () and elevation () angles, 

respectively. The vertical axis represents the RCS.  

It shows that one cannot categorize these RCS data  

by visual inspection directly. Therefore, our K-NN 

identification is meaningful. 
 

 
 

Fig. 4. Distribution of trained RCS data for the three 

known ships. 

 

There are three examples to verify the above target 

recognition scheme. In the first example, the testing 

(unknown) target is the reference target of type #1. The 

RCS data are collected at the elevation angle 62o and 

azimuth angles  = 0o, 1o, …, 180o. Note that this 

elevation angle is different from any elevation angle of 

training RCS data. The goal is to predict the type of the 

testing (unknown) target by comparing on-line RCS data 

at 62o to training (i.e., off-line) RCS data. Following 

the K-NN regression rule in Section III, the predicted 

property value in equation (4) is q=1.048. Taking the 

integer that is the closest to q, the result is 1. Thus, we 

predict that the on-line RCS data at 62o are scattered 

from reference target of type #1. That is, we predict that 

the testing (unknown) target is just the reference target 

of type #1. This is consistent with the fact. Therefore, 

this is a correct prediction. Next, the elevation angle 

is changed to be 64o, 66o, …, and 90o, respectively. 

Note that none of these elevation angles are included in 

elevation angles of training RCS data. Figure 5 shows 

the predicted property value, i.e., q of equation (4), for 

the 15 testing elevation angles at  = 62o, 64o, …, and 

90o, respectively. Taking the integer that is the closest to 

q, the result is 1 for each test. Thus, we predict that the 

on-line RCS data at these 15 testing elevation angles are 

all scattered from the reference target of type #1. All 

predictions are correct and consistent with the fact. The 

successful recognition rate is 100% (=15/15). 

In the second example, the testing (unknown) target 

is the reference target of type #2. The other conditions 

and procedures are the same as those of the first example. 

Figure 6 shows the predicted property value, i.e., q of 

equation (4), for the 15 testing elevation angles at  = 

62o, 64o, …, and 90o, respectively. Taking the integer 

that is the closest to q, the result is 2 for each test. Thus 

we predict that the on-line RCS data at these 15 testing 

elevation angles are all scattered from the reference 

target of type #2. All predictions are correct and consistent 

with the fact. The successful recognition rate is 100% 

(=15/15). 

In the third example, the testing (unknown) target is 

the reference target of type #3. The other conditions and 

procedures are the same as those of the first and second 

examples. The results are shown in Fig. 7. Taking the 

integer that is the closest to q, the result is 3 for each test. 

Thus, we predict that all on-line RCS data are scattered 

from the reference target of type #3. All predictions are 

correct and consistent with the fact. The successful 

recognition rate is 100% (=15/15). 

The overall successful recognition rate is 100% 

(=45/45). All the above RCS data are from numerical 

simulation but not experiments. So, the RCS data are 

deterministic without random fluctuations. In practical 

applications, the experimental data contains random 

fluctuations such as interferences and noises. To 

investigate such effects, we add an independent random 

component to each RCS. This random component is with 
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Gaussian distribution and zero mean. The normalized 

standard derivation (with respect to the root mean square 

value of the RCS) is chosen as 0.01, 0.1, 0.2, 0.4, 1.0, 

1.2, 1.4, 1.6, 1.8, and 2.0, respectively. Figure 8 shows 

the successful recognition rate with respect to different 

levels of added random components. For comparison, 

the results of reference [4], which utilizes PCA (principal 

components analysis) techniques [5], are also given. It 

reports that the successful recognition rate of this  

study is obviously better than that of reference [4] (using 

PCA). This study can still maintain the successful 

recognition rate of 75.56% even though the normalized 

standard derivation of the added random component is 

increased to 2. This result shows that the proposed target 

recognition scheme has good ability to tolerate random 

fluctuations. 

In the above simulation, our ocean surface model of 

equation (6) is somewhat too simple. Many complex 

scattering mechanisms of the actual ocean, e.g., the 

Bragg scattering, are not included in our ocean surface 

model. However, this will not degrade the effectiveness 

of our K-NN target recognition. From Fig. 8, it reports 

that our recognition can still maintain the successful 

recognition rate of 75.56% even though the normalized 

standard derivation of the added random component is 

increased to 2. The complex scattering mechanism of  

the actual ocean may be viewed as one of the sources for 

the added random component in Fig. 8. This implies that 

our recognition is still available although there exists 

complex scattering mechanisms of the actual ocean. 

The above RCS is computed by the Ansys HFSS 

software on a personal computer. The other processing 

is coded using Python-3.6 programming language in 

Anaconda software. The hardware is a personal computer 

with Intel(R) Core(TM) i7-4790 3.6 GHz CPU and 16 

GB RAM. 
 

V. CONCLUSION 
This study successfully utilizes machine learning of 

K-NN regression to implement radar target recognition. 

With the use of K-NN regression, the recognition 

procedure is simple and accurate with good 

discrimination. Numerical simulation results show that 

the recognition scheme has good ability to tolerate 

random fluctuations. Unlike mathematical regression, 

the K-NN regression is inherently a black box. It can 

model a very complicated system and can be applied  

to many complicated and nonlinear problems of 

electromagnetic waves. It should be noted that our 

recognition has no limitation on the number of 

categories. As the number of categories increases, the 

flowchart of our target recognition is still unchanged. 

Like most schemes of radar target recognition, the 

successful rate of identification will be challenged as the 

RCS difference becomes smaller. Under such situations, 

the RCS data should be processed in advance for 

reducing the fluctuating components. For example, the 

SVD (singular value decomposition) technique [18-19] 

can decompose a noisy signal into clean and noisy 

components by mapping signals to matrix subspace. 

Using only the clean RCS to implement our K-NN target 

recognition may improve the discrimination. This will be 

the future work of this study. 
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Fig. 5. Predicted property value for different elevation 

angles of testing as the target is the reference target of 

type #1. 
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Fig. 6. Predicted property value for different elevation 

angles of testing as the target is the reference target of 

type #2. 
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Fig. 7. Predicted property value for different elevation 

angles of testing as the target is the reference target of 

type #3. 
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Fig. 8. Successful recognition rate with respect to 

different levels of added random components. 
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