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Abstract— Modeling of a large cavity 
containing multiple layers inside the structure 
has been studied using equivalent impedance 
approximations along with simplified single ray 
tracing analysis. This modeling effort 
investigates the effects of radiating with a source 
enclosed in a large vacant composite structure 
relative to a short wavelength. The development 
of the model involves the completion of a two 
step process.  First, the heritage geometric 
reduction and approximation is investigated. 
This particular investigation involves an 
approach that is an application of Poynting’s 
Theorem.  This work was performed by Hallett 
and Reddell at Goddard Space Flight Center in 
1998.  For this comparison, the Multi-Level Fast 
Multipole Method (MLFMM) available in the 
commercial tool FEKO, is used to model a 
generic multi-layer payload fairing (hollow cone 
connected to a hollow cylinder) with a radiating 
source to determine the resonant cavity effects 
within the fairing as another approximation 
baseline.  The intent is to provide predictions for 
the electric field levels if a transmitter in the 
fairing either deliberately or unintentionally is 
activated.  The results show a comparison with 
the heritage calculation and FEKO software tool.   
However, FEKO shows the electric field 
distributions within the composite fairing cavity 
instead of a single average value. 
 
Index Terms—  Inhibits, Resonant Cavity, 
FEKO, EM Compatibility 
 
 

I. INTRODUCTION 
Monitoring the status of spacecraft through 

direct transmission while it resides within the 
payload fairing, or loaded cavity, of a launch vehicle 
is prohibited through the use of inhibits, but 
sometimes radiating within the cavity is a mission 
requirement.  In general, radiating within the cavity 
has been a desire of many space missions either for 
spacecraft function monitoring or to prevent the 
reliability issues that inhibits cause.  For this desire 
to become a realization, the spacecraft must power 
on its transmitter while encapsulated within the 
payload fairing.  If power were applied, the electric 
field levels would expose both the spacecraft and 
launch vehicle to levels well beyond the avionics 
qualification levels that are typically tailored from 
MIL-STD-461 [1] and MIL-STD-1541 [2].   In the 
past, the fairings were made entirely of aluminum 
and provided protection for the spacecraft much like 
a Faraday cage [3].  Unfortunately, along with 
protecting the spacecraft from unwanted sources 
external to the fairing, energy from internal 
transmitters is trapped inside the fairing.  With the 
advent of composite structures and more precisely 
with the build up of composite fairings, the space 
industry performed several tests and rough 
calculations as documented by Hallett and Redell [4] 
to determine the effects of radiating within the new 
composite fairing structure.  In this work, it is 
desired to determine the radiation distribution inside 
the composite fairing structure.  A multi-layer 
payload fairing is modeled using two techniques:  an 
application of Poynting’s Theorem that will be 
referred to as the heritage method and a commercial 
tool, FEKO.  FEKO is a Computational 
ElectroMagnetic software tool, EM Software 
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Systems -S.A. FEKO.  FEKO allows the use 
of Physical Optics (PO), Method of 
Moments (MoM), Mult-Level Fast 
Multipole Method (MLFMM) and Hybrid 
MoM/PO techniques.  Due to the nature of 
the composite and FEKO functionality, 
MLFMM is used.  The results of the two 
techniques are presented and compared.  The 
heritage method was first performed at Goddard 
Space Flight Center in 1998.  This effort is an 
extension of that heritage work.  Only the 
geometric representation of the fairing is now 
characterized as a hollow cone connected to a 
hollow cylinder.  In addition, the impedance was 
altered from the heritage calculations.  The 
rationale for changing the geometry and 
impedance is due to the proprietary nature of the 
original fairing designs and materials used.  It 
has been the desire of the space industry that a 
comprehensive model be developed to provide a 
better understanding of radiating within the 
acoustic blanket lined composite fairing, or 
cavity. 
 

II.  PROBLEM DESCRIPTION 
The interior walls of the composite fairings 

were lined with Dupont's Kapton 377® 
“blankets”.  The blankets consist of a layer of 
Kapton film overlaid onto melamine foam with 
another layer of Kapton film as seen in Fig. 1.  
The original intent was to provide protection as 
acoustic blankets or shields.  In the process, it 
also reduced the interior volume of the fairing.  
Some experimental studies were performed to 
determine the effect of having both the acoustic 
blankets lining and a new composite fairing 
structure [4].  The actual levels predicted and 
measured are a matter of some debate even 
today.  Some of the concerns include testing 
with antennas that are not utilized during a 
mission as well as the simplistic analytical 
methods used to predict the electric fields within 
the cavity.  In order to minimize mission risk, 
the respective spacecraft are not permitted to 
radiate within the fairing cavity unless adequate 
mission specific analysis is performed to show 
electromagnetic compatibility without 
transmission inhibits.   
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Fig. 1.  Multi-layer composite cavity (fairing 
wall). 

 
The plan for developing and comparing the 

respective models is broken into two components: 
 
Heritage Geometric Reduction and 
Approximation 

Using a direct application of Poynting’s 
Theorem, the electric field levels using the first 
analytical technique from Hallett and Redell [4] are 
calculated.  An equivalent impedance is used as 
illustrated for the 5 - 6 GHz range in Fig 2.  
However, the geometry is a hollow cylinder 
connected to a hollow cone as shown in Fig. 4 
below.  The other parameters found in the open 
literature will remain the same.   

 
Frequency vs. Equivalent Impedance
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Fig. 2.  Equivalent impedance of multi-layer 
composite cavity (fairing wall). 
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The values calculated with this method are 
worst case average approximations of the 
electric field within the cavity where only one 
level is obtained at each frequency.  This level is 
used as a baseline value for comparison.  This 
approximation is used as a quick worst case 
prediction as seen in Fig. 2 below. 
 

 Heritage Electric Field Calculation
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Fig. 2. Heritage electric field calculation. 

 
 

 
 
Fig. 3.  Cavity geometry. 

 
 

FEKO Computational Analysis 
A model with a hollow cylinder connected 

to a hollow cone with a horn antenna pattern in 
FEKO CEM software is implemented (Fig. 3).  
The prior equivalent impedance approximation 
is used to account for the losses, and the electric 
fields within the cavity are determined.  The 
distribution of the electric field is found.  The 
implementation of the model in FEKO requires 
that the geometry is created with primitive 
elements of the graphical tool and an equivalent 
impedance that was previously calculated is 
placed at the inside surface of the cavity as an 
infinitely thin sheet for the mesh of the 
geometry.  The sources are implemented as a 

point source with a horn antenna pattern.  The 
MLFMM technique is used in FEKO. The model 
parameters include a transmitter frequency of 5, 5.2, 
5.4, 5.6, 5.8, and 6 GHz, input power of 10 Watts, 
and an antenna pattern for an EMCO 3115 antenna 
pattern.  In this example, observation points were 
chosen at the locations of two center-line planes 
along x-z and y-z, respectively. 
 

III.  NUMERICAL RESULTS 
From Hallett and Reddell [4], the equivalent 

impedance is calculated using Eq. (1) and the 
electric field is calculated from the incident power 
using Eq. (2) as seen below.  A description of the 
pertinent variables follows Eq. (2), respectively.  

The electric field found with the heritage 
calculation method provides a maximum value of 60 
V/m at 5 GHz. 

 Using FEKO, the MLFMM approximation is 
implemented to create the electric field distribution 
at 5 GHz shown below in Fig. 4.   As shown, the 
maximum values (330 V/m) are much higher when 
compared to the maximum value (60 V/m) provided 
in the heritage calculation.  While the heritage 
calculation only provides the singular estimate 
relative to the surface area of the cavity, the 
MLFMM technique shows the distribution of the 
electric field inside the fairing.  The heritage 
calculation is within the FEKO data range. 

 

 
Fig. 4.  FEKO calculations at cross-sections 
along the x- and y- axes. 

(a) x-axis plane 
ωt=90 

(b) y-axis plane 
ωt=90 
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where: 
η is the impedance of the media. 
α is the attenuation constant of the media. 
β is the phase shift constant of the media. 
l is the length (thickness) of the media. 

 
 

Similarly for the remainder of the 
frequencies of interest (5.2, 5.4, 5.6, 5.8, 6.0 
GHz), the results were similarly distributed for 
the respective curves.  The comparison of the 
results for these curves is shown in Fig. 5. 
below.  In future calculations, the work of Demir 
and Elsherbeni [6] will be taken under 
consideration for the calculation of the layered 
media relative to the blanket and composites in 
free space. 

 
Heritage and FEKO Electric Field Calculation Comparison
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Fig. 5.  Heritage and FEKO electrical field 
calculation comparison. 

 
IV.  CONCLUSIONS 

The MLFMM technique in FEKO and 
Heritage Calculation estimated the maximum 

electric field 330 V/m  and 60 V/m, respectively, 
within the cavity at 5 GHz.  Additionally, values 
for the other frequencies of interest were 
compared to heritage calculations.  The 
distribution of the field predicted by FEKO 
provides added information when compared to 
the location of critical launch vehicle avionics 
and spacecraft components.  This allows the 
mission managers to assess risk relative to 
electromagnetic compatibility, and the analysis 
provides insight regarding cavity resonances as a 
“radiated environment” within the cavity.  
Although this maximum value prediction of the 
heritage method is shown to be within the range 
of the FEKO values, it could also drive sensitive 
spacecraft equipment to test to levels not 
indicative to the actual RF environment. 
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