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Abstract – As the explicit finite-difference time-
domain (FDTD) method is restricted by the
Courant−Friedrich−Levy (CFL) stability condition
and inefficient for simulation in some situations, implicit
methods are developed. The hybrid implicit−explicit
(HIE) FDTD method is one popular method among
them. In this paper, a memory-efficient HIE FDTD
method is designed for electromagnetic simulation.
The proposed HIE-FDTD method is based upon the
divergence relationship of electric fields, nearly reduces
one field component, and realizes a memory reduction
rate of 33% approximately. Two numerical experiments
are carried out to validate the proposed method and
the results indicate that the proposed memory-efficient
HIE-FDTD method can work well.

Index Terms – Finite-difference time-domain (FDTD),
hybrid implicit−explicit FDTD (HIE-FDTD), memory-
efficient.

I. INTRODUCTION
Solving electromagnetic (EM) field is a nec-

essary part in device design and analysis of EM
phenomena, and many methods such as ray tracing
method [1], scatter matrix method (SMM) [2–4], and
Wentzel−Kramers−Brillouin (WKB) method [5] have
been proposed. Methods with analytical approximation
are relatively accurate and full of physical information,
while their scopes are limited. As a result, numeri-
cal methods are also developed. The finite-difference
time-domain (FDTD) method [6] has been regarded as
one of the most effective and versatile methodologies
[7, 8] mainly due to its direct temporal computing and
simplicity. However, the explicit FDTD method is con-
strained by the Courant−Friedrich−Levy (CFL) stabil-
ity condition [9]. As a result, when there are fine struc-
tures in the computation task, the FDTD method has to
employ relatively small cell sizes and, thus, unavoidably
takes a relatively small time step and consequently is
confronted with heavy burden of long running time. In
order to solve the issue, researchers resort to implicit
schemes and have proposed a series of methods such as

alternating-direction implicit (ADI) FDTD method
[10, 11], locally one-dimensional (LOD) FDTD
method [12, 13], Crank−Nicolson (CN) FDTD method
[14, 15], weighted Laguerre polynomial (WLP) FDTD
method [16, 17], and hybrid implicit−explicit (HIE)
FDTD method [18, 19]. Among those methods, the
ADI-FDTD method and the LOD-FDTD method both
employ time split schemes and seem somewhat com-
plex. The CN-FDTD method and the WLP-FDTD
method both adopt fully implicit schemes and result
in a huge sparse matrix which is expensive to handle.
Whereas, the HIE-FDTD method only executes implicit
difference schemes for the spatial partial derivatives
in the direction along which there are fine structures
and takes general explicit difference schemes for the
remaining spatial partial derivatives in the directions
along which there are no fine elements. In such an
arrangement, the HIE-FDTD method finishes the re-
striction of the fine spatial cell sizes on time step size,
acquires the ability to improve computational efficiency,
and has drawn much attention in recent years [19–22].
Compared with the conventional FDTD method and
even some other absolutely stable FDTD methods such
as the ADI-FDTD method in some situations [23], the
HIE-FDTD method showed higher efficiency, and a
lot of work including but not limited to simulations
of designing devices, implementations of PML, and
reducing numerical dispersion error [19–22, 24] have
been put forward.

Compared with the FDTD method, the HIE-FDTD
method becomes more complex and needs more mem-
ory to implement, and, recently, the authors in [25] also
point out that the character exists in some previous algo-
rithms that employ implicit schemes. As a result, a form
of HIE-FDTD method that is both free of strict CFL sta-
bility condition and is also of low memory requirements
without bringing much complexity may be of value. In
the paper [26], the authors proposed a scheme based on
divergence relationship and achieved a memory reduc-
tion rate near to 33%. Then the thought of memory sav-
ing was adopted into some other situations [27–29] in
different ways.
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In this paper, based on the work proposed in [18]
and [26], a memory-efficient HIE-FDTD method is de-
veloped based on the divergence relationship of elec-
tric fields. It will be seen that the proposed HIE-FDTD
method nearly only stores two field components in com-
putation, reduces 33.33% of memory approximately, and
maintains the accuracy and efficiency of the original
method.

II. ALGORITHM FORMULATION
In simple, isotropic, and lossless media, according

to [18], the HIE FDTD method is

En+1
x = En

x +
∆t
2ε

∂
(
Hn+1

z +Hn
z
)

∂y
(1)

E
n+1/2
y = E

n−1/2
y −∆t

ε

∂ Hn
z

∂x
(2)

Hn+1
z = Hn

z +
∆t
2µ

∂
(
En+1

x +En
x
)

∂y
− ∆t

µ

∂ E
n+1/2
y

∂x
. (3)

In order to acquire the solutions, a user either re-
places Hn+1

z in eqn (1) with Hn+1
z in eqn (3), solves

matrix equations, and acquires En+1
x or inserts eqn (1)

into eqn (3), handles matrix equations, and solves Hn+1
z

and, in the end, calculates the remaining field variables
explicitly. We term them as HIE-E-FDTD method and
HIE-H-FDTD method, respectively.

The divergence relationship of electric fields can be
directly written as
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Eqn (4) can also be rewritten as
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Clearly, the divergence relationship is time invari-
ant. The initial condition is 0; so eqn (5) can be further
rewritten as
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In fact, eqn (6) is just the result of linear combina-
tion of the two curl equations of electric field compo-
nents in the HIE-FDTD method. In the region containing
source, eqn (6) may fail; so one can directly apply the
HIE-FDTD method without any change and construct
linear equations to solve the fields or get the discrete di-
vergence relationship by directly adding the numerical
expressions of the two field components in the conven-

tional HIE-FDTD method according to the regular form
of divergence relationship.

Conductor (PEC) will also destroy eqn (6). On the
surface of conductor, tangential E is 0; so eqn (6) is
omitted. As to normal E, we recommend using the HIE-
FDTD method on surface of conductor directly.

After applying finite difference approximation to
spatial derivatives, the full numerical form of eqn (6) can
be written as
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In the computation domain, cells with the same x

coordinate are defined as a sub-region registered as x =
i. In this paper, each sub-region is rectangle, and the
domain consists of M×N cells and is grouped into many
rectangles like x = i − 1, x = i, and x = i + 1, which is
shown in Figure 1.

Fields in these regions are expressed as vectors and
registered as Ey (i), Ex (i), and Hz (i). From eqn (7), it
can be seen that En

x in x = i only requires En
x in x = i − 1

except E
n−1/2
y in x = i and Hn

z in x = i and in x = i − 1. In
this paper, Ey fields are at sides of cells in y direction, Ex
fields are at sides of grids in x direction, and Hz fields are
at the centers of each cell. As a result, eqn (7) can also
be rewritten as a matrix form
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(8)
where A, B, and C are matrices determined by coeffi-
cients in front of fields in eqn (7).
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Fig. 1. (a) The computation domain with cells and sub-
regions. (b) The computation domain with sub-regions.
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Suppose x = i − 1 is the initial position where our
calculation begins. We define Ey (k) and Hz (k) where k
can be each rectangle in the whole domain. As to Ex,
only two vectors ex1 that can store En

x in x = i − 1 and
ex2 that has the memory sufficient to store Ex in x = i are
defined.

First, as ex1 is equal to En
x in x = i − 1, ex2 can be

valued through eqn (8) and is equal to En
x in x = i. As

En
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z can be solved by the conventional HIE-FDTD pro-

cedure in x = i − 1. Then ex1=ex2 which is equal toEn
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in x = i, and En
x in x = i + 1 can be valued by eqn (8)

and can reuse the memory occupied by ex2. And now
as En
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z can be solved by the conventional HIE-FDTD

procedure in x = i again. Repeating this process to the
last rectangle, it will be seen that all E

n+1/2
y and Hn+1

z
have been solved, and only two vectors that store En

x in
each sub-region temporarily and are alternatively used
are sufficient to finish the calculation, while in the con-
ventional HIE-FDTD method, all field components are
required to store. As a result, in the proposed method,
one electric field component is nearly eliminated and the
aim of memory reduction is realized in such a way.

A short pseudo-code is written below. Some terms
in this content will be explained. In this part, Tmax is
the last time step, each value of x presents the rectangle
corresponding to cells with the same coordinate of x in
the computation domain, and Xmax presents the last rect-
angle. ex1 and ex2are both vectors, and Ex and Hz are
matrices. t presents the current time step in iteration.

Pseudo-code of the proposed method:
Vector v stores E1
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III. NUMERICAL VALIDATION
In order to validate the proposed method, two nu-

merical experiments that both use 2D parallel plate
waveguides [15] are carried out. The structures used in
the two examples are shown in Figure 2.

The excitation for the two numerical tests taken
from [11] is

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) The structures in the twonumerical examples, 
(b) one cell in the first example, and (c) one cell in the 
second example. 
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In the structure, p is the probe point recording 
fields at different time step, and J y

is the excitation 
current. 

In the first example, there are 200 and 100 cells 
with the sizes set as x∆ =0.01m and y∆ =0.01m along x 
and y directions, respectively. The source is placed on 
line of x=10 and the point p(50,5) is chosen as 
observation point recording Ey  at each time step and 
the two sides of the extended waveguide are both 
truncated by first-order Mur’ absorbing boundary 
condition. In this situation, according to the CFL 
stability condition, the largest time step sizes for the 
conventional FDTD method and the HIE-FDTD 
method are 23.57 and 33.33ps, respectively. For the 
convenience of comparative analysis, the time steps for 
conventional FDTD and HIE-FDTD methods in this 
case are both simply set as 20 ps.  

 

 

Fig. 3. Transient Ey  at p point. 

 

Table 1: Comparison of computation time of different 
methods with uniform time step size 

FDTD methods 
Time 
step 

Iteration 
numbers 

CPU 
time(s) 

ConventionalFDTD 20 ps 1000 1.23 

Original HIE-E-FDTD 20 ps 1000 33.35 

Proposed HIE-E-FDTD 20 ps 1000 33.76 

Original HIE-H-FDTD 20 ps 1000 35.58 

Proposed HIE-H-FDTD 20 ps 1000 35.71 
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Fig. 2. (a) The structures in the two numerical examples,
(b) one cell in the first example, and (c) one cell in the
second example.
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Jy (t) = exp

(
−
(

t −Tc

Td

)2
)

sin(2π fc (t −Tc)) , (9)

where

Td =
1

2 fc

Tc = 3Td .

(10)

In the structure, p is the probe point recording fields
at different time step, and Jy is the excitation current.

In the first example, there are 200 and 100 cells with
the sizes set as ∆x = 0.01 m and ∆y = 0.01 m along x and y
directions, respectively. The source is placed on line of x
= 10 and the point p(50,5) is chosen as observation point
recording Ey at each time step and the two sides of the ex-
tended waveguide are both truncated by first-order Mur’
absorbing boundary condition. In this situation, accord-
ing to the CFL stability condition, the largest time step
sizes for the conventional FDTD method and the HIE-
FDTD method are 23.57 and 33.33 ps, respectively. For
the convenience of comparative analysis, the time steps
for conventional FDTD and HIE-FDTD methods in this
case are both simply set as 20 ps.

Figure 3 shows Ey at p point and Table 1 records
the running time consumed by the FDTD method, HIE-
FDTD method, and the proposed memory-efficient ver-
sion of the later method with the uniform time step size.
From Figure 3, we can see that the numerical results sup-
plied by several algorithms are all in good agreement
and, thus, validate the correctness of the new memory-
efficient version of HIE-FDTD method. It can be seen
that different implementations of the HIE-FDTD meth-
ods show a little difference in computation time. As the
HIE-FDTD method is an implicit method, it costs more
time than the conventional FDTD method when a uni-
form time step is used.

Table 1: Comparison of computation time of different
methods with uniform time step size

FDTD methods Time
step

Iteration
numbers

CPU time
(s)

Conventional
FDTD

20 ps 1000 1.23

Original HIE-E-
FDTD

20 ps 1000 33.35

Proposed HIE-E-
FDTD

20 ps 1000 33.76

Original HIE-H-
FDTD

20 ps 1000 35.58

Proposed HIE-H-
FDTD

20 ps 1000 35.71

In order to measure the accu-
racy of the proposed method, error =√

∑
T
i=1

(
E i

y−E i
y,Re f

)2
/∑

T
i=1

(
E i

y,Re f

)2
is defined as

error function. In this function, T stands for the total
number of time step iterations and equals 1000. The
solutions of the original HIE-E-FDTD method and
original HIE-H-FDTD method are set as reference
solutions when the errors of two implementations of
the proposed memory-efficient method are discussed.
Setting the solution from the original HIE-E-FDTD
method as standard, the error between the original
HIE-E-FDTD method and the proposed HIE-E-FDTD
method is 0. Setting the solution from the original
HIE-H-FDTD method as standard, the error between
the original HIE-H-FDTD method and the proposed
original HIE-H-FDTD method is 3.59 × 10−15. It can
be seen that the errors are very small and show almost no
difference. So the accuracy of the proposed method can
be seen as the same as that of the original HIE-FDTD
method.

In the second numerical example, we still employ
the extended plate waveguide as test model mentioned
above but fine the mesh size along y direction to 0.0001
m, and all the other conditions stay the same. The rel-
evant results and time cost are shown in Figure 4 and
Table 2.

Figure 4 still shows that the results calculated by the
conventional FDTD method, HIE-FDTD method, and
the proposed memory-efficient HIE-FDTD method are
all in good agreement.

Table 2 represents the CPU time for the simulations
run by different methods. In this situation, it can be
seen that different implementations of the HIE-FDTD
methods show a little difference in computation time.
The proposed method takes almost the same time as the
original HIE-FDTD method, while it is still much faster
than the conventional FDTD method. As a result, the
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can be seen that different implementations of the HIE-
FDTD methods show a little difference in computation 
time. The proposed method takes almost the same time 
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the proposed memory-efficient HIE-FDTD method can 
both work well for problems with or without fine 
structures in one direction. 

 

Table 2: Comparison of computation time of different 
methods with nonuniform time step sizes 

FDTD methods Time 
step 

Iteration 
numbers 

CPU 
time(s) 

Conventional FDTD 0.2 ps 80,000 69.60 

Original HIE-E-FDTD 20 ps 800 32.85 

Proposed HIE-E-FDTD 20 ps 800 32.82 

Original HIE-H-FDTD 20 ps 800 29.75 

Proposed HIE-H-FDTD 20 ps 800 29.65 

 

Using the same method of measuring the accuracy 
of the proposed method adopted in the first example, 
and setting the solution from the original HIE-E-FDTD 
method as standard, the error between the original HIE-
E-FDTD method and the proposed HIE-E-FDTD 
method is 0. Setting the solution from the original HIE-
H-FDTD method as standard, the error between the 
original HIE-H-FDTD method and the proposed HIE-
H-FDTD method is 6.99 × 10−14. In this function, T  
stands for the total number of time step iterations and 
equals 800. It can be seen that the errors both are very 
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Table 2: Comparison of computation time of different
methods with nonuniform time step sizes

FDTD methods Time
step

Iteration
numbers

CPU
time (s)

Conventional
FDTD

0.2 ps 80,000 69.60

Original HIE-E-
FDTD

20 ps 800 32.85

Proposed HIE-E-
FDTD

20 ps 800 32.82

Original HIE-H-
FDTD

20 ps 800 29.75

Proposed HIE-H-
FDTD

20 ps 800 29.65

proposed memory-efficient HIE-FDTD method can both
work well for problems with or without fine structures in
one direction.

Using the same method of measuring the accu-
racy of the proposed method adopted in the first exam-
ple, and setting the solution from the original HIE-E-
FDTD method as standard, the error between the original
HIE-E-FDTD method and the proposed HIE-E-FDTD
method is 0. Setting the solution from the original
HIE-H-FDTD method as standard, the error between the
original HIE-H-FDTD method and the proposed HIE-H-
FDTD method is 6.99×10−14. In this function, T stands
for the total number of time step iterations and equals
800. It can be seen that the errors both are very small
and show almost no difference. So the accuracy of the
proposed method is the same as that of the original HIE-
FDTD method.

Table 3 shows the memory cost in different methods.
As the numbers of cells in two numerical examples are

Table 3: Memory cost (KB) in different methods
FDTD
(KB)

HIE-E-
FDTD

HIE-H-
FDTD

Proposed
HIE-E-
FDTD

Proposed
HIE-H-
FDTD

A 468.75 468.75 468.75 314.06 314.06

B 468.75 468.75 468.75 314.06 314.06

equal, the memory of storing fields they require is also
equal and listed in Table 3 where A presents the first
numerical example and B presents the second one. It
is clear that 1−312.50/468,075 ≈33%; so the memory
reduction rate is near to 33%.

IV. CONCLUSION
The analytic and semi-analytical methods are accu-

rate and can also show physical aspects of a system ex-
plicitly. At the same time, numerical methods are also
developed and are available in a wider range. Numer-
ical methods require more memory than analytic meth-
ods in most situations. The HIE-FDTD method shows
higher computation efficiency than the FDTD method in
problems with fine elements in one direction. In this
paper, efforts are made to reduce memory cost and a
memory-efficient HIE FDTD method is proposed based
on divergence relationship of electric fields. The pro-
posed algorithm nearly eliminates one electric field com-
ponent, saves nearly 33% of memory, and the implemen-
tation of the proposed method is not much more com-
plex than the conventional HIE-FDTD method. Numeri-
cal experiments are carried out and validate that the pro-
posed memory-efficient HIE-FDTD method can solve
EM fields correctly and runs almost as fast as the original
HIE-FDTD method, and in those situations, the compu-
tational efficiency can be interpreted as unchanged. The
accuracy of the proposed memory-efficient HIE-FDTD
method is also very close to that of the original HIE-
FDTD method.
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