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Abstract─ Normal mode helical antennas are 
widely used for RFID and mobile communications 
applications due to their relatively small size and 
omni-directional radiation pattern. However, their 
highly curved geometry can make the design and 
analysis of helical antennas that are part of larger 
complex structures quite difficult. A simplified 
model is proposed that replaces the curved helix 
with straight wires and lumped elements. The 
simplified model can be used to reduce the 
complexity of full-wave models that include a 
helical antenna. It also can be used to estimate the 
performance of a helical antenna without full-
wave modeling of the helical structure.  
  
Index Terms─ Helical Antennas, RFID. 
 

I. INTRODUCTION 
The helical antenna was introduced by John D. 

Kraus in 1946. Based on the far-field radiation 
pattern, a helical antenna operates in one of two 
principle modes: the normal mode with the 
maximum radiation perpendicular to the helix 
axis; or the axial mode with the maximum 
radiation in the direction of the axis [1]. The 
normal mode dominates when the diameter and 
axial length of the helix are much smaller than a 
wavelength. The radiation pattern of the normal 
mode helical antenna is omni-directional and 
generally similar to the pattern of a short dipole 
antenna. The self-resonant structure enables 
normal mode helical antennas to have radiation 
characteristics comparable to longer, straight-wire 
resonant dipole antennas [2]. Hence, normal mode 
helical antennas find many applications where the 
physical dimensions of the antennas are important, 
such as handsets [3], cellular phones [4]-[6] and 
RFID tags [7].  

Unlike straight-wire dipole antennas, helical 
antennas are three-dimensional in structure and 
there is a lack of reliable formulas for their design 

[8]. Most practical designs are the result of 
physical measurement trial-and-error, which is 
time-consuming and subject to errors introduced 
by the measurement facilities [4]. Therefore, 
numerical techniques are essential to helical 
antenna design and analysis [9], [10]. Helical 
antennas are mainly composed of curved surfaces 
and modeling these antennas using general 
purpose numerical tools requires mesh elements to 
be generated to fit the helical wire surfaces. This 
requires a large density of mesh elements and a 
great deal of computational resources. When 
modeling large systems that include a helical 
antenna, a significant portion of the computational 
effort may be devoted solely to the analysis of the 
helix, even when the helix is a small part of the 
total structure’s volume. 

In this paper, a simplified model is proposed 
to speed up the analysis of large structures 
containing helical antennas. In the simplified 
model, the helix is approximated by short straight 
wire segments connected by lumped elements 
representing the inductance of the helical turns. 
Theoretical calculations of the equivalent 
parameters are discussed. Nine different helix 
configurations are simulated using a general 
purpose full-wave modeling code to confirm the 
validity of the proposed model. The resonant 
frequency and input impedance of each 
configuration are examined. To further test the 
simplified model, two practical examples, an 
RFID antenna and a handset antenna, are also 
examined.  
 

II. SIMPLIFIED MODEL 
Fig. 1(a) shows the geometry of a helical 

dipole antenna. The helix is uniformly wound with 
a constant pitch, S. The radius of a helix can be 
uniform or tapered. In this paper, only uniform 
helices with constant radius, R, are considered. 
The helix’s conductor is a wire of radius, a, with a 
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circular cross section. The antenna is fed at the 
midpoint of the coil winding. In this section, a 
simplified model of the helix is analyzed and 
analytical expressions for estimating the model 
parameters are established. 

 

 
Fig. 1. (a) Helical antenna. (b) Wire-and-loop 
model. (c) Wire-and-inductor model. 

 
It has been shown [1] that the helix can be 

approximated as a series of small loops and 
dipoles when the physical dimensions of the helix 
are much smaller than a wavelength. The 
equivalent wire-and-loop model for the helical 
antenna is shown in Fig. 1(b). The wire-and-loop 
model suggests that the axial ratio of the normal 
mode helical antenna can be expressed as  
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where Sλ=S/λ and Cλ=C/λ. C is the circumference 
of the loop.  

Most practical normal-mode helical antennas 
have an axial ratio greater than 1. In these 
antennas, the radiated field from the loops is 
smaller than the radiated field from the straight 
wire segments. We can generally neglect the 
radiation from the loops without incurring 
significant error. For example, if we require 2 dB 
of accuracy, we can still neglect the field radiated 
by the loops as long as, 
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Equations (1) and (2) imply that we can 
neglect the radiation from the loops as long as, 

 4AR > . (3) 
From (1), it is clear that different axial ratios 

can be achieved by proper selection of the helix 

dimensions. For example, with Cλ<0.1, AR>4 is 
satisfied when Sλ>0.02. The limits of the diameter 
and the pitch of the helix can be better expressed 
using the definition of pitch angle, e.g. in this case, 

 ( )tan 0.2   11  S or
C

α α °= > > . (4) 

When the radiation from the loops can be 
neglected, they function like inductors. With this 
in mind, the wire-and-loop model can be further 
simplified by substituting inductors for the small 
loops as shown in Fig. 1(c). The proposed, 
simplified model consists of one straight wire 
segment per turn. Each segment is oriented 
vertically and has a length equal to the pitch of the 
helix. The segments are connected by lumped, 
inductive elements. The lumped elements do not 
increase the size of the mesh and do not 
significantly add to the computational complexity 
of the numerical analysis. Therefore, the 
simplified model requires considerably less 
computational resources to analyze than the 
original full-structure analysis.  

In the original helix structure, the adjacent 
turns are coupled together via both mutual 
inductance and mutual capacitance. Since all the 
turns are coaxially oriented, some of the magnetic 
flux generated by one turn will pass through the 
neighboring turns. This part of flux induces a 
voltage that has the same polarity as the voltage 
drop caused by the self-inductance. In addition to 
the magnetic field coupling, electric field coupling 
also occurs between turns. The turn-to-turn 
capacitance provides an alternative current path 
that bypasses the loop and the straight wire. In the 
following sections, analytical expressions are 
derived that compensate for the mutual coupling 
that is missing in the simplified model.  

 
A. Equivalent loop inductance  

The parameters that need to be determined for 
the wire-and-inductor model in Fig. 1(c) include 
the equivalent inductance L of a single turn, and 
the equivalent radius a’ of a short wire segment. 
The equivalent inductance includes the self-
inductance Lself of one turn and the mutual 
inductance M coupled from its adjacent turns,  

 2selfL L M= + . (5) 
The self inductance of a loop placed in free 

space is given by the double integral Neumann 
formula [13], 
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Where μ0 is the permeability of free space; and 
dl
r

and dl′
r

represent the differential elements 
separated by a distance, r. For a circular loop of 
wire, a closed form approximation for Eq. (6) is 
given by the following expression [13]:  

 0
8 2loop

RL R ln
a

μ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (7) 

where R is the loop radius and a is the wire radius. 
 

 
 

Fig. 2. Helical curve. 
 

As shown in Fig. 2, the actual distance 
between any two points, A and B, on the helical 
curve is, 

 2 2
0r r z= + Δ  (8) 

where r0 is the distance between A’ and B’ 

obtained by projecting point A and B onto the x-y 
plane. Δz is the distance between points A and B in 
the z direction. When the pitch is small compared 
to the coil radius, the distance between A and B is 
approximately equal to that between A’ and B’ or 
r ≈ r0. Therefore, for a small pitch angle, Eq. (7) is 
a good approximation of the self inductance of a 
helix turn. However, as the pitch angle increases, 
Δz increases quickly. Consequently, the self 
inductance of a helix turn with a large pitch angle 
is much smaller than the inductance calculated by 
(7). Notice that for any point on the helix curve, 
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Therefore,  
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Using the approximation,  
 0r R θ≈ Δ , (11) 

Eq. (8) becomes 
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Substituting (12) into (6), the self inductance of a 
helix turn is given by, 
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The mutual inductance between two adjacent 
turns can be approximated by the mutual 
inductance between two coaxially oriented circular 
loops of radius R, separated by a distance S [13]. 
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B. Equivalent wire radius  

The capacitance of a wire with length l and 
radius a placed in free space is given by [14], 

 0

2
w

lC
lln
a
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where ε0 is the permittivity of free space. In Fig. 
1(c), one helix turn is replaced by a short wire 
segment with a length equal to the helix pitch. The 
wire length is much shorter than the turn length; 
therefore, the total wire capacitance is reduced. To 
maintain the correct capacitance, the radius of the 
straight wire segments must be increased. The 
capacitance of the thicker wire should equal the 
capacitance of a helix turn. Therefore, the 
equivalent radius, a’, is obtained using the 
following expression: 
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where ( )2 22totl R Sπ= + . 
The term on the left-hand side of (16) is the 

capacitance of a wire segment in the simplified 
model. The term on the right-hand side of (16) is 
the capacitance of a turn in the original helix. Eq. 
(16) is based on an assumption that the mutual 
capacitance between turns is negligible compared 
to the self capacitance of the wire. This is a 
reasonable assumption when the pitch angle 
satisfies the condition in Eq. (4). 

 
III. VALIDATION OF THE SIMPLIFIED 

MODEL 
In order to validate the simplified model 

described in the previous sections, the input 
impedances and the radiation patterns of helical 
antennas and the corresponding simplified models 
were calculated using a full-wave numerical 
modeling tool [17]. Since a normal mode helical 
antenna is generally designed to operate at its 

resonant frequency, the performance of the 
simplified model near resonance is important. The 
evaluation was done by computing the relative 
differences in the calculated input resistance and 
resonant frequency. The error in the input 
resistance is defined as the ratio of the resistance 
difference over R0, the input resistance of the 
helical antenna at its resonant frequency f0. The 
error in the resonant frequency of the helical 
antenna is defined as the difference between the 
resonant frequency of the simplified antenna,  f1, 
and the full helix, f0, divided by f0. Expressed as a 
percentage, the equations for these errors are 
indicated below: 
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The geometrical parameters of the antennas 
evaluated are given in Table 1. The antennas are 
grouped in three sets. Within each set, one 
parameter was varied.  

 
 

Table 1:  Geometrical Parameters of Helical Antennas. 
 

No Geometry Resonant frequency 
Different wire radius 

1 10, 1 mm, 1.68 mm, 15 , 0.01 mm N R S aα °= = = = =  2.89 GHz 
2 10, 1 mm, 1.68 mm, 15 , 0.02 mmN R S aα °= = = = =  2.97 GHz 
3 10, 1 mm, 1.68 mm, 15 , 0.04 mmN R S aα °= = = = =  3.08 GHz 

Different pitch angle 
4 10, 2 mm, 2.67 mm, 12 , 0.02 mmN R S aα °= = = = =  1.47 GHz 
5 10, 2 mm, 4.57 mm, 20 , 0.02 mmN R S aα °= = = = = 1.38 GHz 
6 10, 2 mm, 10.5 mm, 40 , 0.02 mmN R S aα °= = = = =  1.00 GHz 

Different number of turns 
7 10, 2 mm, 4.57 mm, 20 , 0.02 mmN R S aα °= = = = =  1.38 GHz 
8 20, 2 mm, 4.57 mm, 20 , 0.02 mmN R S aα °= = = = = 741 MHz 
9 40, 2 mm, 4.57 mm, 20 , 0.02 mmN R S aα °= = = = = 395 MHz 
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Table 2:  Equivalent Parameters of Simplified Models. 
 

No Equivalent parameters Error (Re) (%) Error (f) (%) 
1  31.5 , 6.21 nHa a L′ = =  2.2 1.3 
2  18.9 , 5.35 nHa a L′ = =  1.5 1.3 
3  11.3 , 4.51 nHa a L′ = =  0.7 1.6 
4  34.8 , 13.2 nHa a L′ = =  3.2 2.7 
5  24.7 , 11.5 nHa a L′ = =  4.0 0.1 
6  7.11 , 9.07 nHa a L′ = =  0.6 1.0 
7  24.7 , 11.5 nHa a L′ = =  4.0 0.1 
8  24.7 , 11.5 nHa a L′ = =  1.4 1.7 
9  24.7 , 11.5 nHa a L′ = =  3.2 2.2 

 

  
(a) Case 4: Input resistance. (b) Case 4: Input reactance. 

    
(c) Case 6: Input reactance.  (d) Case 6: Input reactance. 

 
Fig. 3. Input impedance for Cases 4 and 6.  
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(a) (b) 

Fig. 4. Radiation patterns for Case 4: (a) Azimuth plane field pattern (b) Elevation plane field pattern. 
 
 

Table 3:  CPU-time and memory usage. 
 

CPU-time (Second) Memory-usage (MBtye) No Original model Simplified model Original model Simplified model 
1 4.28 0.4 14.8 0.54 
2 4.23 0.65 14.8 0.75 
3 4.95 0.64 16.9 0.96 
4 20.8 0.46 65.6 0.72 
5 24.9 0.46 74.4 0.82 
6 44.3 2.37 115.5 2.8 
7 24.9 0.43 74.4 0.82 
8 146.4 1.51 311.3 2.67 
9 506 5.42 890 9.54 

 
 
The relative errors in the input resistance and 

resonant frequency for each case are listed in 
Table 2. The input resistances at the resonant 
frequency of the simplified model are in 
reasonable agreement (within 5%) with values 
calculated for the full helix in all cases. The good 
agreement suggests that the analytical formulas 
(13) - (16) are sufficiently accurate near resonance 
for the helical antenna geometries evaluated. Table 
3 shows the computation time and the amount of 
memory per frequency required to analyze each 
original helical antenna and its simplified model. 
The simplified model significantly reduces both 
the CPU-time and the memory usage.  

 
 

Fig. 5. An RFID antenna embedded in a dielectric 
block. 
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(a) (b) 

 
(c) (d) 

Fig. 6. Input impedance of the RFID antenna and its simplified model: (a) Input resistance in air (b) Input 
reactance in air (c) Input resistance in dielectric (d) Input reactance in dielectric. 

 
One application of the simplified model is 

RFID antennas, which are widely used for 
identification and tracking of objects using radio 
waves. Recently, tire makers have begun 
embedding RFID tags in some of their tires to 
enable them to be tracked electronically. These 
tags often employ helical antennas embedded in a 
dielectric material as illustrated in Fig. 5. In this 
example, the antenna is designed to resonate at 
around 920 MHz. The parameters of the helix are: 
N = 106 turns, R = 0.5 mm, S = 0.833 mm, a = 
0.09 mm. The dimensions of the dielectric block 
are 97 11 11 mm× × . The relative permittivity of the 
dielectric is 4.0. 

The input impedance of both the RFID 
antenna and the simplified model are calculated 
for the antenna in air and the antenna in the 
dielectric block (Fig. 6). The difference between 
the helix and simplified model calculations of the 

input impedance is less than 5% for both the RFID 
antenna in air and in the dielectric block.  

 

 
Fig. 7. Mobile handset and coordinate system. 
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In order to further test the proposed model, a 
practical helical antenna design [3] for mobile 
handsets was also simulated. In this design, two 
helical antennas are mounted on top of a metal box 
(10 4.8 1.67 mm× × ) and separated by 3.125 cm 
(Fig. 7). Antenna 1 is excited and Antenna 2 is 
connected to a 50-Ω load. The helical antenna 
array is tuned to resonate at about 1.65 GHz. The 
antenna parameters are: N = 2.6 turns, S = 9.94 
mm, R = 2.1 mm, a = 0.28 mm. The simplified 
model requires an integer number of turns. 
Therefore, the number of turns was set to 3 in this 
simulation. The simulation results are shown in 

Figs. 8 and 9. The input resistance of the 
simplified model is close to that of the helical 
antenna near the resonant frequency. The error in 
the resonant frequency is only 1%. The radiation 
pattern predicted by the simplified model is 
identical to that of the helical antenna in both 
azimuth and elevation planes. The good agreement 
demonstrates that the proposed model is not only 
suitable for dipole-helical antennas, but it can be 
also applied to monopole-helical antennas. 

 
 
 

 

 

 

 
(a) (b) 

Fig. 8. Input impedance of the helical antenna of the handset:  (a) Input resistance (b) Input reactance. 
 
 

 
 

(a) (b) 
Fig. 9. Radiation patterns for the handset helical antenna in the Azimuth plane: (a) Eθ  (b) Eφ. 
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IV. CONCLUSION 
A simplified model for helical antennas has 

been proposed. In the model, the highly curved 
structure of the helix is replaced with a straight-
wire and inductor structure. The number of 
elements required to model the helix is 
significantly reduced; and therefore, analysis of 
the simplified model uses much less computational 
resources than analysis of the full helix. 
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