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Abstract ─ In this paper, we propose a new method 
to identify and to locate buried metallic object in 
ElectroMagnetic Induction (EMI) data based on the 
Kernel Change Detection (KCD) algorithm. The 
signature of the object in the EMI data is typically 
of low amplitude. Particularly, in the case where 
two objects are located at different depths, the 
amplitude of the deeper buried object is negligible 
compared to that of the object buried in the first 
centimeter of the soil. This would result in the fact 
that, the EMI system can neglect the signature of 
this object and consequently increases miss rate or 
False Negative Rate (FNR). The aim of the 
proposed method is to calculate a decision index for 
each EMI measurement in a so-called hypotheses 
space using KCD algorithm. The amplitude of these 
decision indexes in the case of objects at different 
depths are in the same range, which make their 
variance smaller. Indeed, this index will be 
compared to a threshold for judging the presence or 
absence of a rupture. The validation of the proposed 
method is performed by processing real EMI data 
derived from a series of measurements on real 
objects. 

Index Terms ─ Decision index, electromagnetic 
induction, kernel change detection algorithm, mine 
detection, support vector training. 

I. INTRODUCTION 
Many countries around the world are affected 

by mines and UneXploded Ordnance (UXO). These 
remains threaten of the human being because their 
impacts still exist and can occur at any time. To 
fight against these threats, the researchers have 
developed several detection systems such as 
ElectroMagnetic Induction (EMI) system [1], [2] 
and the Ground-Penetrating Radar (GPR) [3].

The EMI system is the first prospecting system 
that was developed for the exploration of near 
basement. It is used in the geophysical survey to 
locate the metallic structures and objects inside the 
upper layer of the soil. It has been used in the field 
of demining during the First World War. Since 
then, the researchers developed it by increasing its 
sensitivity to find smaller amounts of metal. The 
first EMI system contains only a single coil [4]. 
Subsequently, researchers have added other coils in 
order to distinguish between a dummy object and a 
mine. The most recent EMI operates with low range 
frequencies (typically 1 kHz to 1 MHz) and its 
operating principle is quite simple. The interaction 
between the magnetic field and the metallic 
structures gives rise to eddy currents that generate 
a secondary field which will oppose the primary 
field. The use of EMI systems has become more 
interesting with the development of data processing 
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techniques based on inverse methods [1], [4]. 
In this context, we can mention the paper [5] in 

which a Normalized Surface Magnetic Source 
(NSMS) model is applied to UXO discrimination. 
A fast and accurate numerical forward model that 
represents an objects response using a set of 
equivalent magnetic dipoles distributed on a 
surrounding closed surface. In [6], the authors 
present a methodology to guarantee the 
convergence of the electromagnetic inverse 
method. It consists of using Genetic Algorithms 
(GA) to identify a model that will be used to 
estimate the electric and magnetic field radiated by 
the device under test. In [7], the authors propose a 
novel scheme for detecting the location of a 
metallic mine. This technique takes into account 
Eddy-Current Response (ECR) induced on the 
conducting marine mines as well as Current-
Channeling Response (CCR) associated with the 
perturbation of currents induced in the conductive 
marine environment. 

In [1], an Improved Particle Swarm 
Optimization (IPSO) and Finite Element Method 
(FEM) are used to inverse the EMI data. This 
method leads to interesting results in terms of 
identification and localization of buried object. 
However, and despite of its effectiveness, the 
application of the FEM method makes the 
exploration in the real-time almost impossible, 
resulting in the necessity to resort to high 
performance computing devices. In order to have a 
pre-decision in real-time about the existence of a 
suspicious object, we must use a faster inversion 
method. 

In this paper, we propose a fast processing 
method for the EMI data based on the Kernel 
Change Detection (KCD) algorithm [8], [9]. It 
consists of detecting the ruptures due to Abrupt 
Change (AC) in the EMI observations (EMI 
measurements). The AC detection is not directly 
detected in the observations space, but rather in a 
hypotheses space using a Kernel and Support 
Vector (SV) training in order to obtain a data 
representation in this space [10], [8], [9]. 
Consequently, a decision index is calculated for 
each position of the EMI system [11]. After that, we 
build an image from the resulting decision index 
where the shape of objects is apparent. 

However, even if the resulting image is not well 
filtered because of the roughness of the soil, the 
decision index of the object shall prevail and an 

adequate threshold will give us a clear shape of the 
object. Finally, the inference on the presence or the 
absence of the object will thus be performed with a 
reduced rate of false alarms. 

The rest of this paper is organized as follows. 
In Section II, the EMI system will be presented and 
its basic operation will be explained. Then, in 
Section III, the KCD algorithm will be presented in 
detail, the rupture detection method using the SV 
estimators will be also presented in this section. 
Finally, in Section IV, we will adapt the KCD 
method to the EMI data and will detail the followed 
steps. The adjusting of the KCD parameters to the 
EMI data is also presented in this section. The 
effectiveness of the proposed method is tested on a 
real EMI data. 
 
II. ELECTROMAGNETIC INDUCTION 

SYSTEM 
The basic EMI system consists of a transmitter 

coil and two receiver coils, Fig. 1. Its operation is 
based on electromagnetic induction, where the 
transmitter coil, traversed by a variable current, 
generates an electromotive force across the two 
receiver coils disposed above and below it at the 
same distance [1]. In vacuum, the difference of the 
induced voltage (ΔV) between the two receiving 
coils is zero. During prospection and when the 
system passes over a metallic object, the transmitter 
coil generates an eddy current in the surface of this 
object. Therefore, these currents will generate an 
electromotive force which is only across the lower 
receiver coil and the balance between the two 
induced voltages in the receiver coils is disturbed. 
Thus, the ΔV quantity depends only on the field 
generated by the eddy current on the buried object. 
In this case, the ΔV gives the signature of the object 
since the generated field depends on its physical 
and geometrical characteristics [1], [4]. 
 

 
 
Fig. 1. Basic diagram of EMI system. 
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III. KERNEL CHANGE DETECTION 
ALGORITHM 

A. General framework 
AC detection in signals is a much studied 

problem in the signal processing literature [10] 
[12]. In the case of systems where the data, defined 
in the observation space  follow a known 
physical or statistical model according to some 
Probability Density Function (PDF), this task has 
become a simple and easy to implement. However, 
when the PDF is unknown, one has to use 
unsupervised statistical methods based on machine 
learning [10], [13]. 

In that respect, the KCD algorithm, proposed in 
[8], [9], finds a minimal decision region xR ��

where most of the data � �; 1, ,ix  i m� H  have the 

same unknown PDF. The region xR  is defined by 
a representation based on a real valued decision 
function � � ,f I according to: 

� � 0, xf x x RJ � and � � , ,0 xf x x R& K  (1) 
with a decision function � �f I  deduced by training 
a single class SVM classifier [10], [12]. 

B. SVM training for AC detection 
Let � �1 2; , , mf x x x� H �x  a training vector. 

The aim of single-class classification is the 
estimation of a region X

xR X�  in which the 
decision functions � � 0.f I J  In this case, we 
defined another space ,, where the estimate of an 
image of the xR  is possible. Let $  a mapping 
function defined over the input space and taking 
values in hypotheses space as follows: 

: 
, , .i j i jx x
$

$ $
� D

& �D& �
� D  (2) 

Here,  is endowed with a dot product 
� � ,   ,  ,k& I I �� I I  where � � ,  k I I  is a normalized 

kernel and it fulfills the Mercer conditions where 
� � � �� ,  , , 0i j i jx x k x xL � �� ��i j�, , ,�, , , �� ��k �� ��, , , �  and � � �, 1 .i ik x x �  In 

this case, all the images of the inputs � �ix � � in
lie-on the perimeter of a circle with a unit radius 

and center O (O is also the center of ), as shown 
in Fig. 2 (a). Therefore, the single-class SVM for 
the AC detection estimation consists in separating 

the training vectors from the hypersphere center O
with a hyperplane  such that � ,  0w x b& � � �

with w� �*and  .b �� �* .�

However, the term ,  iw x& �  can be computed 
using only the dot product function

� �  ,  ,  i j i jk x x x x�& �  [11]. This kernel represents a 
dot product in some feature space if it fulfills the 
Mercer conditions [8]. These conditions are 
satisfied for a wide range of kernels, including 
Gaussian radial basis functions defined as [9]: 

� �
2

2,  ,
2

i j
i j

x x
k x x exp

σ

/ ,�- *� �
- *
. +

,*
*
**  (3) 

where σ  is a parameter that controls the dispersion 
of the images i$ of the observations .ix

The decision function � �f I  in equation 1 will 
therefore be defined as: 

� �  ,  .i if x w x b�& � � .b  (4) 
Consequently, this decision function, defined in the 
hypotheses space , will allow to deduce the 
region xR  in the input . Thus, SVM approach 
for the AC detection returns to the maximization of 
the distance between the center O of the 
hypersphere and the hyperplane  by solving the 
following optimization problem: 

2

1

1 1 ,
2

m

i
i

min w ξ b
νm �

/ ,
� �- *

. +
"�

νmνm
 (5) 

where *,w b �� �,b, �b, *
� and ,m

iξ � ,m subject to: 
,  i iw x b ξ& � � JJb and 0,iξ J  (6) 

where 1
νm

 is a positive parameter that tunes the 

possible amount of outliers and iξ  are the so-called 
slack variables, added here to take-outliers [9]. 

In Fig. 2 (a), there are some observations which 
are not in above of the hyperplane . To take into 
account these observations, a smooth margin iξ  is 
added in equation (5) for each observation ix .

The minimization problem defined in equation 
(5) is quadratic with linear constraints. Adding the 
Lagrange multipliers , 1, , , iα i m� H brings back to 
the following dual minimization problem: 

1min ,
2α

tα  K α (7) 
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subject to: 

 10   iα
νm

' '  and � �
1

1,  1, , ,
m

i
i

α i m
�

� L � H"  (8) 

which can be solved by numerical methods of 
quadratic programming [14], [15], where K  is a 
matrix (whose elements are built starting from two 
successive subsets taken on the training vector 

)� )x  and the kernel define in equation (3). 
 
C. Abrupt change detection method 

Let � �1 2, , , , , t mx x x xH H  a set of observations 
defined in the space . The goal of the method is 
to detect whether or not there is an AC at the 
observation tx . In that respect, two subsets 
corresponding to the immediate past 

� �11 1, , t m tx x� �� Hx  and the immediate future 

� �22 , , t mx x� Hx  of this observation are considered 
(Fig. 2 (b)). Two SV estimators based on a 
Gaussian kernel are separately trained from these 
subsets. The resulting parameters 1 1,  w b  and 2 2,  w b  
will define the two separating hyperplanes 11  and 

22 . 
Figure 2 (c) gives a geometrical representation 

of the KCD method whose main principle is to 
assess the possible occurrence of a rupture between 

the two subsets by comparing the arc � � � �� �,1 ,2, t tc c  

to the sum of the two arcs � � � �� �,1 ,1, t tc p  and 

� � � �� �,2 ,2, .t tc p  Indeed, it computes a dissimilarity 

measure according to [12]: 

 � � � � � �� �
� � � �� � � � � �� �

,1 ,2

1 2

,1 ,1 ,2 ,2

, 
, ,

, , 

t t

t t t t

c c
D x x

c p c p
�

�
 (9) 

where: 

 � � � �� � 1 12 2
,1 ,2

1 11 1 2 22 2

, ,t tc c arccos
/ ,
- *�
- *
. +

t
 

t t
  

α  K α
α  K α  α  K α

 (10) 

 � � � �� �, , 1,2
 , ,i

t j t j j

bc c arccos
�

/ ,
- *�
- *
. +

t
j jj jα  K α  

 (11) 

where  (resp. 2 )α  is the column vector (Lagrange 
multipliers) corresponding to 1w  (resp. 2 )w  that 
have been computed during training. The kernel 
matrix � � � � � �, , ,  1,2 1,2u v � �t uvK  has entries at row 

#j and column # l  given � �, ,, j l
t u t vk x x , where ,

j
t ux  is 

the observation #j in the subset ux  [8]. 
Finally, a decision index � � � �1 2  ; I t D x x�  is 

compared to some predefined threshold η  in order 
to decide whether a rupture occurred at position .t  
 
 
 

           
 (a) (b) (c) 
 
Fig. 2. (a) The SVM for the AC detection interpretation, (b) the scenario of the observations, and (c) 
geometrical representation of KCD method. 
 

IV. APPLICATION OF THE KCD 
METHOD TO REAL EMI DATA 

A. The aim of the proposed method 
Figure 3 (a) shows the form of the induced 

voltage Δ  V according to the EMI displacements 
for two real cases, where two cylindrical objects are 
buried at depth of 2 cm and 4,5 cm. As they are, the 

EMI system data does not provide much 
information about the object which is at the origin  
of this induced voltage. Particularly, in the case of  
the most buried object, the signature is almost 
invisible in the observation space. For this reason,  
we introduce KCD algorithm to make this 
information more meaningful. A decision index of 
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these previous EMI data is presented in Fig. 3 (b).
In this case, one can see that the decision index of 

the most buried object is in the same magnitude of 
the second object. 

                    
(a) (b) 

Fig. 3. (a) Real EMI data (induced voltage VA ) for two cylindrical objects buried at depth of 2 cm and 4,5 
cm, and (b) decision index relative to these EMI data. 

B. Overview of experimental tests performed 
In this section, real cases of landmines 

detection are performed (a metal landmine and a 
plastic one), Fig. 4 (a). This testing was 
performed by the University of Florence-Italy in 
2004, using multi-sensor system, in a bed with 3
m by 3 m in plan, with a sloping base at 60 cm to
80 cm to provide drainage, and minimize basal 
reflections. A multisensory system is used in the 
prospection. It includes the EMI system, GPR 
system and holographic radar system [16]. Four 
landmine simulants were buried at shallow depth 
in the test bed. These included: 
� A PMA-2 simulant mine which reproduces 

the real PMA-2 anti-personnel plastic 
landmine with diameter of 6,9 cm. This 
landmine is buried at depth of 5 cm, Fig. 5 
(a); 

� Two cylindrical, metallic pipe tobacco tins 
with diameter of 10,5 cm. Those objects are 

buried at depths of 2 cm and 4,5 cm, Fig. 5 
(b); 

� A cylindrical plastic case with diameter of 
10,5 cm. This object is buried at depth of 5,5 
cm, Fig. 5 (c). 
The objects were placed in the bed so as to 

form a square. The distance between the objects 
was 40 cm. 

The exploration was made horizontally along 
parallel lines to sweep all the bed, Fig. 4 (b). 

The EMI system provides a matrix of 
measurement points, which the number of rows is 
the number of the horizontal prospection lines 
and the number of columns is the number of the
sampled measurement by line, Fig. 4 (b). In this 
case, all resulting responses of the EMI system 
give an image whose pixels are the points of 
measurements, and contrast of the pixel is the 
value of the induced voltage at these points. 

   
(a) (b) 

Fig. 4. Schematic of buried landmine simulants: (a) objects position, and (b) prospection scenario; after a 
series of measurements with fixed step on the ith horizontal line parallel to the X-axis, we shift for a fixed 
step following the Y-axis and we take again the same measurements on the (i + 1)th horizontal line. 
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C. Object detection using KCD algorithm 
1) Parameters setting for EMI Data: the KCD 

method implementation requires several 
preliminary parameters settings: 
� The choice of the training subset larger 

1,m 2 :m  observations in a Bscan are made 
at a regular horizontally GPR displacement 
step. To ensure the rupture detection 
between two consecutive observations, the 
number of observations in the training 
subset multiplied by the GPR displacement 
step must be less than the half of the 
dimension of the object. Else, the KCD 
algorithm cannot detect a rupture since all 
the observations are in the same region of 
the observation space. Generally, we take 

1 2m m m� �  where: 
 _  0,5 _m horizontal step object dimensions� ' �  (12) 

� Kernel Choice: The kernel defines 
implicitly the function :i$ DD . 
However, the elements presented below 
remain true for any Mercer kernel, such 
that satisfy the Mercer conditions defined 
in Section III-B [8], [9]. In the case of a 
Gaussian kernel, the σ  sets the position of 
the sampled observations ix  in space . 
If � � , , ,i j i jσ x x x x� �i jxi  x j ,  the dispersion 

of the observations images in  is 
important. Otherwise, all these images are 
close. Neither of these two cases is 
advantageous in the case of the rupture 
detection. A choice of σ  approximately in 
the order of  i jx x�  makes sense in this 
case [9], [11]. 

� The choice of v: the parameter v determines 
the rate of inclusion of the abnormal 
observations. 0ν �  corresponds to a hard 
margin algorithm. 1ν �  corresponds to a 
margin released algorithm. In most cases, 
this parameter is taken between 
0,2 0,8.ν' '  

Generally, v and σ  are selected in a heuristic 
way [11]. In our case, we used method IPSO 
described in [1] by taking some observations like 
entries for the optimization processes of these 
two parameters. 
2) KCD algorithm for EMI Data: it is proposed 

to apply the KCD algorithm to detect the 
ruptures caused by the presence of the object 
using the EMI system in the previous 
measurements. To do this, the following 
steps are followed: 
� Step 0: Initialization: 

– Generally the radius of the mines exceeds 
3 cm. Since the horizontal step of 
displacement is 1 cm, we choose the size 
of the subsets 1 2  3.m m� �  

– The optimization process provided us the 
optimal 0,5ν �  and  0,001.σ �  

– Set 1.t m� �  
� Step 1: The Row Training: 

For each row of the resulting image, we do: 
– Initialized the subsets of training as 

� �1 1, , t m tx x� �� Hx  and the immediate 
future � �2 1, , t t mx x � �� Hx . 

– Trained independently the two subsets 
1,x 2x  and we obtain the parameters

� �,1 1, ,tw b  � �,2 2 , tw b  or equivalently 

� �,1 1, ,tα b  � �,2 2 , .tα b  
– Calculate the decision index 

� � � �,1 ,2 , r t tI t D� x x  using (9-11). 
� Step 2: The Increment: 

– If the maximum number of the points per 
row is reached, move to the next row. 

– Else increment  1 t tD �  and return to 
step 1. 

� Step 3: The Columns Training: 
Once the scan of all rows is finished, we 
will have a decision index for each point of 
the image � �.rI t  Thereafter, we repeated 
the algorithm from step 1, but this time we 
consider the columns for the construction 
of the subsets. The test of step 2 is 
compared to the number of points per 
column for the passage to the next column. 
A decision index cI  is also calculated for 
each point and the global decision index for 
each point will be the sum of the two 
decision indexes. 

 .t r cI I I� �  (13) 
� Step 4: On Line Rupture Detection: 

Once the total decision index is computed, 
the resulting image is tainted with some 
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residues, due to the roughness of the soil. 
However, the decision index magnitude of 
these residues is low compared to that of 
the objects, and to eliminate them, a 
thresholding is applied to the image to 
make it clearer, and the rupture detection is 
tested using: 
– If � �tI t ηJ there is a rupture in instant t. 
– If � �tI t η&  there is no rupture in instant 

t. 

D. The choice of rupture threshold : 
Figure 3 (a) shows the response of the EMI 

system for the horizontal line which passes over 
the two Tobacco tin objects. Note that, for the 
most buried object, the response is almost zero. 
In this case, the detection is difficult by working 
directly on the data in the observation space. 
Figure 3 (b) shows the decision index response of 
the EMI using the KCD algorithm applied to the 
EMI response of the Fig. 3 (a). Note that in this 
case, the response of the more buried object is 
more visible and which is exactly the interest of 
the proposed method. A threshold of 0,23η �  is 
acceptable in this case. Thus, for the values lower 
than the threshold, the background noise of the 
image will be considered as null. In this case, the 
image will be clear and the problem of noise will 
be solved. 

E. Results and discussion 
Figure 6 (a) shows the EMI response on the 

studied bed. It is revealed that, for the most buried 
object, the response is almost not visible. Indeed, 
the detection of this object is not evident in the 
observation space. 

The introduction of KCD algorithm for the 
rupture detection based on SV-estimators 
becomes a necessity. Therefore, whatever the 
depth of the object, the algorithm KCD must 
detect the ruptures in the EMI response. Figure 6 
(b) shows the decision index of the EMI response 
system without thresholding. Although, we can 
distinguish objects but the resulting image is 
tainted yet. 

After a good thresholding, we have Fig. 6 (c), 
where all metal objects are clearly visible. We 
note that, the two tobacco tins are located with 
their precise positions and the distance between 
the two metal objects is 40 cm. Then, if the object 
is largely buried, the method provides 
information on the dimensions of the object even 
if the signature of the object is low. In this case, 
the diameter of the two objects is 10 cm. 

The total time for processing data (3600 
samples of the induced voltage corresponding to 
a surface scan of 60 cm  60 cm�  with a step of 
1 cm, Fig. 4 (b)) is 148,24s.  For the KCD 
treatment of one sampled induced voltage we 
need 41,17 ,ms  which makes the real-time 
detection possible. 

Unfortunately, since the EMI system only 
detects the metallic objects, the other two plastic 
objects are not visible because of the absence of 
their signatures. 

(a) (b) (c) 

Fig. 6. (a) EMI response, (b) the total decision index without thresholding, and (c) the total decision index 
with thresholding. 
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V. CONCLUSION 
The proposed method is based on the KCD 

algorithm and SV-training. A decision index is 
calculated from measurements provided in the 
case of an EMI inspection in a hypotheses space 
according to both horizontal and vertical axes. 
We have noticed that, for different depths of 
buried objects, the decision index magnitude is 
almost the same. Then, we set a threshold to 
remove more residues that are due to the 
roughness of the ground. An image of the soil 
basement is generated highlighting different 
objects located therein. The method was tested on 
real EMI data made available by the University 
of Florence, Italy. This test has given good results 
for the detection and identification of buried 
metallic objects. 
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