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Abstract ─ In this paper, a novel weakly 

conditionally stable spectral finite-difference time-

domain method is proposed to solve oblique 

incident wave on periodic structures, namely 

NWCS-SFDTD. Because the stability condition is 

determined only by one space discretization, this 

new method is extremely useful for periodic 

problems with very fine structures in one or two 

directions. By using the constant transverse wave-

number (CTW) wave, the fields have no delay in 

the transverse plane, as a result, the periodic 

boundary condition (PBC) can be implemented 

easily for oblique incident wave. Compared with 

the alternating-direction-implicit SFDTD (ADI-

SFDTD) method this NWCS-SFDTD method has 

higher computational efficiency and better 

accuracy, especially for larger time-step size case. 

At each time step, it only needs to solve four 

implicit equations and four explicit equations, 

which is six implicit equations and six explicit 

equations in the ADI-SFDTD method. So while 

maintaining the same size of the time-step, the 

CPU time for this method can be reduced to about 

two-thirds of that for the ADI-SFDTD method. 

Numerical examples are presented to demonstrate 

the efficiency and accuracy of the proposed 

algorithm. To reduce the numerical dispersion 

error, the optimized procedure is applied. 

  

Index Terms─ Finite-difference time-domain 

(FDTD), oblique incident, periodic structure, and 

weakly conditionally stable.  

 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) 

technique is a robust analysis tool applicable to a 

wide variety of complex problems [1, 2]. 

Frequently, problems are encountered in which 

periodicity exists in one or more dimensions of the 

problem geometry, taking advantage of this 

periodicity can lead to greater efficiency and 

accuracy when solving the problem numerically. 

Instead of analyzing the entire structure, only a 

single unit cell needs to be analyzed by 

incorporating the periodic boundary condition 

(PBC) [3-5]. For a normally incident wave, the 

PBC is quite straightforward as there is no phase 

shift between each periodic cell [1]. However, 

when a plane-wave source is obliquely incident, 

there is a cell-to-cell phase variation between 

corresponding points in different unit cells which 

causes the time-domain implementation to become 

more difficult. To deal with this problem, several 

methods have been introduced, such as the Sine-

Cosine method [6] and the split-field method [7]. 

Recently, another new formulation, named 

spectral FDTD (SFDTD) was proposed [8], 

because the constant wave-number (CTW) wave is 

used, there is no delay in the transverse plane and 

the PBC can be implemented directly in the time 

domain.  

Aforementioned FDTD methods for periodic 

structures are explicit time-marching techniques 

that are subject to the Courant-Friedrich-Levy 

(CFL) stability condition [1]. As a result, a 

maximum time-step size is limited by the 

minimum cell size in a computational domain, 
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which makes this method inefficient for the 

problems where fine-scale structures are involved. 

To overcome the restriction of the CFL stability 

condition, an alternating-direction-implicit (ADI) 

FDTD solution for periodic structures is proposed 

[9], as well as locally-one-dimensional (LOD) 

FDTD [10]. Although the time-step size in the 

ADI-FDTD simulations is no longer bounded by 

the CFL criterion, the method exhibits a splitting 

error associated with the square of the time-step 

size [11], which limits the accuracy of the ADI-

FDTD method. Meanwhile, in the ADI-FDTD 

scheme, it must solve six implicit updates and six 

explicit updates for one full-update cycle, which 

makes it computationally inefficient. 

To overcome the drawbacks of the ADI-

FDTD method, a hybrid implicit-explicit (HIE) 

FDTD method was submitted [12], and it has been 

introduced to solve periodic problems [13]. This 

method has higher accuracy and efficiency than 

the ADI-SFDTD method, but with confined usage, 

because the time-step size in this method is limited 

by two space discretizations, namely, 

( )
2 2

1/ 1/ 1/t c y z∆ ≤ ∆ + ∆ , which is independent of 

x∆ . So if there are fine structures in the x- 

direction, the advantage of the method is obvious. 

However, for certain problems, if there are fine 

structures in two directions its efficiency is 

reduced. Recently, a novel weakly conditionally 

stable (NWCS) FDTD method, which is extremely 

useful for problems with very fine structures in 

two directions was discussed [14], namely, 

NWCS-FDTD. It has been introduced to the body-

of-revolution FDTD [15].  

In this paper, the novel weakly conditionally 

stable technique is applied to the SFDTD method, 

resulting in a NWCS-SFDTD method, which can 

solve periodic structures with oblique incident 

wave efficiently. The time-step size in this method 

is only determined by one spatial increment, the 

weakly conditional stability is presented 

analytically. To eliminate the time delay in 

transverse plane, the CTW wave [8] is applied. As 

a result, the FDTD code needs to be changed from 

real variables to complex variables, which is 

different from the conventional NWCS-FDTD 

method. Compared with the ADI-SFDTD method 

it only needs to solve four implicit updates, other 

four equations can be updated directly, which are 

six implicit updates and six explicit updates in the 

ADI-SFDTD method. The proposed method has 

higher computational efficiency and better 

accuracy than the ADI-SFDTD method. The 

running time can be reduced to about two-thirds of 

the ADI-SFDTD method. Numerical examples are 

conducted to verify the accuracy and the 

efficiency of this implementation. In order to 

reduce the numerical dispersion error, the 

optimized procedure is applied. 

 

II. THEORY 
 

A. Spectral FDTD implementation 
In the SFDTD method, the incident wave is 

represented in the frequency domain. By applying 

an inverse Fourier transform on it, we can obtain 

the CTW wave in the time domain, which can be 

represented as [8], 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1 2 2

0 0

1 2 2

0 0

0 0

exp exp exp exp /

exp exp exp exp /

/

CTW

t x y z

CTW

l x y z TE

TE z

E jk x jk y jk z z k

H jk x jk y jk z z Y k

Y k k

ξ σ

ξ σ

η

−

−

 = − − 

 = − − 

=

% % %

% % %

  (1) 

where ,
x y

k k  represent transverse wave-numbers, 

which are assumed to be constant numbers 

(independent of frequency). 
z

k  is normal wave-

number, 
0

2 /k f cπ= , and 1j = −% . 
0

η  is the 

impedance of free space. The term ( )
2 2

0exp /k σ−  

corresponds to a Gaussian pulse used to limit the 

bandwidth of incident wave. 1
ξ

−  represents the 

inverse Fourier transform. If ,
x y

k k  are constant 

numbers, that means 
l

k  is constant, so we can 

conclude that in the CTW wave different 

frequencies correspond different incident angles.  

The x- and y- field components of the CTW 

wave can be calculated as, 

        

,

,

yCTW CTW CTW CTWx

x t y t

l l

yCTW CTW CTW CTWx

x l y l

l l

k k
E E E E

k k

kk
H H H H

k k

= − =

= =

 .        (2) 

They can be added to the computational domain 

by using total-field/scattered-field method [1]. 

 

B. Formulations of the NWCS-SFDTD method 
In the NWCS-SFDTD method, the field 

updating for one time step is performed using two 
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procedures. The relations between the field 

components of the novel weakly conditionally 

stable SFDTD scheme can be represented as, 

( ) ( )

1

2[ ] [ ] [ ] [ ]
n

nI A U I B U
+

+ = +                     (3) 

( ) ( )

1

1 2[ ] [ ] [ ] [ ]
n

nI C U I D U
+

+

+ = + ,                   (4) 

where [ ]
n n n n n n n

x y z x y z
U E E E H H H=  and [ ]I  

denotes the unit matrix, 

1 2

2 1

0 / 2 0 / 2
[ ] ,[ ]

/ 2 0 / 2 0T T

t D t D
A B

t D t D

ε ε

µ µ

∆ −∆   
= =   

∆ −∆   

� �

� �

 (5) 

1 2

2 1

0 / 2 0 / 2
[ ] ,[ ]

/ 2 0 / 2 0

T T
t D t D

C D
t D t D

ε ε

µ µ

   −∆ ∆

= =   
−∆ ∆   

� �

� �

,(6) 

1 2

0 0 0 0 0 0

[ ] 0 0 ,[ ] 2 0

0 0 0 0

x z x

y y

D D D D D

D D

   
   

= = −   
   
   

 ,        (7) 

where ,ε µ  represent the permittivity and 

permeability, t∆  is the time step size. 
1 2

,T TD D  

represent the transpose of 
1 2
,D D , respectively. 

, ,
x y z

D D D  are the first-order central difference 

operators along the x-, y- and z- axes. 

Incorporating the optimization parameters α , 

β  and γ  [16, 17], and by inserting equations (5)-

(7) into equations (3) and (4), we have, 
1/ 2n n

x x
E E+

=                               (8a) 

( )
1/2 1/ 2

2

n n n n n

y y x z z

t t
E E H H H

z x

γ α

ε ε

+ +
∆ ∆

= + ∂ − ∂ +

∂ ∂

,  (8b) 

( )
1/2 1/ 2

2

n n n n

z z x x

t
E E H H

y

β

ε

+ +
∆

= − ∂ +

∂

,           (8c) 

( )
1/2 1/2 1/ 2

2

n n n n n

x x y z z

t t
H H E E E

z y

γ β

µ µ

+ + +
∆ ∆

= + ∂ − ∂ +

∂ ∂

,    

(8d) 
1/2n n

y y
H H

+

= ,                             (8e) 

( )
1/ 2 1/ 2

2

n n n n

z z y y

t
H H E E

x

α

µ

+ +
∆

= − ∂ +

∂

,              (8f) 

for the first-half time-step. And 

( )
1 1/2 1/2 1 1/2

2

n n n n n

x x y z z

t t
E E H H H

z y

γ β

ε ε

+ + + + +
∆ ∆

= − ∂ + ∂ +

∂ ∂

(9a) 

1 1/ 2n n

y y
E E

+ +

= ,                         (9b) 

( )
1 1/ 2 1 1/ 2

2

n n n n

z z y y

t
E E H H

x

α

ε

+ + + +
∆

= + ∂ +

∂

,         (9c) 

1 1/2n n

x x
H H+ +

=  ,                        (9d) 

( )
1 1/2 1 1 1/ 2

2

n n n n n

y y x z z

t t
H H E E E

z x

γ α

µ µ

+ + + + +
∆ ∆

= − ∂ + ∂ +

∂ ∂

,     

    (9e) 

( )
1 1/2 1 1/2

2

n n n n

z z x x

t
H H E E

y

β

µ

+ + + +
∆

= + ∂ +

∂

,        (9f) 

for the second-half time-step. The control 

parameters α , β , and γ  used in the above 

formulations contribute to a reduction of the 

numerical dispersion error. 

It can be seen from these equations that only 

equations (8b)-(8d), (8f), (9a), (9c), (9e), and (9f) 

need to be solved. However, none of them can be 

updated directly, because they all include the 

unknown components on both sides of the 

equations. In the first-half time-step, updating of 
1/ 2n

y
E

+  component needs the unknown 1/ 2n

z
H +  

components at the same time, so the 1/ 2n

y
E

+  

component has to be updated implicitly. 

Substituting equation (8f) into equation (8b) and 

by appropriate rearrangement we can obtain the 

equation for 1/ 2n

y
E

+ , 

( )

( )

1/2
2 2

1, 1/2,1/2

, 1/2, 2 1/2 1/2

, 1/2, 1, 1/2,

, 1/2, , 1/2, 1/2 , 1/2, 1/2

1/2, 1/2, 1/2, 1/2,

2 2

2

4 2

4

n

y i j kn

y i j k n n

y i j k y i j k

n n n

y i j k x i j k x i j k

n n

z i j k z i j k

n

y i

Et
E

x E E

t
E H H

z

t
H H

x

t
E

x

α

εµ

γ

ε

α

ε

α

εµ

+

+ +
+

+
+ +

+ − +

+ + + + −

+ + − +

 −
∆  −

 ∆ + 

∆
= + −

∆

∆
− −

∆

∆
+

∆
( )1, 1/2, , 1/2, 1, 1/2,2 n n

j k y i j k y i j kE E
+ + + − +

− +

      (10) 

Similarly, in the first-half time-step, updating of 

the 1/ 2n

z
E +  component in equation (8c) needs the 
1/2n

x
H +  components at the same time. Substituting 

equation (8d) into equation (8c) we can obtain the 

equation for 1/ 2n

z
E + , 

( )

1/2
2 2

, 1, 1/21/2

, , 1/2 2 1/2 1/2

, , 1/ 2 , 1, 1/2

, , 1/2 , 1/ 2, 1/2 , 1/ 2, 1/2

1/2 1/ 2
2

, 1/2, 1 , 1/2,

1/2

4 2

2

n

z i j kn

z i j k n n

z i j k z i j k

n n n

z i j k x i j k x i j k

n n

y i j k y i j k

n

y

Et
E

y E E

t
E H H

y

E Et

y z E

β

εµ

β

ε

βγ

εµ

+

+ +
+

+
+ +

+ − +

+ + + − +

+ +

+ + +

+

 −
∆  −

 ∆ + 

∆
= − −

∆

−
∆

−

∆ ∆ −

( )

1/2

, 1/2, 1 , 1/2,

2 2

, 1, 1/2 , , 1/2 , 1, 1/22
2

4

n

i j k y i j k

n n n

z i j k z i j k z i j k

E

t
E E E

y

β

εµ

+

− + −

+ + + − +

 
 
 + 

∆
+ − +

∆

     (11) 

After 1/ 2n

y
E

+  and 1/ 2n

z
E +  are obtained, 1/2n

x
H +  

and 1/ 2n

z
H +  can be explicitly updated by using 

. 

. 
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equations (8f) and (8d). The components 1/2n

x
E +  

and 1/2n

y
H

+  in the first-half time-step need not be 

solved. In the second-half time-step, updating of 

the 1n

x
E +  component needs the unknown 1n

z
H +  

components at the same time. Substituting 

equation (9f) into equation (9a) we can obtain the 

equation for 1n

x
E + , 

( )

( )

1
2 2

1/ 2, 1,1

1/ 2, , 2 1 1

1/2, , 1/2, 1,

1/ 2 1/2 1/ 2

1/ 2, , 1/2, , 1/ 2 1/ 2, , 1/ 2

1/2 1/ 2

1/ 2, 1/2, 1/ 2, 1/2,

2

4 2

n

x i j k
n

x i j k n n

x i j k x i j k

n n n

x i j k y i j k y i j k

n n

z i j k z i j k

Et
E

y E E

t
E H H

z

t
H H

y

β

εµ

γ

ε

β

ε

β

+

+ +
+

+
+ +

+ + −

+ + +

+ + + + −

+ +

+ + + −

 −
∆  −

 ∆ + 

∆
= − −

∆

∆
+ −

∆

∆
+

1/2
2

1/ 2, 1,

2 1/ 2 1/ 2

1/ 2, , 1/ 2, 1,
4 2

n

x i j k

n n

x i j k x i j k

Et

y E Eεµ

+

+ +

+ +

+ + −

 −

 
 ∆ + 

(12) 

In the same way by substituting equation (9e) into 

equation (9c) we can obtain the equation for 1n

z
E + ,  

( )

1
2 2

1, , 1/21

, , 1/2 2 1 1

, , 1/ 2 1, , 1/2

1/ 2 1/2 1/2

, , 1/ 2 1/ 2, , 1/ 2 1/ 2, , 1/ 2

1 1
2

1/ 2, , 1 1/ 2, ,

1

4 2

2

n

z i j kn

z i j k n n

z i j k z i j k

n n n

z i j k y i j k y i j k

n n

x i j k x i j k

n

x i

Et
E

x E E

t
E H H

x

E Et

x z E

α

εµ

α

ε

αγ

εµ

+

+ +
+

+
+ +

+ − +

+ + +

+ + + − +

+ +

+ + +

+

−

 
∆  −

 ∆ − + 

∆
= + −

∆

−
∆

−

∆ ∆ −
1

1/ 2, , 1 1/ 2, ,

1/ 2
2 2

1, , 1/2

2 1/2 1/2

, , 1/ 2 1, , 1/ 2
4 2

n

j k x i j k

n

z i j k

n n

z i j k z i j k

E

Et

x E E

α

εµ

+

+ −

+

+ +

+ +

+ − +

 
 
 + 

 
∆  +

 ∆ − + 

(13) 

After 1n

x
E +  and 1n

z
E +  are obtained, the components 

1n

y
H

+  and 1n

z
H +  can be updated straightforwardly 

by using equations (9e) and (9f). In the second-

half time-step the components 1n

y
E

+  and 1n

x
H +  

need not be solved. 

To solve equation (10), the periodic boundary 

condition needs to be combined. Because ,
x y

k k  

are independent of frequency, there are no time 

delay in the x y−  plane, so in the first-half time-

step the PBC for the CTW wave can be 

implemented in the same way as the PBC for 

normal incidence [1], 

1/2 1/2

4 1

1 1
, , , ,

2 2
x xjk Pn n

y x y x
E N j k E N j k e

+ +   
+ = +   

   

%

(14) 

1/2 1/2

4 1

1 1
, , , ,

2 2

y yjk Pn n

z y z y
E i N k E i N k e

+ +   
+ = +   

   

%

, (15) 

1/2 1/2

4 1

1 1
, , , ,

2 2
x xjk Pn n

z x z x
E N j k E N j k e

+ +   
+ = +   

   

%

,(16) 

1/2 1/2

1 4

1 1
, 1, , 1,

2 2

y yjk Pn n

x y x y
H i N k H i N k e

−+ +   
− + = − +   

   

%

(17)

1/ 2 1/2

1 4

1 1
1, , 1, ,

2 2
x xjk Pn n

z x z x
H N j k H N j k e

−+ +   
− + = − +   

   

%

(18) 

1/ 2 1/2

1 4

1 1
, 1, , 1,

2 2

y yjk Pn n

z y z y
H i N k H i N k e

−+ +   
− + = − +   

   

%

(19) 

where, 
1x

N , 
4x

N , 
1y

N , 
4y

N  represent the nodes of 

electric fields on the unit cell boundary. 

4x x
P N x= ∆ , 

4y y
P N y= ∆  are the dimensions of the 

unit cell in the x- and y- direction, respectively. In 

the second-half time-step the PBC for the CTW 

wave can be implemented similarly.  

By substituting equations (14)-(19) into 

equation (10) we can get, 

[ ]M
y

E d=

vv
                         (20) 

where d
v

 represents the right-hand vector of 

equation (10) and 
y

E
v

 is unknown in general. [M] 

is obtained from equation (10) for each column of 

y
E , so equation (10) can be written as, 

( )

( )

( )

1

1

4

1/2 1
, 1/2,

11/2

1, 1/2,

1/2

1, 1/2,
4

1

1

x

x

x

n x
y N j k

xn

y N j k

n

y N j k
x

d Nn m E

d Nm n m
E

m n m

Em n d N

ρ

τ

+

+

+

+ +

+

− +

   
   

+   
    =
   
   
    −     

L L L

M
M

        (21) 
2 2 2 2

2 2
, 1

4 2

t t
m n

x x

α α

εµ εµ

∆ ∆
= − = +

∆ ∆

 ,              (22) 

where x xjk P
m eρ

−

= ⋅
%

, x xjk P
m eτ = ⋅

%

. 

The coefficient matrix [M] is not a tridiagonal 

matrix, so it can’t be solved with the efficient 

forward-elimination and backward-substitution 

method directly. By using the Sherman Morrison 

formula, two auxiliary linear problems are defined 

[18],  

[ ] 1y
N E d=

vv
                            (23) 

[ ] 2 1y
N E v=

v v
,                           (24) 

[ ] [ ] 1 2

T
N M v v= −

v v
,                       (25) 

1/2 1/ 2

1 0 0
T

v ρ τ =  
v

L ,              (26) 

. 

. 

18 ACES JOURNAL, VOL. 29, No. 1, JANUARY 2014



1/2 1/2

2 0 0v τ ρ =  
v

L  .              (27) 

So the solution of equation (21) is obtained via, 

1 2y y y
E E Eς= +

v v v
                       (28) 

2 1

2 2
1

T

y

T

y

v E

v E
ς = −

+

vv

vv .                       (29) 

By observation, one can find that matrix [M] in 

equation (20) is related to matrix [N]. Because [N] 

is a tridiagonal matrix, the auxiliary linear 

problems can be solved efficiently by using 

forward-elimination and backward-substitution 

method. Equations (11), (12), and (13) can be 

solved in the same way. 

From the equations derived above, it can be 

seen that at each time step, the proposed method 

requires solution of four implicit updates and four 

explicit updates, while it needs to solve six 

implicit updates and six explicit updates in the 

ADI-SFDTD scheme. So we can find, the 

implementation of the NWCS-SFDTD method is 

simpler than the ADI-SFDTD method. 

In the NWCS-SFDTD method the maximum 

time-step size is only determined by one spatial 

increment as it is in [14]. This is especially useful 

when the simulated structure has a fine-scale 

dimension in one or two directions. A small spatial 

increment can be used in the direction with fine 

scale and a larger spatial increment can be used in 

the direction with coarse scale. If we perform the 

implicit-difference scheme in the direction with a 

larger spatial increment, the time-step size is thus 

determined by the larger spatial increments. For 

example, the size of the structure in the z- 

direction is larger than those in the x- and y- 

directions. By setting 10 10z y x∆ = ∆ = ∆ , the 

maximum time-step size meeting the stability 

condition of the NWCS-SFDTD algorithm can be 

determined as /t z c∆ = ∆ , while the maximum 

time-step size for the conventional SFDTD 

method is 
2 2 2

1

201

z
t

cc x y z
− − −

∆
∆ = =

∆ + ∆ + ∆

. As a 

result, computational resources can be saved 

considerably. 

 

III. NUMERICAL RESULTS 
In this section a numerical example is 

presented to demonstrate the proposed NWCS-

SFDTD method. Simulation results are carried out 

using the NWCS-SFDTD method, the 

conventional SFDTD method and the ADI-

SFDTD method for comparison. 

In the example, it is applied to calculate the 

reflection coefficient of EBG structure, the 

analyzed model is shown in Fig. 1. The structure is 

a periodic array of metallic squares with thin slots 

embedded in a dielectric slab. The dielectric slab 

has relative permittivity 4.0
r

ε = . The physical 

dimensions of the geometry are 5mmw = , 

2.5mmd = , 25mmh = . The sizes of the thin slots 

are 0.5mm. The space increments are  ∆x = ∆y = 

∆z/5 = 0.5 mm. The computational domain is 

truncated by 16-layer PML in the z direction. So it 

contains 20×20×102 cells. The CTW wave is 

introduced into the computational domain, with 

the transverse wave-number kx ranges from 0 m
-1

 

to 200 m
-1

. To satisfy the stability condition of the 

FDTD algorithm, the time-step size for the 

conventional SFDTD is ∆t ≤ 1.16 ps, and the time-

step size for the NWCS-SFDTD algorithm is only 

determined by increment ∆z, that is ∆t ≤ 8.33 ps. 

So in the simulation, the time-step size for the 

SFDTD method is kept constant ∆t = 1.16 ps, 

while in the ADI-SFDTD and the NWCS-SFDTD 

method two time-step sizes are chosen, namely, 

1.16 ps and 8.33 ps.  

x

z

y

hrε

d

w

x

y

CTW wave

 
 

Fig. 1. The geometry of the numerical example. 

 
 Figure 2 shows the reflection coefficient of the 

EBG structure with the time-step size 1.16 ps for 

the conventional SFDTD, the NWCS-SFDTD, and 

the ADI-SFDTD method, respectively. It can be 

seen from these figures that both the proposed 

NWCS-SFDTD method and the ADI-SFDTD 

method agree well with the conventional SFDTD 

method, which means when the time-step size is 

small both the NWCS-SFDTD method and the 

ADI-SFDTD method have high accuracy. 
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(a) 

 

 
(b) 

 

Fig. 2. Reflection coefficients for the conventional 

SFDTD (∆t = 1.16 ps), the NWCS-SFDTD (∆t = 

1.16 ps), and the ADI-SFDTD (∆t = 1.16 ps) 

method for θ = 30
o
 and θ = 60

o
. 

 

When the time-step size increases to 8.33 ps, 

the results are shown in Fig. 3. From Fig. 3 we can 

see when the time-step size increases both the 

ADI-SFDTD method and the proposed method 

have a deviation from the conventional SFDTD 

method. It is also shown that the discrepancy is 

larger at high frequencies than low frequencies. 

However, the deviation of the NWCS-SFDTD 

method is smaller than the ADI-SFDTD method. It 

is apparent that the proposed method has higher 

accuracy than the ADI-SFDTD method.  

 To reduce the numerical dispersion error, we 

employ the improved NWCS-SFDTD method 

with dispersion control parameters [19], 

1 1
tan tan

2 2
, , 1

1 1
sin sin

2 2

x ck t z ck t

c t k x c t k z

α γ β

   
∆ ∆ ∆ ∆   

   
= = =

   
∆ ∆ ∆ ∆   

   

. (30) 

So when the time-step size is 8.33 ps, 

1.0246, 1α γ β= = =  are obtained. It can be seen 

from Fig. 4 that the results with dispersion control 

parameters reach a good agreement with the 

conventional SFDTD method. 

 

 
(a) 

 

 
(b) 

 

Fig. 3. Reflection coefficients for the conventional 

SFDTD (∆t = 1.16 ps), the NWCS-SFDTD (∆t = 

8.33 ps) and the ADI-SFDTD (∆t = 8.33 ps) 

method for θ = 30
o
 and θ = 60

o
. 

 

Finally, we mention the computational 

efficiency of the proposed NWCS-SFDTD 

method. On a Core2 2.4-GHz machine, it took the 

conventional SFDTD method 67446.6 seconds and 

the NWCS-SFDTD method (with the time-step 

size 8.33 ps) 17207.4 seconds to run the same 

simulation, which is 25737.3 seconds in the ADI-

SFDTD method. So compared with the ADI-

SFDTD method, the proposed method has higher 

efficiency. The CPU running time for this method 

is about 2/3 of the ADI-SFDTD method. 
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(a) 

 

 
(b) 

 

Fig. 4. Reflection coefficients calculated by the 

NWCS-SFDTD method (∆t = 8.33 ps) and the 

improved method with dispersion control 

parameters for θ = 30
o
 and θ = 60

o
. 

 

IV. CONCLUSION 

In this paper, we present a novel weakly 

conditionally stable SFDTD method to solve 

periodic structures at oblique incidence. Numerical 

results indicate that the proposed method is 

accurate and efficient. The CPU time for the 

proposed method can be reduced to about 2/3 of 

the ADI-SFDTD method. For the same time-step 

size, the proposed method not only has higher 

efficiency than the ADI-SFDTD method, but also 

higher accuracy. 
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