
A DC to HF Volume PEEC Formulation Based on
Hertz Potentials and the Cell Method

Riccardo Torchio, Piergiorgio Alotto, Paolo Bettini, Dimitri Voltolina, and Federico Moro
Dipartimento di Ingegneria Industriale

Università di Padova
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Abstract—A new Partial Element Equivalent Circuit formula-
tion based on Hertz potentials and the Cell Method is presented.
Conductive, dielectric, and magnetic linear-homogeneous media
are considered by means of conduction, polarization, and mag-
netization current densities. The use of edge unknowns leads to
reduce system size with respect to typical face-based approaches.

I. INTRODUCTION

A large body of literature shows that integral methods are
particularly suited to the solution of high frequency electro-
magnetic problems (EM) involving large domains with the
characteristics of vacuum. In particular, the Partial Element
Equivalent Circuit (PEEC) method has been shown to be well
suited for the analysis of electromagnetic devices, such as
printed circuit boards and antennas. The aim of this work
is to present a novel 3-D Hertz-PEEC formulation, including
conductive, dielectric, and magnetic media. This approach is
based on the theory of Hertz potentials [1] and magnetization
currents for the magnetic media [2], [3], while in literature
Amperian currents [4] or the magnetization [5] are applied.
The discretization of the formulation is obtained by means
of the Cell Method (CM) [6] and the current density vector,
which is the only unknown, is expanded by Whitney face
functions [7]. The proposed approach leads to a unified
treatment of magnetic and dielectric media which can be
handled with a single set of robust and efficient semi-analytical
integration routines. The approach is thus capable of solving
EM problems over a larger frequency range compared to extant
PEEC approaches for magnetic media [5]. Furthermore, the
formulation uses edge unknowns, leading to the reduction of
the linear system size with respect to other approaches.

II. INTEGRAL FORMULATION

Conductive, dielectric, and magnetic domains Ωc , Ωd , and
Ωm (with boundaries Γc , Γd , and Γm, respectively) are con-
sidered in the formulation. The domains have no intersection
and their disjoint union is Ω = Ωc tΩd tΩm.

When conductive, dielectric, and magnetic media are con-
sidered, the following constitutive relations can be introduced:

J f = σE in Ωc, D = ε0E + P in Ωd,

B = µ0H+µ0M in Ωm,
(1)

where J f is the conduction current density, E and H are the
electric and the magnetic field, D is the electric displacement
and B is the magnetic flux density, σ is the conductivity, ε0
and µ0 are the vacuum permittivity and permeability. The
polarization P and the magnetization M are introduced as
equivalent sources in vacuum, so the effects of dielectric and
magnetic media are taken into account. With the introduction
of (1), following the approach and notation of [8] (chap. 5, 7),
Maxwell’s equations in frequency domain can be re-written in
a more symmetric form, avoiding the use of D and B:

∇ · E = ε0
−1(% f + %p), −∇ × E = Jm∗ + iωµ0H,

∇ ·H = µ0
−1%m∗, ∇ ×H = J f + Jp + iωε0E,

(2)

where % f is the free electric charge density, Jp = iωP and
%p = −∇ · P are the polarization current and bound dielectric
charge densities, Jm∗ = iωµ0M is the magnetization current
density and %m∗ = −∇ · µ0M is the bound magnetic charge
density. As shown in [1] and [9], it is possible to write the
electric field E and the magnetic field H as:

E = −(iω)2Πe − ∇ϕe − ε0
−1∇ × (iωΠm) + E0,

H = −(iω)2Πm − ∇ϕm + µ0
−1∇ × (iωΠe) +H0,

(3)

where Πe and Πm are the Hertz electric and magnetic vector
potentials, ϕe and ϕm are electric and magnetic scalar poten-
tials and E0 and H0 are imposed sources.

By defining Ae = iωΠe, and Am = iωΠm as “new” electric
and magnetic vector potentials, applying Lorenz gauge, ∇ ·
Ae = −iωε0µ0ϕe, ∇ · Am = −iωε0µ0ϕm, and letting (3) into
(2), four partial differential equations can be obtained:

�Ae = µ0Je, �ϕe = ε0
−1(% f + %p),

�Am = ε0Jm∗, �ϕm = µ0
−1%m∗,

(4)

where Je = J f in Ωc and Je = Jp in Ωd , � = (iω)2 1
c2 − ∇

2

is the d’Alembert operator and c is the speed of light. The
solution of the first equation of (4) is:

Ae(ry) = µ0

∫
Ω

Je(rx)g(rx,ry)drx, (5)

where ry is the field point, rx is the integration point and

g(rx,ry) = e−iωc−1 |ry−rx |

|ry−rx | is the scalar retarded free space Green
function. The solution of the other three equations in (4) is
obtained likewise (5).
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III. CELL METHOD DISCRETIZATION

The electric domains Ωc and Ωd are discretized into primal
tetrahedral grids GΩc and GΩd

, consisting of nc,nd nodes,
ec, ed edges, fc, fd faces, and vc, vd volumes. Then, dual
grids G̃Ωc and G̃Ωd

can be obtained by taking the barycentric
subdivision of GΩc and GΩd

[10]. The same approach can
be applied to the magnetic domain Ωm, but in this case
G̃Ωm is chosen to be made up of tetrahedral elements, while
GΩm is obtained by its barycentric subdivision. The following
incidence matrices can be obtained: GΩα (edges to nodes),
CΩα (faces to edges), and DΩα (volumes to faces), on GΩα ,
where α = c, d,m indicates the domain. Dual matrices can be
obtained for G̃a

Ωα
, i.e., G̃a

Ωα
, C̃a
Ωα

, D̃a
Ωα

, where the superscript
a indicates that the matrix is augmented [10]. To build the
CM formulation, following arrays of degrees of freedom are
introduced:
• je = ( jei ) on faces fi ∈ GΩc , jei =

∫
fi

Je · dS,
• j̃m∗ = ( j̃m∗i ) on faces f̃i ∈ G̃Ωm , j̃m∗i =

∫
f̃i

Jm∗ · dS,
• h = (hi) on edges ei ∈ GΩm , hi =

∫
ei

H · dl,
• ẽ = (ẽi) on edges ẽi ∈ G̃ΩctΩd

, ẽi =
∫
ẽi

E · dl,
• am = (ami ) on edges ei ∈ GΩm , ami =

∫
ei

Am · dl,
• ãe = (ãei ) on edges ẽi ∈ G̃ΩctΩd

, ẽi =
∫
ẽi

Ae · dl,
• φ̃e = (φ̃ei ) on nodes ñi ∈ G̃ΩctΩd

, φ̃ei = ϕe(rni ),
• φm = (φmi ) on nodes ni ∈ GΩm , φmi = ϕm(rni ).

The coupling between the domains is enforced by weakly
imposing (1):∫

ΩctΩd

w f
i ·

(
ρeJe(r) − E(r)

)
dr = 0,∫

Ωm

w f
i ·

(
ρm∗Jm∗ (r) −H(r)

)
dr = 0,

(6)

where ρe = (σc)
−1 in Ωc and ρe = (iωε0(εr − 1))−1 in Ωd ,

ρm∗ = (iωµ0(µr−1))−1, w f
i is the Whitney face basis function.

By expanding Je and Jm∗ with w f
i and letting (3) into (6), the

following system is obtained:[
Z11 Z12
Z21 Z22

] [
je

j̃m∗

]
=

[
ẽ0
h0

]
, (7)

where:
• Z11 = Re + iωLe −

1
iω G̃a

ΩctΩd
PeDa

ΩctΩd
,

• Z12 =M1/ε0CΩctΩd
Lem,

• Z21 = −M1/µ0C̃ΩmLme,
• Z22 = Rm + iωLm −

1
iω G̃a

Ωm
PmDa

Ωm
.

R, L, and P are the “traditional” PEEC resistance, in-
ductance and potential matrices, respectively, Lem and Lme
are “inductance” matrices representing the coupling between
electric and magnetic domains, whereas M1/ε0 and M1/µ0 are
mass matrices. Then, the system can be solved by applying a
change of variables (from faces to edges of the mesh) and a
projection into a reduced set of equations [4].

IV. NUMERICAL RESULTS

The 3-D Hertz-PEEC code has been developed with
MATLAB R© for the system assembly and data handling,

while MEX-FORTRAN functions combined with OpenMP
libraries have been adopted for the computation of the matrix
coefficients and post-processing.

The code has been validated on several benchmarks, includ-
ing the case, shown here, of two spheres with 1m radius, a
dielectric one (εr = 2) and a magnetic one (µr = 10) placed
3m apart on the y-axis and excited by a linearly polarized plane
wave E0 = e−ik0xuz . Where k0 = 2π f

√
ε0µ0, f = 30MHz.

The magnitude of the real and imaginary part of the scattered
electric field has been compared with the Radio-Frequency
module of COMSOL R© with good agreement (Fig. 1). Small
discrepancies are due to the sphere meshes required by PEEC
and FEM, the intrinsic differences of the two approaches, and
the numerical post processing adopted for PEEC.

Fig. 1. Scattered Electric Field magnitude V/m, xz-plane, dimensions in m.
Left: 3-D PEEC-Hertz. Right: COMSOL R©. Top: < part. Bottom: = part.
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