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Abstract—A new method for calculating the geometric sensitiv-
ities of curvilinear finite elements is presented. Approximating the
relevant metric tensors by hierarchical orthogonal polynomials
enables the sensitivity matrices to be integrated analytically. The
resulting numerical method is based on pre-calculated universal
matrices and achieves significant savings in computer runtime
over conventional techniques based on numerical integration.
Moreover, there exists a representation limit for the geometry,
i.e., the degree of basis functions fully determines a critical
order of the geometry expansion, beyond which the derivatives
of the finite-element matrices will remain constant. To validate
the suggested approach, a numerical example is presented.

Keywords—curvilinear, eigenvalues, finite elements, hierarchi-
cal, sensitivity, universal matrix.

I. INTRODUCTION

Higher-order finite elements (FEs) are attractive because
they yield exponential convergence in case of smooth fields.
However, to harvest their full potential, curvilinear boundaries
must be taken into account. Typically, the resulting metric
terms do not admit analytical integration of the FE matrices.
Numerical integration is possible, though computationally
expensive. An alternative is polynomial interpolation or ap-
proximation of the metric terms followed by exact integration.
The resulting algorithms [1], [2] achieve significant savings in
computer runtime, by utilizing pre-calculated universal matri-
ces (UMs) [3]. Applications such as sensitivity analysis and
gradient-based optimization require not only the FE matrices
but also their derivatives with respect to the parameters [4], [5].
This paper presents a procedure for computing such derivatives
at low computational cost. It employs hierarchical UMs and
applies to both straight-sided and curvilinear FEs. The method
will be demonstrated by reference to the H(curl) shape
functions of [6].

II. MODEL PROBLEM

Consider a cavity resonator Ω whose boundary ΓE is a
perfect electric conductor (PEC). Maxwell’s equations lead to
the following eigenvalue problem (EVP) for the modal electric
field E and the corresponding free-space wavenumber k:

∇×
(
µ−1
r ∇×E

)
− k2εrE = 0 in Ω, (1a)
n̂×E = 0 in ΓE . (1b)

Herein µr and εr denote the relative magnetic permeability
and electric permittivity, respectively. The weak formulation
of the EVP (1) reads:∫

Ω

∇×E · µ−1
r ∇×w dx− k2

∫
Ω

E · εrw dx = 0

∀w ∈HE(curl; Ω,ΓE). (2)

FE discretization using a set of H(curl) basis functions wm
a ,

where (·)m indicates the polynomial degree, leads to the
algebraic EVP: (

S − k2T
)
v =0, (3)

with eigenvector v. Herein the stiffness matrix S and the mass
matrix T are given by:

[Smn]aq =

∫
Ω

∇×wm
a · µ−1

r ∇×wn
q dx, (4a)

[Tmn]aq =

∫
Ω

wm
a · εrwn

q dx. (4b)

Provided that µr, εr ∈ R+ and both matrices are real symmet-
ric, S and T is positive definite. Let S and T depend smoothly
on a parameter τ , and let the considered eigenvalue k2

i be of
multiplicity one. Then, according to [7], the sensitivity of k2

i

with respect to τ is given by:

∂

∂τ
k2
i = vTi

(
∂

∂τ
S − k2

i

∂

∂τ
T

)
vi, (5)

provided that the eigenvectors are normalized according to:

vTi Tvi = I. (6)

Thus, sensitivity analysis requires the considered eigenpair
(k2
i ,vi) as well as the matrix derivatives ∂

∂τS and ∂
∂τ T .

III. HIERARCHICAL UNIVERSAL MATRICES

In an unstructured mesh, FEs of different sizes and shapes
are present. It is customary to compute the contributions of
a single FE Ωe, i.e., the element matrices Se and Te, from
a reference domain Ω̂e equipped with local coordinates ϕ.
Let ŵm

a (ϕ) denote the basis functions on Ω̂e and J(ϕ) the
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Jacobian of the geometry mapping. By means of the metric
tensors Λ̂1(ϕ) and Λ̂2(ϕ) defined by:

Λ̂1 = |J |J−TεrJ−1, (7a)

Λ̂2 = |J |−1Jµ−1
r J

T , (7b)

the element matrices Se and Te take the form:

[Smne ]aq =

∫
Ω̂e

∇ϕ × ŵm
a · Λ̂2∇ϕ × ŵn

q dϕ, (8a)

[Tmne ]aq =

∫
Ω̂e

ŵm
a · Λ̂1ŵn

q dϕ. (8b)

In [3] a hierarchical basis of scalar polynomials bkl (ϕ) which
are pairwise orthogonal on Ω̂e was introduced:∫

Ω̂e

bkl (ϕ)bpi (ϕ) dϕ =

{
1 for (k, l) = (p, i),

0 else.
(9)

Here (·)k gives the polynomial order, and (·)l denotes func-
tions of same order. Expanding Λ̂(·) in the basis

{
bkl
}

leads
to:

Λ̂(·)(ϕ) =
∞∑
k=0

L(k)∑
l=1

Λ̂
(·)
kl b

k
l (ϕ), ϕ ∈ Ω̂, (10)

wherein Λ̂kl stands for a constant matrix-valued coefficient
and L(k) for the number of homogeneous polynomials of
order k. Thanks to orthonormality (9), the calculation of Λ̂kl

reduces to:

Λ̂kl =

∫
Ω̂

Λ̂(ϕ)bkl dϕ. (11)

In the general case, the evaluation of (11) requires numerical
integration. Note that this is the only source of error in the
proposed method.

Eq. (10) yields a polynomial representation for (8), which
hereby becomes accessible to analytical integration. We thus
have:

Smn =
m+n−2∑
k=0

L(k)∑
l=1

∑
i,j

[
Λ̂2
kl

]
ij
Smnkijl , (12a)

Tmn =
m+n∑
k=0

L(k)∑
l=1

∑
i,j

[
Λ̂1
kl

]
ij
Tmnkijl , (12b)

wherein Smnkijl and Tmnkijl are metric-independent UMs. They
are independent of the geometry and need to be computed
only once. The UMs inherit the hierarchical structure of the
basis functions [6]. Thanks to orthogonality, the results of the
truncated sums in (12) are exact; see [3].

IV. UNIVERSAL MATRICES FOR SENSITIVITY ANALYSIS

When the geometry is parameterized by τ , the Jacobian J
and, in consequence, the metric tensors Λ(·) become τ depen-

dent, whereas the ŵm
a (ϕ) remain unchanged. In view of (7)

and (8), the derivatives of the element matrices read:

∂

∂τ
[Smne ]aq =

∫
Ω̂e

∇ϕ × ŵm
a ·

∂

∂τ
Λ̂2∇ϕ × ŵn

q dϕ, (13a)

∂

∂τ
[Tmne ]aq =

∫
Ω̂e

ŵm
a ·

∂

∂τ
Λ̂1ŵn

q dϕ. (13b)

The structure of (13) implies that ∂
∂τS and ∂

∂τ T may be
constructed from UMs too, by a method similar to Section III:
The polynomial expansions of ∂

∂τΛ(·) in terms of bkl read:

∂

∂τ
Λ̂(·)(ϕ) =

∞∑
k=0

L(k)∑
l=1

∂

∂τ
Λ̂

(·)
kl b

k
l (ϕ), ϕ ∈ Ω̂. (14)

Substituting the series expansion (14) for the derivatives of
the metric tensors in (13) leads to polynomial representations
which, again, allow for analytical integration. We arrive at:

∂

∂τ
Smn =

m+n−2∑
k=0

L(k)∑
l=1

∑
i,j

[
∂

∂τ
Λ̂2
kl

]
ij

Smnkijl , (15a)

∂

∂τ
Tmn =

m+n∑
k=0

L(k)∑
l=1

∑
i,j

[
∂

∂τ
Λ̂1
kl

]
ij

Tmnkijl . (15b)

Eq. (15) provides an efficient procedure for computing the
matrix derivatives, based on the same UMs as (12). It can be
shown that metric expansions of order m+n−2 and m+n for
S and T , respectively, yield exact results; see the Appendix
for a detailed derivation. Hence, the maximum order of the
metric expansion required in the general curvilinear case is:

k = 2p− 2 for
∂

∂τ
S, (16a)

k = 2p for
∂

∂τ
T . (16b)

A. Sensitivity with Respect to Geometry Parameters

Let the geometry be described byH1 interpolatory FE basis
functions Li(ϕ), using the parameter-dependent locations of
the element nodes ri(τ) as interpolation points. By denoting
the matrix of node coordinates by R(τ) and the vector of basis
functions by L(ϕ), the position vector x(τ) takes the form:

x(τ) = f(τ,ϕ) =
∑
i

ri(τ)Li(ϕ) = R(τ)L(ϕ). (17)

Thus, the derivative of the Jacobian reads:

∂

∂τ
J =

∂

∂τ
∇ϕfT =

[
∇ϕLT

] [ ∂
∂τ
RT

]
, (18)
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and the derivatives of the metric tensors Λ̂1 and Λ̂2, which
are needed in (13), are obtained by:

∂

∂τ
Λ̂1 = Λ̂1 tr

[
J−1 ∂

∂τ
J

]
− |J |

(
J−T

∂JT

∂τ
J−TεrJ

−1

)
− |J |

(
J−TεrJ

−1 ∂J

∂τ
J−1

)
, (19a)

∂

∂τ
Λ̂2 = |J |−1

(
∂J

∂τ
µ−1
r J

T + Jµ−1
r

∂JT

∂τ

)
− Λ̂2 tr

[
J−1 ∂

∂τ
J

]
. (19b)

B. Computational Cost

In the following, N(p) denotes the number of scalar poly-
nomials up to order p and G(p) the number of interpolation
points of a quadrature method for the reference tetrahedron
which is exact for polynomials up to order p; see [8].

With the present method, computing the derivatives of the
element matrices involves two steps: The first is the k-th order
expansion of the metric tensors according to (10) and (11),
respectively. This is computationally cheap and will not be
further considered.

The second step is the actual calculation of ∂
∂τS and ∂

∂τ T .
Since the polynomial expansions for the metric tensors allow
(13) to be integrated analytically with the help of UMs, the
numbers of scaled matrix additions AS and AT are solely
determined by the number of metric coefficients Λ̂kl in (10)
and (14): Each metric tensor is a symmetric 3×3 matrix, with
six independent entries. Hence, the number of coefficients is
6N(k), and we have:

AS = 6N(k)
(16a)
= 6N(2p− 2) for

∂

∂τ
S, (20a)

AT = 6N(k)
(16b)
= 6N(2p) for

∂

∂τ
T . (20b)

Further optimizations are possible by exploiting the fact that,
thanks to the hierarchical structure of the considered FE basis
functions, many of the integrals (13) are of lower order.

For comparison, consider methods that compute the ele-
ment matrices ∂

∂τS and ∂
∂τ T by numerical integration in

the curvilinear case. Eq. (13) implies that the quadrature rule
ought to be exact for polynomials of order 2(p− 1) + k and
2p + k, respectively. Thus, the resulting numbers of scaled
matrix additions, AnumS and AnumT , are:

AnumS = 6G(2p+ k − 2)
(16a)
= 6G(4p− 4), (21a)

AnumT = 6G(2p+ k)
(16b)
= 6G(4p). (21b)

Table I and Table II compare the numerical cost of the UM-
based scheme (20) and numerical integration (21), for the ∂

∂τS
and ∂

∂τ T matrix, respectively. The quadrature method of [8]
is used. The superiority of the suggested approach is evident.

TABLE I
NUMBER OF SCALED MATRIX ADDITIONS FOR THE STIFFNESS MATRIX

Method FE Order Order of Metric Expansion k

p 0 1 2 3 4 5 6

Num. 1 6 6 24 48 84 84 144
integ. 2 24 48 84 84 144 216 276

3 84 84 144 216 276 366 486
This 1 6 6 6 6 6 6 6
work 2 6 24 60 60 60 60 60

3 6 24 60 120 210 210 210

TABLE II
NUMBER OF SCALED MATRIX ADDITIONS FOR THE MASS MATRIX

Method FE Order Order of Metric Expansion k

p 0 1 2 3 4 5 6

Num. 1 24 48 84 84 144 216 276
integ. 2 84 84 144 216 276 366 486

3 144 216 276 366 486 654 840
This 1 6 24 60 60 60 60 60
work 2 6 24 60 120 210 210 210

3 6 24 60 120 210 336 504

V. NUMERICAL EXAMPLE

We consider a lossless spherical resonator, with the material
properties of free space and a perfect electric conductor on
its outer boundary. The radius r of the sphere depends on a
parameter τ ,

r(τ) = (1 + τ)r0, (22)

wherein the nominal radius r0 is taken to be r0 = 1 m. The goal
is to compute the sensitivity of the resonance eigenvalue k2

of the dominant mode with respect to τ .
To avoid technicalities with the analysis of convergence

rates due to eigenvalues of higher multiplicity, only one quarter
of the structure is modeled. Thereby, the symmetry planes
are taken to be perfect magnetic conductors. The structure
is discretized into 512 tetrahedra, using piecewise 3rd order
polynomials for the element shapes. The reference values
for the numerical studies below have been obtained from
analytical calculations [9].

Fig. 1 presents the relative error in the sensitivity of the
dominant eigenvalue: High-order FEs yield the optimal rate of
convergence only if the curvilinear boundary is approximated
well enough, i.e., if the approximation orders of the metric
tensors Λ̂1 and Λ̂2 are chosen correctly. It is also interesting
to see that approximation by constant metrics (k = 0) performs
much better than conventional interpolation by straight-sided
tetrahedra.

Fig. 2 demonstrates that increasing the metric approximation
beyond a FE-order specific limit does not improve the solution,
because the FE matrices are sharp already. Beyond this point,
the error in the solution is solely due to the approximation
properties of the FE basis.
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Since the fields are smooth, the rate of convergence of the
eigenvalue sensitivity ∂

∂τ k
2 is expected to be exponential in

the mesh parameter h. The rates obtained from the authors’
numerical data, for metric expansion order k = 6, are of order
O(h2.04p) and O(h2.07p) for basis function order p = 2 and
p = 3, respectively.
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Fig. 1. Relative error in sensitivity of dominant eigenvalue k2 versus order
of FE basis p. Parameter: order of metric approximation k.

0 1 2 3 4 5 6
Order of metric expansion k

10-5

10-4

10-3

10-2

R
el

at
iv

e 
er

ro
r

p=1
p=2
p=3

Fig. 2. Relative error in sensitivity of dominant eigenvalue k2 versus order
of metric approximation k. Parameter: order of FE basis p.

VI. CONCLUSIONS

An improved method for computing the sensitivity of FE
solutions with respect to geometric parameters has been pre-
sented. Its key feature is the use of orthogonal hierarchical
polynomial expansions for the metric terms present in the FE
matrices. This allows the element matrices and their derivatives
to be obtained from precomputed universal matrices, even in
the curvilinear case. In consequence, the computational costs
of the the proposed method are lower than those of traditional
methods which use numerical integration. Moreover, it has
been shown that there exists a critical order of the metric

expansion, which is determined by the degree of the FE basis
functions, beyond which the FE matrices and their derivatives
will remain constant.

The validity of the suggested approach has been demon-
strated by a numerical example, for the sensitivity of resonance
wavenumbers.

VII. APPENDIX

Substituting the hierarchical expansion (14) for the metric
tensors in (13) leads to UMs of the form:

[Smnkijl ]aq =

∫
Ω̂e

[∇ϕ × ŵm
a ]i b

k
l

[
∇ϕ × ŵn

q

]
j

dϕ, (23a)

[Tmnijl ]aq =

∫
Ω̂e

[ŵm
a ]i b

k
l

[
ŵn
q

]
j

dϕ. (23b)

Let Pq denote the space of scalar polynomials of order q
on Ω̂e. The products of (the curl of) the basis functions in
(23) are readily seen to satisfy:

[∇ϕ × ŵm
a ]i
[
∇ϕ × ŵn

q

]
j
∈ Pm+n−2, (24a)

[ŵm
a ]i
[
ŵn
q

]
j
∈ Pm+n. (24b)

Expressing these in the hierarchical basis {bpl } yields:

[∇ϕ × ŵm
a ]i
[
∇ϕ × ŵn

q

]
j

=
m+n−2∑

p

∑
i

σpi b
p
i , (25a)

[ŵm
a ]i
[
ŵn
q

]
j

=
m+n∑
p

∑
i

τpi b
p
i , (25b)

with constant coefficients σpi and τpi . In consequence, the
entries of the UMs of (23) take the form:

[Smnijl ]aq =

m+n−2∑
p

∑
i

σpi

∫
Ω̂e

bpi b
k
l dϕ, (26a)

[Tmnijl ]aq =

m+n∑
p

∑
i

τpi

∫
Ω̂e

bpi b
k
l dϕ. (26b)

Thanks to orthogonality (9), the integrals in (26a) vanish for
k > m + n − 2 and those in (26b) for k > m + n. This
completes the proof of (16).
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