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Abstract ─ In this paper, based on the research of back 
propagation (BP) neural network algorithm optimized 
by the beetle antennae search (BAS) algorithm, a 
new method for predicting stranded cable crosstalk is 
proposed. Firstly, the stranded wire model and the 
equivalent multiconductor transmission lines model 
are both established. Then, the extraction network of 
the stranded wire electromagnetic parameter matrix is 
constructed by using the BAS-BP neural network 
algorithm. Finally, the network is combined with the 
finite difference time domain (FDTD) method to solve 
the near end crosstalk (NEXT) and far end crosstalk 
(FEXT) of a specific three-core stranded model. The 
new method has good agreement with the crosstalk 
results obtained by the electromagnetic field numerical 
method. The validity of the new method is verified. 

Index Terms ─ Back propagation (BP) neural network 
algorithm, Beetle antennae search (BAS) algorithm, Finite 
difference time domain (FDTD) method, Multiconductor 
transmission lines (MTL), Stranded cable crosstalk. 

I. INTRODUCTION
In the 1960s, scholars began to study the internal 

crosstalk of twisted pair [1]. Some scholars also studied 
the electromagnetic characteristics of the stranded wire 
in the field coupling [2-3], but the research on the 
internal crosstalk of multi-core stranded wire is still less. 
The stranded wire is realized by the equal-angle rotation 
of the twisted single-wire winding bobbin and the 
uniform forward movement of the stranded wire, which 
has strong anti-interference ability [4]. It is suitable for 
high working frequency. 

Generally, the stranded wire crosstalk can be 
analyzed by referring to the research method of the 
non-uniform transmission line [5-6]. In the cascade idea 
proposed by Professor C. R. Paul, the cascading uniform 
transmission line is equivalent to a non-uniform 
transmission line and the per unit length (p.u.l.) RLCG 
electromagnetic parameter matrix can describe the 
transmission equation of each uniform transmission line 
[7-10]. The FDTD algorithm has good advantage in 

solving the crosstalk of non-uniform transmission lines, 
which is based on the cascaded transmission line theory 
(TLT) [11]. The most critical step in solving crosstalk 
by using FDTD algorithm is to extract the RLCG 
parameters of the transmission line. In [12], the domain 
decomposition method (DDM) is used to calculate the 
capacitance and inductance matrix of an arbitrary 
cross-section multiconductor transmission line (MTL). 
In [13], the integral equation (IE) method is used to 
extract the resistance parameters of random rough 
surface wires. In [14], the finite element method (FEM) 
is used to solve the problem of electromagnetic 
parameter extraction. In [15], the parameter matrix of the 
random unit length of a circular conductor is analyzed by 
using the polynomial chaotic coefficient. However, there 
is no good way to extract the electromagnetic parameters 
of multi-core strands. 

In fact, the electromagnetic parameter matrix of the 
strand changes as the stranded cable changes along the 
extension axis. Also, the strand wire can be viewed as a 
multiconductor transmission line with a continuously 
rotating cross section at the angle of the extension axis. 
In order to visualize the influence of this continuous 
variation on the RLCG electromagnetic parameter 
matrix of the stranded wire, BP neural network with 
strong nonlinear mapping ability was introduced in our 
previous research to extract the RLCG electromagnetic 
parameter matrix at any position of the strand [16-18]. 
However, from a mathematical point of view, the 
conventional BP neural network is a local search method, 
which solves a complex nonlinear problem. In addition, 
BP neural network is very sensitive to initial network 
weights, and initialize network with different weights, 
which tend to converge to different local minimums. It is 
the reason why scholars get different results each time 
they training [19-20]. Aiming at the defect of BP neural 
network, this paper finally proposes an algorithm model 
of the BAS algorithm optimization BP neural network 
(BPNN). The BAS algorithm searches by the individual 
beetle, which has higher precision and efficiency [21]. 
Finally, in the solution analysis part of the crosstalk,  
this paper combines the stranded wire electromagnetic 
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parameter matrix extraction network with the FDTD 
algorithm to estimate the NEXT and FEXT of a specific 
three-core stranded wire. 

Based on the BAS-BP algorithm, this paper proposes 
a new approach for the electromagnetic parameter 
extraction of the stranded wire. Then using the FDTD 
algorithm to calculate the NEXT and FEXT of the 
stranded wire. Section II defines the model of the 
stranded wire and the sample extraction model of the 
stranded electromagnetic parameters. Section III deals 
with the specific implementation flow of the BAS-BP 
neural network algorithm combined with the FDTD 
method. Section IV provides the analysis of a specific 
three-core stranded wire model by using the BAS-BP 
algorithm combined with the FDTD method and the 
verification of the crosstalk simulation. Section V 
summarizes this paper. 

II. STRANDED WIRE MODELING
A. Establishment of the stranded wire model

For the convenience of research, only the stranded
wire with the same cross-sectional shape is considered. 
In this paper, the stranded wire is modeled on the basis 
of a single spiral [22]. Figure 1 is the single spiral model. 
(1) and (2) are mathematical formulas for the single spiral:
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Fig. 1. Single spiral model. 

Where R1 is the radius of rotation, α is the twist 
factor, p is the pitch, αp is the angle of rotation, and l is 
the line length. In fact, the n-core strand is composed of 
n single wires, but the starting positions of different 
single wires are different. In this paper, any cross section 
that is consistent with the initial cross-sectional shape of 
the n-core strand is defined as the transposition of the 
n-core strand, and the adjacent transpositions are
phase-shifted by 2π/n. The position of the transposition

corresponds to the position of the stranded line is kp/n, 
and the corresponding degree of radial rotation is 2kπ/n, 
where k=1, 2...n. Taking the three-core stranded wire as 
an example, the degree of rotation of the cross section of 
the transposition is 2π/3, 4π/3, 2π, as shown in Fig. 2. 

4 3π2 3π 2π0

p

Fig. 2. Three-core stranded wire model. 

B. RLCG parameter sample matrix extraction model
Stranded wires in engineering application typically

contain separate insulating layers, which may also 
contain shielding layers. The finite element method 
(FEM) is able to accurately and quickly solve the p.u.l. 
RLCG parameter matrix of a uniform transmission 
line of arbitrary cross section. AnsysQ3D is a circuit 
parasitic parameter extraction software based on the 
FEM algorithm, but it cannot directly extract the RLCG 
parameter matrix at any position of the strand. 

From the cross-section, the cross-sectional shape of 
the strand at any position is the same. There is only a 
change in the relative position between the strand and 
the ground. From the axial extension point of view, the 
stranded wire can be regarded as a multiconductor 
transmission line which is formed by cascading an 
infinite number of infinitely small cross section 
conductors which are continuously rotated in the axial 
direction. Therefore, the relative position between the 
strand and the ground can be converted into a 
corresponding rotation angle, that is, one pitch of the 
strand corresponds to a 360° rotation angle, and the 
phase difference between the adjacent two pitches is 
360°. So the corresponding angle of the distance from 

the pitch initial end at d is *2d
p

π . 

Any position of the stranded wire corresponds to its 
own RLCG parameter matrix and the corresponding 
rotation angle. For the unique property of the stranded 
wire, the p.u.l. RLCG parameter matrix of the multi-core 
uniform transmission line with different rotation angles 
can be extracted by the above simulation software. Then 
the sample parameter matrix required for the BAS-BP 
neural network and its corresponding angle matrix as the 
network input can be obtained. 

Equation (3) is the electromagnetic parameter 
matrix of the n-conductor transmission line: 
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Where X represents the RLCG parameter matrix and x 
represents the specific value of the electromagnetic 
parameter. When the loss is not considered, the RLCG 
electromagnetic parameter matrix of the transmission 
line is a symmetric matrix, x ji = x ij. Therefore, it is only 
necessary to take the main diagonal element number and 
the upper triangular element of the matrix as the research 
object, as shown in the formula (4), (5): 

[ ] [ ]11 12 22 11 12 22, , ,..., , , , ,...,nn nnR r r r r L l l l l= =  , (4)

[ ] [ ]11 12 22 11 12 22, , ,..., , , , ,...,nn nnC c c c c G g g g g= =  .  (5) 

Replace R , L , C  and G  with the column vector 
y: 

[ ]1 2, , , , ,...,
T T

my R L C G y y y = = 
   . (6) 

Where y represents the value of the sample element of 
the RLCG parameter matrix, the total number of 
elements in y is m, 2 (1 )m n n= + , n is the number of core. 
Figure 3 shows the RLCG parameter data processing 
procedure. 

Start

Extracting RLCG sample parameter matrices 
from different angles

Extract the diagonal and upper triangular 
elements of the parameter matrix

Define the angle as the network input, RLCG 
as the network output

Determinant

Normalized

End

Fig. 3. Data pre-processing flow chart. 

III. BAS-BP ALGORITHM COMBINED
WITH FDTD ALGORITHM PREDICTING 

CROSSTALK 
A. BP neural network algorithm

The BP network is mainly composed of signal
forward propagation and error back propagation. 
Forward propagation is the process, by which the signal 
is input by the input layer and processed by the output 
layer after being processed by the hidden layer neurons. 
If the error between the predicted value and the true 

value does not meet the accuracy requirements set by the 
network, it will turn to the back propagation phase of the 
error. Error backpropagation is to pass the obtained error 
back to the input layer through the hidden layer. In this 
process, the error is distributed to each neuron and the 
weight and threshold are adjusted along the direction, in 
which the error function decreases the fastest. This 
process continues to cycle until the error in the training 
network output meets the accuracy requirements or the 
number of iterations is reached. 

By analyzing the number of input and output 
elements, a small and medium-sized BP neural network 
with only one hidden layer is selected. 
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Fig. 4. Topological structure of the BP neural network. 

Figure 4 is a single hidden layer BP neural network 
topology. The stranded wire rotation angle is the input of 
the network, and the RLCG parameter column vector is 
the network output. w1,t is the weight of the hidden layer 
from the input layer to the t-th layer, w t,m is the weight of 
the t-th layer hidden layer to the m-th layer output layer, t 
is the number of hidden layer neurons, and t is an 
empirical range value. It is affected by the number of 
input elements n and the number of output elements m: 

0.5( ) , ( 1, 2,...,10)t m n a a= + + = . (7) 

B. BAS algorithm
The BAS global search algorithm [21] is a

meta-heuristic algorithm for multi-objective function 
optimization based on the principle of the beetle 
foraging proposed in 2017. When the beetle is foraging, 
it always distinguishes the direction according to the 
strength of the food smell. The beetle has two long 
antennae. If the right side of the antenna receives 
stronger odor than the left side, the beetle will fly to 
the right, otherwise it will fly to the left. According 
to this simple principle, the beetle can effectively find 
food. Similar to genetic algorithms, particle swarm 
optimization, etc., the BAS algorithm can automatically 
implement the optimization process without knowing 
the specific form of the function and the gradient 
information. However, compared with the swarm 
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intelligence optimization algorithm, the BAS algorithm 
only needs one beetle, the computational complexity 
is greatly reduced, and its core code is only four 
lines, which is easy to implement. For low-dimensional 
optimization functions, it has a very high convergence 
speed and convergence quality. 

The algorithm flow is as following [20]: 
(1) Establish and normalize the random vector of the

beetle facing: 
( ,1)
( ,1)

rands kb
rands k

→

=
 

. (8) 

Where rands() is a random function, k represents the 
spatial dimension. 

(2) Calculate the coordinates of the space position of 
the beetle: 
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Where rtx  indicates the position coordinates of the 
right-handed beard on the t-th iteration; ltx  indicates the 
position coordinate of the left-handed beard on the t-th 
iteration; tx  represents the centroid coordinate of the 
beetle at the t-th iteration; 0d  represents the distance 
between the left and right beard. 

(3) According to the fitness function, it is confirmed
that the odor intensity, that is the intensity of ( )lf x  and 

( )rf x , ()f  is the fitness function. 
(4) Update the position of the beetle:

1 * * ( ( ) ( ))t t t
rt ltx x b sign f x f xσ+ = − −



. (10) 
Where tσ  represents the step factor at the t-th iteration; 
sign() is a symbolic function. 

C. BAS-BP neural network combined with FDTD
algorithm predicting crosstalk

The FDTD algorithm is a numerical method that 
uses cascaded ideas to solve the crosstalk of non-uniform 
transmission lines. According to the cascading idea, the 
strand can be decomposed into a series of uniform 
transmission lines of a finite number of tiny units. If 
assuming that the RLCG parameter matrix of each unit is 
a fixed value, the entire transmission line equation will 
be solved by iteratively solving the transmission line 
equation of each unit. 

Figure 5 is the equivalent circuit model of the p.u.l. 
multiconductor transmission lines. Where dz represents 
an infinitesimal length transmission line. r i and r j are the 
p.u.l. resistors that make up the resistance matrix R.
l ii and l ij are the p.u.l. self-inductance and mutual
inductance that constitute the inductance matrix L.
c ii and c ij are the p.u.l. self-capacitance and mutual
capacitance that constitute the capacitance matrix C. g ii
and g ij are the p.u.l. self-directed and transconducted that
form the conductance matrix G.
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Fig. 5. The per unit length equivalent circuit for MTLs. 

According to the TLT [24], the uniform 
multiconductor transmission line equation is: 

U IRI L
z t

∂ ∂
= − −

∂ ∂
, (11) 

I VGV C
z t
∂ ∂

= − −
∂ ∂

. (12) 

Where U, I represent the voltage and current of the 
transmission line, respectively and they are a function of 
space z and time t. Therefore, the establishment of 
the multiconductor transmission line equation largely 
depends on the acquisition of the p.u.l. RLCG parameter 
matrix. In other words, the most important step in 
solving the stranded wire crosstalk by using the FDTD 
algorithm is to obtain a high-precision RLCG parameter 
matrix. 

From a mathematical point of view, there is a highly 
nonlinear mapping relationship F between the RLCG 
parameters and the rotation angle (from the initial port 
position) in the strand model: 

( )X F angle= . (13) 
This kind of functional relationship is difficult to 

express with common functions, but BP neural network 
can describe this mapping effectively and conveniently 
[16]. At the same time, many existing researches show 
that using the optimization algorithm to optimize the BP 
neural network initial weights, then training the network 
can greatly improve the network performance. It can 
greatly avoid the problem that random initialization 
causes the network falling into local optimum. Similar to 
the genetic algorithm, particle swarm algorithm and 
other intelligent optimization algorithms, it can better 
solve the poor accuracy of the BP neural network. 
However, the above optimization algorithm occupies 
more computer memory, and the main program runs 
longer [19]. Considering the accuracy and calculation 
time, this paper uses the BAS global search algorithm to 
find the optimal initial weights and thresholds of the BP 
neural network, and applies it to the constructed network 
to construct the final training network [21]. The model 
constructed by this method can well overcome the 
problems of poor stability of the BPNN and prevent it 
falling into local optimum. The modeling steps are as 
following: 

(1) Create a random vector to be oriented by the
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beetle and define the spatial dimension k. The model 
structure is 1 M N− − . 1 is the number of neurons in the 
input layer (angle), M is the number of neurons in the 
hidden layer and the number of neurons in the output 
layer is N. Then the spatial dimension for searching is k, 

1* *k M M N M N= + + + . 
(2) Setting of the step factor σ . The step factor is

used to control the regional search ability of the beetle. 
The initial step size should be as large as possible to 
cover the current search area and not fall into the local 
minimum. This paper adopts the linear decreasing 
weight strategy to ensure the fine search: 

1 * , (1, 2,..., )t t eta t nσ σ+ = = . (14) 
Where eta takes the number close to 1 between [0,1], 

and takes 0.8 in this paper. 
(3) Determine the fitness function. The root mean

square error (MSE) of the test data is used as a fitness 
evaluation function to advance the search for spatial 
regions. The function is: 

2

1

1 ( ( ) )
N

sim i
i

fitness MSE t i y
N =

= = −∑ . (15) 

Where N is the number of samples for the training 
set; ( )simt i  is the output value for the model of the 
i-th sample; iy  is the actual value of the i-th sample. 
Therefore, the position where the fitness function value 
is the smallest when the algorithm iterates to stop is the 
optimal solution for the problem. 

(4) Initialize the beetle position. The initial parameter
takes the random number between [-0.5, 0.5] as the 
initial solution set of the BAS algorithm, which is the 
initial position of the beetle, and saves it in bestX. 

(5) Evaluation. The fitness function value at the
initial position is calculated from the fitness function (15) 
and stored in bestY. 

(6) Update the position of the beetle. According to
the formula (9), the position coordinates of the left and 
right beards are updated. 

(7) Updating of the solution. According to the
position of the left and right whiskers in the algorithm 
of the beetle, the right and left fitness function values 
are respectively obtained. Comparing the intensity and 
updating the position of the beetle according to equation 
(10), that is, adjust the weights and thresholds of the 
BP neural network. Then calculating the fitness function 
value at the current position. If the fitness function value 
at this time is better than bestY, it should update bestY, 
bestX. 

(8) Iterative stop control. Determining whether the
fitness function value reaches the set precision (taken 
as 0.000005) or iterates to the maximum number (100 
generations). If the condition is met, it goes to step (9). 
Otherwise, it returns to step (6) to continue iteration. 

(9) Optimal solution generation. When the algorithm
stops iterating, the solution in the bestX is the optimal 
solution of the training, that is the optimal initial weights 

and thresholds of the BP neural network. The above 
optimal solution is brought into the BP neural network 
for secondary training and learning. Finally, the stranded 
wire RLCG parameter matrix extraction model is formed. 

Start

Processed 
data

BAS initialization

Create BPNN

Initial BPNN threshold

Update the position of the beetle

Calculating fitness values

Meet the end condition

Extracting  optimal weight and threshold

End

Update 
search step 

size

Calculate the position of the beetle

Y

N

Fig. 6. The BAS algorithm optimized BP neural network 
flow chart. 

By combining the RLCG parameter matrix 
extraction network at any position of the strand and the 
FDTD algorithm, the crosstalk of the strand can be 
predicted. Based on the above discussion, the specific 
flow chart of BAS-BP neural network model combined 
with FDTD algorithm for predicting crosstalk is given. 
Fig. 6 shows a flow chart for the BAS algorithm to 
optimize the initial weights and thresholds of the BP 
neural network. Figure 7 shows a flow chart for the 
BAS-BP neural network RLCG parameter extraction 
model combined with the FDTD algorithm to predict the 
stranded crosstalk. 

Start

Create new BPNN

Optimized BPNN weight and 
threshold

Any angle, position RLCG

Combined with FDTD 
algorithm

Crosstalk prediction

End

Processed data

Fig. 7. The BAS-BP algorithm combines the FDTD 
method predicting crosstalk flow chart. 
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In this experiment, the BP neural network model 
adopts single input and single hidden layer setting. 
According to the empirical formula of hidden layer 
neurons (7), the value range of hidden layer neurons 
is [7,17]. In order to improve prediction accuracy, 
comparing the MSE values under the number of neurons 
in each hidden layer in turn, and select the optimal t 
value, that is, the number of neurons in the hidden layer 
is 12. Therefore, for the three-core stranded wire, the BP 
neural network structure is set to 1-12-12, and the 
dimension of the search space of the beetle search 
algorithm is 180. Since there are no effective guiding 
theories and methods for setting the step factor in the 
BAS algorithm, the trial and error method is used here 
to determine the initial step size 0δ  = ( )sqrt k , and the 
number of iterations n = 100. 

IV. VERIFICATION AND ANALYSIS
A. Verification test of the BAS-BP algorithm

In order to facilitate the research, this paper uses
three-core stranded wire as an example to verify and 
analyze the proposed method. The wire radius in the 
wire harness is 0.89 mm. The insulating material of the 
wire is a PVC material having a relative dielectric 
constant of 2.7. The wire thickness is 0.8 mm. The wire 
length is 1000mm. The wire to ground distance is 8mm. 
Connecting 50Ω resistors at both ends of the wire. The 
details are shown in Table 1. The specific distribution 
pattern to the ground is shown in Fig. 8. 

Table 1: Three-core twisted cable 
Parameters Values 

Number of cores 3 
Single wire radius 0.89 mm 

Single wire conductivity 58000000 S/m 
Single wire insulation thickness 0.8 mm 

Insulation layer relative permittivity 2.7 
Pitch 1000 mm 

Height 4mm 

1

2 3

Ground

0.89mm
R0.8mm

4m
m

Fig. 8. Three-core stranded wire cross-section distribution 
pattern. 

Taking the cross-section shape of Fig. 8 as the 
reference section (corresponding to the rotation degree 
of 0°), the p.u.l. RLCG parameter matrix is extracted  
by AnsysQ3D simulation software. Due to the axial 
symmetry of the three-core stranded wire, the RLCG 
parameter matrix in different transpositions can be 
transformed into each other through row-column 
transformation. Therefore, it is only necessary to extract 
the stranded RLCG parameter matrix within 1/3 of the 
pitch shown in Fig. 1 to obtain the RLCG parameter 
matrix of the entire pitch. Starting from 0° and ending at 
117°, the R, L, C, G parameter matrix samples were 
taken from the three-core multi-stranded wire in 1/3 
pitch at equal intervals of 3°to get a total of forty samples. 
The initial parameter matrix is as following (RLCG 
parameter matrix at 0°): 

0.365,0.016,0.037
R= 0.016,0.305,0.009

0.037,0.009,0.336

 
 Ω 
  

, (16) 

9

585.44,314.15,314.15
L= 314.15,529.95,287.82 10

314.15,287.82,529.95
H−

 
 × 
  

, (17) 

12

62.011, 27.019, 27.026
C= 27.019,65.049, 25.750 10

27.026, 25.750,65.068
F−

− − 
 − − × 
 − − 

, (18) 

3

0.875, 0.435, 0.435
G= 0.435,0.893, 0.434 10

0.435, 0.434,0.893
S−

− − 
 − − × 
 − − 

. (19) 

In general, the effect of the R and G parameters is 
ignored because the transmission line resistance is much 
smaller than its termination resistance. Therefore, the 
BAS-BP neural network only trains and tests the L and C 
parameter matrices of the three-core stranded wire. This 
experiment sets the training error accuracy of the neural 
network to Emin = 10-6. The BAS-BP neural network 
algorithm flow of Fig. 5 was used in combination with 
the MATLAB2018 software platform for training and 
testing. The samples were randomly arranged using a 
random function. The first 30 sets of data were used as 
training data and the last ten sets of data were used as test 
samples. The training errors of the first 30 groups are 
shown in Fig. 9. The pre-set accuracy requirements are 
achieved around 55 generations. Figure 10 is the optimal 
fitness curve for the BAS-BP model, which tends to be 
stable after 55 generations of iteration. The corresponding 
ten groups of samples correspond to angles of 3°, 9°, 51°, 
69°, 114°, 36°, 24°, 57°, 27°, and 33°, respectively. 
Figure 11 is a test error distribution diagram. The 
maximum error of the test does not exceed 0.008 and the 
mean value of the test error is only 0.0013, which shows 
good prediction accuracy. The formula for calculating  
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the test error using equation (6) is as following: 

test
y yE

y
′ −

= . (20) 

Fig. 9. The iteration number and mean square error of 
BAS-BP neural network training. 

Fig. 10. The BAS-BP neural network algorithm fitness 
curve. 

In this paper, the relative error evaluation index is 
selected to evaluate the performance of the model. The 
calculation formula is as following: 

, ( 1, 2,..., )
i i

i
i

y y
E i n

y

′ −
= = . (21) 

Where iE  is the relative error, ( 1, 2,..., )iy i n′ =  is the 
predicted value of the i-th sample, ( 1, 2,..., )iy i n=  is the 
true value of the i-th sample; n is the number of samples. 
The smaller the relative error is, the better the model 
performance. 

In order to test whether the BAS-BP prediction 
model is superior to other intelligent optimization 
algorithm models in RLCG electromagnetic parameter 
extraction, this paper chooses the GA-BP neural network 
model and the BAS-BP model to compare prediction 
accuracy from relative error mean and iterative process. 
The performance of the model is described by the CPU 
running time. The results are shown in Table 2. 

Fig. 11. Test sample error histogram. 

Table 2: Comparison of different model effects 
Relative Error Mean CPU Time/s 

Model 
BPNN 

BAS-BPNN 
GA-BPNN 

Test L 
0.0808 
0.0016 
0.0023 

Test C 
0.0026 
0.0011 
0.0011 

Train 
0.7174 

39.0157 
208.3355 

It can be seen from Table 2 that the BP, the BAS-BP 
and the GA-BP algorithms can fit the capacitance matrix, 
but the accuracy of the latter two is higher than that  
of the BP algorithm. As to the fitting effect on the 
inductance matrix can be seen, the BAS-BP algorithm is 
optimal in extraction accuracy and the relative error mean 
is only 0.0016. In general, the accuracy of the BAS-BP 
algorithm and the GA-BP algorithm representing the 
optimization algorithm are not much different, but from 
the CPU running time, the BAS-BP is only about 
one-fifth of the GA-BP. Therefore, from the perspective 
of overall prediction accuracy and convergence speed, 
the BAS-BP algorithm works best, reflecting that  
the BAS-BP algorithm has good applicability and 
effectiveness in RLCG parameter extraction. 

B. Crosstalk analysis
The schematic diagram of the crosstalk test of the

triple-stranded wire is shown in Fig. 12. The termination 
is 50Ω load, ie Zi=50Ω (where i = 1, 2, 3, 4, 5, 6), the line 
length is 1 meter, and the wire 1 is the power line. 
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Fig. 12. Three-core stranded crosstalk experimental 
schematic diagram. 

The stranded line RLCG parameter matrix extraction 
network based on the BAS-BP algorithm is combined 
with FDTD algorithm to predict the strand crosstalk. The 
crosstalk results solved by using the full wave simulation 
method of the CST Cable Studio® commercial software 
(the electromagnetic field numerical method based 
on the Huygens wave propagation model) were used 
as reference standards. The full wave algorithm is an 
approximate exact solution [24]. According to the 
parameters in Table 1, the crosstalk of the three-core 
stranded wire is solved by two methods in the frequency 
band 100KHz - 1GHz. This paper ignores the small 
influence of different frequencies on the electromagnetic 
parameters of the strand [23] and uses 500MHz as the 
reference value. 

Figure 13 and Fig. 14 are the NEXTs of lines 2 and 3, 
respectively. Because of the structural characteristics of 
the triple-core stranded wires, the 2nd and 3rd wires 
have similar crosstalk characteristics. The NEXTs of 
lines 2 and 3 solved by the new method are both -59.17 
dB at 100KHz, which are 0.68dB different from the 
crosstalk result of the full wave simulation, and then 
grow steadily in the middle and low frequency bands. At 
high frequencies, the NEXTs of lines 2 and 3 fluctuate 
around -17 dB. However, line 2 is in good agreement 
with the results of full wave simulation. Similarly, the 
FEXT results for the three-stranded strands solved by the 
two methods are shown in Fig. 15 and Fig. 16. The 
FEXTs solved by the new method are -63.30 dB at 
100kHZ, which are 1dB different from the result of the 
full wave simulation solution, and then grow steadily in 
the middle and low frequency bands. At high frequencies, 
they fluctuate around -15 dB, and the crosstalk solved by 
the new method shows slight differences with full wave 
simulation. 

By analyzing the results of the crosstalk solution, 
the NEXT and FEXT solved by the new method show a 
good agreement and consistency with the full wave 
simulation results, especially in the middle and low 
frequency bands. In the high frequency range, the new 
method and the full-wave simulation result do not have a 
slight displacement in the frequency band, but there are 
some discrepancies in the value, which may be caused 

by the following problems. First, the space segmentation 
of the FDTD algorithm in this paper is 150 segments, 
which may not achieve the actual twisting effect. In 
theory, as the number of segments increases, the 
accuracy of the new method will also increase. Second, 
the BAS-BP neural network constructing the stranded 
wire RLCG parameter extraction model still has slight 
deviations, and this effect will be multiplied at high 
frequencies. Third, for the convenience of research, this 
paper ignores the small influence of R, G parameters and 
the influence of frequency on RLCG. Fourth, the full 
wave simulation will affect the accuracy of the crosstalk 
solution because of the setting of parameters, the 
selection of the number of sample points, and the setting 
of the simulation task. It cannot perfectly reproduce the 
true crosstalk of the three-core stranded wire. So there 
is a slight impact on the consistency of two curves. 
However, in general, the crosstalk predicted by the 
BAS-BP algorithm combined with the FDTD method 
has extremely high precision (coincidence) at low 
frequencies, and at high frequencies, it is consistent with 
the simulation results in the trend of crosstalk. 
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Fig. 13. Conductor No. 2 NEXT. 
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Fig. 14. Conductor No. 3 NEXT. 
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V. CONCLUSION
This paper proposes a new method based on the 

BAS-BP algorithm combined with the FDTD algorithm 
to predict the strand crosstalk. Through studying a 
specific three-core stranded wire and referring to the 
full wave simulation results, the applicability and high 
efficiency of the proposed method in the stranded wire 
crosstalk prediction are verified. The verification results 
show that, first, the RLCG parameter matrix extraction 
network has higher precision. The test results show that 
the relative error is less than 0.008 and the average 
relative error is only 0.0013. Second, the optimization 
effect of the BAS algorithm on the BP neural network is 
significantly better than swarm optimization algorithm. 
Third, in the 100KHz and 1GHz bands, the new method 
calculates the NEXT and FEXT of the stranded wire 
with high accuracy, especially in the middle and low 
frequency bands. Finally, the method proposed in this 
paper has strong vitality and creativity. There are 
still many places worth studying in the combination 

of adaptive beetle swarm algorithm and windward 
differential algorithm. 
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