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Abstract ─ A dielectric resonator antenna is designed for 

WLAN 5.5 GHz band applications in this study. The 

dielectric resonator antenna is fabricated on a cheap FR4 

substrate with grounded CPW (GCPW) structure. A new 

closed circular loop GCPW slot structure is employed to 

obtain wideband impedance matching. Results of the 

designed dielectric resonator antenna show that good 

agreement between simulated and measured reflection 

coefficients, radiations, and antenna gains is observed. 

The measured -10 dB bandwidth of the dielectric 

resonator antenna is 1.6 GHz (28.5%, 4.8 – 6.4 GHz), 

which covers the WLAN 5.5 GHz band. 

 

Index Terms ─ Dielectric resonator, DRA, GCPW, 

wideband, WLAN. 
 

I. INTRODUCTION 
Dielectric resonators [1-3] have the advantages of 

no conductor loss, low quality factor, and high dielectric 

constant; hence, they are widely used for designing 

dielectric resonator antennas (DRAs). Theoretical analyses 

for first few resonant modes in an isolated cylindrical 

dielectric resonator have been done [4-6]. DRAs have 

many advantages such as compact size, wideband, and 

high efficiency. Different excitation mechanisms such  

as coaxial probe [6, 7], slot-microstrip [8], microstrip  

[9, 10] and slot-coplanar waveguide (CPW) can excite 

the dielectric resonator [3]. Apparently, the excitation 

mechanism of using slot-microstrip outperforms the 

coaxial probe since coaxial probe fed are not easy to 

adjust the optimal feeding position to obtain good 

impedance matching. DRAs also can be fed by CPW 

lines [11, 12]. However, CPW fed structure without a 

ground plane on the backside has a drawback that 

decreases the antenna gain and efficiency due to 

backside radiations. To overcome this drawback, a 

grounded CPW (GCPW) structure can be used. The 

GCPW structure has an additional ground plane on the 

bottom layer of the substrate to block the backside 

radiations. Also, the ground plane can create an extra 

image radiator to improve the gain of the DRA. 

In this study, a wideband DRA excited by a GCPW 

line with slot-CPW fed structure is proposed. The 

designed DRA operates at the WLAN 5.5 GHz (5.15 – 

5.85 GHz) band. The proposed DRA has characteristics 

of wideband, high gain, and wide beamwidth. Details of 

the proposed DRA design are described. Results of the 

prototype are presented and discussed as well. 
 

 
      (a) 

  
      (b) 
 

Fig. 1. The geometry of proposed wideband GCPW fed 

DRA: (a) top view and (b) side view. 
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II. ANTENNA DESIGN 
Figure 1 shows the geometry of the proposed 

wideband DRA. The full-wave EM simulator, HFSS 

[13] is used to analyze the prototype of the DRA. The 

proposed antenna is to be fabricated on an FR4 substrate 

with a thickness (h) of 0.8 mm, dielectric constant of 4.4, 

and loss tangent of 0.02. The square size of the DRA is 

60.0 mm (W) by 60.0 mm. The shorting walls are applied 

in the y-direction to block surface waves in the substrate. 

Wf is the width of the central fed line. g is the gap 

between the edge of the central fed line and the edge of 

the ground plane on the top layer of the FR4 substrate. 

The GCPW fed line becomes a closed circular loop line 

at the end. The closed circular loop GCPW slot line 

consists of a circular patch and a circular slot. They are 

concentric. The radii of the outer and inner edge of the 

circular slot are R1 and R2, respectively. The distance 

from the center of the cylindrical dielectric resonator to 

the center of the circular patch is d. This closed circular 

loop GCPW slot excites a ring of magnetic current. The 

magnetic current M  can be determined by: 

ˆM ,n E                                 (1) 

where E is the electric fields between the edges of the 

slot and n̂  is the direction normal to the plane of the fed 

line. Figure 2 demonstrates the magnetic currents flow 

along the closed circular loop GCPW slot. The magnetic 

currents are obtained by HFSS at 5.7 GHz. The circular 

loop magnetic current is equivalent an electric dipole 

source, which then excites the cylindrical dielectric 

resonator [2]. By properly adjusting the orientation of the 

cylindrical dielectric resonator and dimensions of the 

closed circular loop GCPW slot structure, the desired 

hybrid 
11HEM   mode can be excited. Meanwhile, 

wideband impedance matching of the DRA can be 

obtained [3]. The resonant frequency of dominant hybrid 

11HEM 
 mode can be determined by [14]: 

26.324 Rd Rd
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r

r

c
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where c is light speed in free space and r  is the 

dielectric constant of resonator. To achieve wider 

bandwidth, r  of resonator should be kept low. Hence, 

we choose an available cylindrical dielectric resonator 

with a height (Hd) of 4.2 mm, a radius (Rd) of 14.9 mm, 

r  of 9.8, and loss tangent of 0.01 applied in this antenna 

design. The resonant frequency rf  of dominant 
11HEM 

 

mode determined by (2) is 5.73 GHz, which is closed  

to the center of the operating band. Simulated electric 

and magnetic fields at 5.7 GHz are shown in Fig. 3. The 

electric fields are more concentrated on the surface close 

to the top of the cylindrical dielectric resonator while the  

magnetic fields are more concentrated at the center of the 

cylindrical dielectric resonator. The directions of electric 

fields and magnetic fields are orthogonal each other, 

which demonstrate the dielectric resonator operating  

at the dominate 
11HEM   mode. Here, 

11HEM   is the 

lowest resonant frequency. 

 

 
 

Fig. 2. The magnetic currents flow along the closed 

circular loop GCPW slot line. The magnetic currents are 

obtained by HFSS EM simulator at 5.7 GHz. 

 

Parametric study is performed to reveal the influence 

of the magnitude of reflection coefficients (|S11|) by key 

parameters, R1, R2, and d. Other dimensions are fixed  

at values as shown in Table 1 when the parameter is 

investigated. In Fig. 4 and Fig. 5, |S11| is much sensitive 

in the variation of R2 than that of R1 and d. The variation 

of d slightly affects the |S11| as can be seen in Fig. 6. 

Based on the results, when designing the proposed DRA, 

we suggest firstly adjust the value of R2 to obtain 

wideband impedance matching at the desired band. The 

next step is to slightly adjust R1 and d to achieve better 

|S11| performance of the DRA.  

Detailed dimensions of the designed wideband DRA 

are listed in Table 1 as well. A prototype has been 

physically realized. Figure 7 shows the pictures of the 

designed wideband DRA without and with the cylindrical 

dielectric resonator. 

 

Table 1: Dimensions of the proposed dielectric resonator 

antenna (Unit: mm) 

Parameter Size Parameter Size 

W 60.0 R1 10.0 

Wf  R2 6.5 

g  d 4.0 

h 0.8 Rd 14.9 

Hd  Ws 12.0 
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    (a) 

 
   (b) 

 

Fig. 3. Simulated top view field distributions at 5.7 GHz. 

(a) E-Fields close to the top surface of the dielectric 

resonator, and (b) H-Fields on the cross section at the 

center of the dielectric resonator. 

 
 

Fig. 4. Simulated reflection coefficients of the proposed 

DRA with varying of R2. 

 

 
 

Fig. 5. Simulated reflection coefficients of the proposed 

DRA with varying of R1. 

 

 
 

Fig. 6. Simulated reflection coefficients of the proposed 

DRA with varying of d. 

 

   
 (a) (b) 

 

Fig. 7. The pictures of the proposed wideband DRA: (a) 

without the cylindrical dielectric resonator, and (b) with 

the cylindrical dielectric resonator. 
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Fig. 8. The reflection coefficients of the proposed DRA. 

 

    
   (a)   (b)   (c) 

 

Fig. 9. Simulated 3-D radiation gain patterns of the 

proposed DRA at frequencies of: (a) 5.15 GHz, (b) 5.5 

GHz, and (c) 5.85 GHz. 

 

III. RESULTS AND DISCUSSIONS 
The prototype of the proposed wideband DRA  

is measured by an Agilent’s N5230A vector network 

analyzer (VNA) to obtain measured |S11|. The simulated 

and measured |S11| of the proposed DRA are shown 

together in Fig. 8. The simulated |S11| agrees with  

the measured one. The measured -10 dB impedance 

bandwidth is 1.6 GHz (28.57%, 4.8-6.4 GHz), which 

covers the WLAN 5.5 GHz band and can be considered 

a wideband impedance matching. Figure 9 shows 

simulated 3-D radiation gain patterns of the proposed 

DRA at frequencies of 5.15 GHz, 5.5 GHz, and 5.85 

GHz. The gain patterns reveal broadside radiations. Gain 

patterns are similar each other at the three frequencies 

and near omnidirectional in the +z direction with small 

back lobe levels. Measured radiation properties of the 

proposed DRA are obtained by an MVG SG-24 antenna 

measurement system. Figure 10 shows the normalized 

far-field radiation patterns of the DRA in the y-z and  

x-z planes at 5.15 GHz, 5.5 GHz, and 5.85 GHz, 

respectively. The DRA has broadside radiations with 

wide beamwidths. Good agreement between simulated 

and measured radiation patterns is observed. It shows  

the validity of the simulation. The measured 3 dB 

beamwidths in the y-z plane are larger than those in the 

x-z plane. The beamwidth is around 84 degrees in the  

x-z plane at 5.5 GHz. Cross-polarized patterns show 

more than 20 dB isolation from the peak. It indicates 

excellent linearly polarized radiation along the broadside 

direction. Figure 11 shows the peak gains of the proposed 

DRA. The measured peak gain is 3.64 dBi at 5.5 GHz 

and 4.77 dBi at 5.9 GHz. Measured radiation properties 

of the proposed DRA at 5.15, 5.5, and 5.85 GHz are 

summarized in Table 2. The DRA has high gain, wide 

beamwidth, and good front-to-back (F/B) ratio. Based  

on the results of reflection coefficients and radiation 

properties, the designed DRA has good performance and 

is suitable for operating at the WLAN 5.5 GHz band. 

 

                
                  (a)                                          (b) 

               
                  (c)                                          (d) 

                
                  (e)                                          (f) 

                
                  (g)                                          (h) 

                
                  (i)                                           (j) 
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                  (k)                                          (l) 

             y-z plane                                x-z plane 

 

Fig. 10. Radiation patterns (normalized) of the proposed 

DRA. (a), (b), (c), and (d) at 5.15 GHz. (e), (f), (g), and 

(h) at 5.5 GHz. (i), (j), (k), and (l) at 5.85 GHz. 

 

 
 

Fig. 11. The measured and simulated peak gains of the 

proposed antenna. 

 

Table 2: Measured radiation properties of the proposed 

DRA at 5.15, 5.5, and 5.85 GHz 

Frequency (GHz) 5.15 5.5 5.85 

Gain (dBi) 3.26 3.64 4.24 

Efficiency (%) 50.4 53.3 55.7 

3 dB beamwidth in the 

y-z plane (Deg.) 
124 130 138 

3 dB beamwidth in the 

x-z plane (Deg.) 
84 84 102 

F/B ratio (dB) 20.08 20.67 21.34 

 

VI. CONCLUSION 
A wideband dielectric resonator antenna has  

been designed in this study. The proposed DRA used a 

closed circular loop GCPW slot line to excite the 

cylindrical dielectric resonator. Numerical experiments 

and measurements have shown the antenna’s good 

characteristics. Antenna design and discussion have been 

given. Results made on the proposed wideband dielectric 

resonator antenna have shown a very promising 

performance that can be practically and effectively 

applied to WLAN communication systems.  
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