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Abstract — In this paper, a novel polynomial chaos based 

approach for the fast statistical analysis of complex microwave 

structures is proposed. This approach leverages a highly efficient 

closed form low-fidelity model elicited from the high-dimensional 

model representation (HDMR) of the network. By cross-cutting 

the efficiency of this low-fidelity model with the accuracy of 

general high-fidelity simulations, the accuracy-CPU cost tradeoff 

for the statistical analysis can be achieved.  

I. INTRODUCTION  

The generalized polynomial chaos (PC) theory is a widely 

accepted numerical approach for statistical analysis of circuits 

and systems [1]-[3]. In this approach, the uncertainty in a 

network response is modeled as a linear combination of 

polynomial basis functions of the input network parameters 

[1]-[3]. The coefficients of the expansion form the new 

unknowns of the network and can be evaluated via repeated 

black box solutions of the original network model [2],[3]. The 

main drawback with PC approaches is that the number of 

coefficients to be evaluated increases in a polynomial manner 

with the number of random parameters or dimensions. As a 

result, classical PC approaches are computationally prohibitive 

for statistical analysis of high-dimensional problems. 

This paper presents a more efficient alternative to the 

traditional PC approaches. First, a closed form low-fidelity 

model of the network response is constructed using 

unidimensional PC expansions elicited from the first order 

terms of a high-dimensional model representation (HDMR). 

This low-fidelity model can be used to analytically emulate the 

network response at a fraction of the CPU costs required for a 

rigorous high-fidelity simulation. However, this efficiency 

comes at the cost of the low accuracy of the model caused by 

the negligence of the higher order HDMR terms. Next, a 

nonintrusive linear regression approach to evaluate the PC 

coefficients of the full-blown expansion is adopted. In this 

regression approach, the majority of the deterministic black 

box network solutions are determined by probing the closed-

form low-fidelity model. In order to compensate for the lower 

accuracy of the low-fidelity model, only a limited number of 

high-fidelity simulations of the network response are added. In 

effect, the efficiency of the low-fidelity model is cross-cut with 

the accuracy of high-fidelity simulations. Notably the fraction 

of low-fidelity solutions to high-fidelity simulations can be 

easily tuned for the optimal accuracy-CPU cost tradeoff. 

II. DEVELOPMENT OF PROPOSED MULTI-FIDELITY APPROACH  

A general microwave network is considered where the 

input uncertainty is represented by n mutually uncorrelated 

random dimensions ]λ,..,λ,λ[ 21 nλ . Traditional PC approaches 

model the resultant uncertainty in the unknown 

current/voltage responses, X(t,λ), using a linear combination 

of orthogonal polynomials as  
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where Φk(λ) is the kth multivariate polynomial, Xk(t) is the 

corresponding coefficient, and the number of terms P+1 = 

(n+m)!/(n!m!), m being the maximum degree of the 

expansion. In this paper, a high dimensional model 

representation (HDMR) of the network of (1) is considered 

where any response ),(),( λXλ ttx  can be represented as a 

hierarchical superposition of functions describing the 

interactions among the random dimensions as [4]: 
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In (2), x0 is the mean value of x(t,λ), xi(t,λi) represents the 

contribution of λi to x(t,λ) acting alone, xij(t,λi, λj) represents 

the pairwise contribution of λi and λj to x(t,λ) etc. The first 

order terms of (2) can be expressed using cut-HDMR [4] as 
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where 
i
λ\)0(

λ represents the vector where all λ except λi is 0. 

These first order terms can now be modeled as 1D PC 

expansionss 
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where xi
(k)(t) represents the kth coefficient and ϕk is the 

corresponding 1D basis. The coefficients of (4) can be 

evaluated using the pseudo-spectral collocation technique in 

conjunction with (3) [3]. Now, neglecting the higher order 

HDMR terms of (2), a low-fidleity PC representation of the 

response x(t,λ) is obtained as  
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The model of (5) is closed form in nature and can be used to 

analytically emulate the response instead of using a rigorous 

and time consuming high-fidelity simulation. 

Next, to recover the coefficients of (1), the linear regression 

approach is chosen which typically requires K = 2(P+1) black 

box model simulations of the network response [2]. In this 

paper, an iterative algorithm is used to find the fraction of K 

simulations performed using the low-fidelity model. This 

algorithm begins by initially assuming that all K simulations 

are performed using the low-fidelity model of (5). Thereafter, 

the number of high-fidelity network simulations is increased in 

steps of k nodes per iteration and the PC coefficients are 

reevaluated. The value of k is kept small enough (k = 10% of 

K) to minimize any overshoot beyond the optimal number of 

high-fidelity simulations. As the number of high-fidelity 

simulations increases per iteration relative to the number of 

low-fidelity simulations, the resultant improvement in the 

accuracy of the response variance is computed as 
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where x̂  are the computed PC coefficients and the superscript 

r is the iteration count. As the iteration count increases, the 

error in the numerator of η steadily decreases. Once the value 

of η falls below a prescribed tolerance, the iterations are 

halted. 

III. NUMERICAL RESULT AND DISCUSSION 

To validate the proposed approach, the multicondutor 

transmission line (MTL) network of Fig. 1 is considered. The 

MTLs are terminated with cascode amplifiers modeled using 

SPICE level-49 CMOS transistors. The input waveform to 

lines 2 and 3 are trapezoidal pulses with rise/fall time Tr = 0.1 

ns, pulse width Tw = 1 ns, and amplitude 5V. The uncertainty in 

the network is introduced via n = 10 random variables whose 

characteristics are shown in Table I. For this example, a 

Hermite PC expansion of degree m = 3 is required. The 

uncertainty quantification of the network is performed using 

two PC approaches – the proposed multi-fidelity approach and 

the traditional linear regression approach of [2]. The low-

fidelity model requires only (m+1)n+1 = 41 SPICE 

simulations. In the multi-fidelity stage, only 30% of the 2(P+1) 

= 572 regression nodes (i.e., 171 nodes) requires a high-fidelity 

SPICE simulation translating to a speedup of more than 5 times 

over the traditional linear regression approach., The probability 

density of the transient response at N2 evaluated at the time 

point when the standard deviation is maximum (0.39 ns) using 

the above methods and 10,000 samples is compared in Fig. 2. 

Despite the speedup, the proposed approach exhibits good 

accuracy relative to the traditional linear regression approach.  
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Fig. 1: Coupled transmission line network schematic  
 

TABLE I 

CHARACTERISTICS OF RANDOM PARAMETERS OF NETWORK OF FIG. 1 

Random Parameters Mean Relative SD 

εr (Relative permittivity of dielectric) 4.4 

10% 

σ (Metal conductivity) 5.8e7 

t (Thickness of metal) 5 µm 

w (Width of transmission lines) 180 µm 

h1 (TL1 height) 50 µm 

h2 (TL2 height) 70 µm 

h3 (TL3 height) 60 µm 

s ( line spacing) 90 µm 

len (NMOS channel length) 0.1 µm 

wid (NMOS channel width) 10 µm 
 

 
Fig. 2: Probability distribution function of transient response at node 

N2 at timepoint of maximum standard deviation (t = 0.39 ns). 
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