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Abstract − Consider fully bi-anisotropic and in-
homogeneous media supporting the electromagnetic
wave propagation. Assume an (x, y, z)−Cartesian co-
ordinate system and a harmonic time-dependence ac-
cording to exp(−jωt). In the accompanying paper
(Part I) it was shown that the Maxwell’s equations
can be diagonalized with respect to the z−axis, re-
sulting in the Dc−form. Furthermore, the existence
of the associated supplementary matrix equation, the
Sc−form, was demonstrated rigorously. In the present
paper ‘‘structural,’’ ‘‘differential,’’ and ‘‘material’’ ma-
trices have been introduced to explicate the (Da,Sa)−,
(Db,Sb)−, and (Dc,Sc)−forms, relative to the x−, y−,
and z−axes, respectively. As the pinnacle of the the-
ory, it has thoroughly been established that the de-
rived combined (Dc,Sc)−forms are sharply equivalent
with the joint Maxwell’s and constitutive equations,
and thus internally consistent. The presented proof is
relative in the sense that its validity hinges on the con-
sistency of Maxwell’s equations and the material real-
izability conditions.

Index Terms − Bi-anisotropic and inhomoge-
neous media, diagonalization, Maxwell’s equations,
supplementation.

I. INTRODUCTION

Natural laws in their originally-conceived manifes-
tations, and more generally, the process of theory
construction, occasionally mirror the contents of ex-
periments and their underlying assumptions. The
Maxwell’s curls equations offer themselves as an
archetypical example. They explicate the Faraday’s
and Ampere’s experiments, in an awe-inspiringly el-
egant manner, and expose the intricately interwoven

links between them. On the other hand, not only in
logic, but also in mathematics and physics, when con-
structing theories, one is concerned with the internal
consistency of formulations and equations, beside the
existence and uniqueness of their solutions. In the
1930’s several other epistemologically groundbreaking
ideas emerged, e.g., completeness, consistency, prov-
ability, and computability, [1], promoting the concepts
of, e.g., finitary algorithms, and down the road, com-
plexity and optimality of algorithms for obtaining ac-
curate, robust, and accelerated numerical solutions to
engineering problems. In the context of Maxwell’s
equations, a fundamental question arises as to whether
Maxwell’s equations’ necessarily-heuristic nature ren-
ders them, as they stand, optimal for theorizing, algo-
rithms design and computations. Concerning theoriz-
ing and algorithm design, the answer depends on the
specificities of the theoretical investigations one might
be interest in. However, when ‘‘taming’’ infinities and
dealing with divergences in computations, the diagonal-
ized (D−) and supplementary (S−) forms are consider-
ably more adequate, for reasons substantiated in [2] and
[3], and the references therein. This paper completes
the exposition in [2] and proves the internal consistency
of the D− and S−forms by showing the sharp equiva-
lence of the D− and S−forms with the Maxwell’s and
constitutive equations.

The paper has been organized as follows. Section
II starts with introducing three ‘‘universal structural’’
matrices. The attribute ‘‘universal’’ points to the fact
that the introduced matrices are independent of the
spatial direction along which the diagonalization and
the associated supplementation take place: the struc-
tural matrices are the same, irrespective of which pairs
(Da,Sa), (Db,Sb), or (Dc,Sc) are constructed. The at-
tribute ‘‘structural’’ alludes the fact that the entries of
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the matrices, being 0 or 1, merely serve as place holders.
Following a discussion of the properties of the struc-
tural matrices, a theorem has been stated which formal-
izes and completes the results obtained in [2]. The ex-
pressions for the diagonalized- and supplemented forms
with respect to the x−axis have been stated, and the
counterparts with respect to the y− and z−axes have
been obtained by cyclic permutations of indices and
variables. The theorem comprises Parts I, II, and III,
which are dedicated to (Da,Sa), (Db,Sb), and (Dc,Sc),
respectively. In each part the corresponding matrix dif-
ferential operators and material matrices have been de-
fined and their properties explained. A reference to the
proof in [2] completes this section. Section III proves
the internal consistency of the diagonalized- and sup-
plementary equations in terms of the (Dc,Sc)−forms.
Section IV concludes the paper.

II. 3D DIAGONALIZATION AND
SUPPLEMENTATION OF
MAXWELL’S EQUATIONS

It is assumed that the reader is acquainted with the
notation introduced in [2]. Define the following ‘‘uni-
versal structural’’ matrices:

P4×4 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 , (1a)

P4×2 =




0 0
0 0
0 1
−1 0


 , (1b)

P2×1 =

[
1
0

]
. (1c)

The following relationships do not play any direct
role in the diagonalization- and supplementation pro-
cesses. Nevertheless, their underpinning unified con-
nection to identity matrices deserves to be mentioned,

(
P4×4

)T (
P4×4

)
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = I4×4, (2a)

(
P4×2

)T (
P4×2

)
=

[
1 0
0 1

]
= I2×2, (2b)

(
P2×1

)T (
P2×1

)
=

[
1
]
= I1×1. (2c)

Here, IN×N refers to the N ×N identity matrix.

Theorem: Consider the Maxwell’s equations in fully
bi-anisotropic and inhomogeneous media.

Part A: Define the matrix differential operators:

Q2×4
a =

[
0 0 ∂z̃ −∂ỹ

−∂z̃ ∂ỹ 0 0

]
, (3a)

Q4×2
a =




∂ỹ 0
∂z̃ 0
0 ∂ỹ
0 ∂z̃


 . (3b)

Observe the ‘‘intriguing’’ interplay between the en-
tries of the matrices Q2×4

a and Q4×2
a leading to,

Q2×4
a Q4×2

a =

[
0 0
0 0

]
= O2×2. (4)

Here O2×2 refers to the 2× 2 null matrix.

Define the following material-specific matrices:

M4×4
a =




ε22 ε23 ξ22 ξ23
ε32 ε33 ξ32 ξ33
ζ22 ζ23 µ22 µ23

ζ32 ζ33 µ32 µ33


 , (5a)

M4×2
a =




ε21 ξ21
ε31 ξ31
ζ21 µ21

ζ31 µ31


 , (5b)

M2×4
a =

[
ε12 ε13 ξ12 ξ13
ζ12 ζ13 µ12 µ13

]
, (5c)

M2×2
a =

[
ε11 ξ11
ζ11 µ11

]
. (5d)

Define the essential, Ψ‖
a, and its associated nonessen-

tial, Ψ⊥
a , field vectors according to,

Ψ‖
a = [E2, E3, H2, H3]

T , (6a)

Ψ⊥
a = [E1, H1]

T . (6b)

Then, the following Da− and Sa−forms hold valid.
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The Da−form:

{
P4×4M4×4

a +
(
P4×4M4×2

a +Q4×2
a

)

×
[
M2×2

a

]−1 (−M2×4
a +Q2×4

a

)}
Ψ‖

a

+
(
P4×4M4×2

a +Q4×2
a

) [
M2×2

a

]−1
P2×1J̃⊥

a

+P4×2J̃‖
a = ∂x̃Ψ

‖
a. (7)

The Sa−form:

Ψ⊥
a =

[
M2×2

a

]−1 (−M2×4
a +Q2×4

a

)
Ψ‖

a

+
[
M2×2

a

]−1
P2×1J̃⊥

a . (8)

Part B: Define the matrix differential operators
Q2×4

b and Q4×2
b , the material matrices M4×4

b , M4×2
b ,

M2×4
b , and M2×2

b , and the field vectors Ψ
‖
b and Ψ⊥

b ,
by performing the cyclic permutations x̃ → ỹ, ỹ → z̃,
z̃ → x̃, 1 → 2, 2 → 3, 3 → 1, and a → b.

Matrix differential operators Q2×4
b and Q4×2

b :

Q2×4
b =

[
0 0 ∂x̃ −∂z̃

−∂x̃ ∂z̃ 0 0

]
, (9a)

Q4×2
b =




∂z̃ 0
∂x̃ 0
0 ∂z̃
0 ∂x̃


 . (9b)

The following relationship holds valid,

Q2×4
b Q4×2

b = O2×2. (10)

Material matrices M4×4
b , M4×2

b , M2×4
b , and M2×2

b :

M4×4
b =




ε33 ε31 ξ33 ξ31
ε13 ε11 ξ13 ξ11
ζ33 ζ31 µ33 µ31

ζ13 ζ11 µ13 µ11


 , (11a)

M4×2
b =




ε32 ξ32
ε12 ξ12
ζ32 µ32

ζ12 µ12


 , (11b)

M2×4
b =

[
ε23 ε21 ξ23 ξ21
ζ23 ζ21 µ23 µ21

]
, (11c)

M2×2
b =

[
ε22 ξ22
ζ22 µ22

]
. (11d)

Field vectors Ψ
‖
b and Ψ⊥

b :

Ψ
‖
b = [E3, E1, H3, H1]

T , (12a)

Ψ⊥
b = [E2, H2]

T . (12b)

Then the following Db− and Sb−forms hold valid.

The Db−form:

{
P4×4M4×4

b +
(
P4×4M4×2

b +Q4×2
b

)

×
[
M2×2

b

]−1 (−M2×4
b +Q2×4

b

)}
Ψ

‖
b

+
(
P4×4M4×2

b +Q4×2
b

) [
M2×2

b

]−1
P2×1J̃⊥

b

+P4×2J̃
‖
b = ∂ỹΨ

‖
b . (13)

The Sb−form:

Ψ
‖
b =

[
M2×2

b

]−1 (−M2×4
b +Q2×4

b

)
Ψ

‖
b

+
[
M2×2

b

]−1
P2×1J̃⊥

b . (14)

Part C: Define the matrix differential operators
Q2×4

c and Q4×2
c , the material matrices M4×4

c , M4×2
c ,

M2×4
c , and M2×2

c , and the field vectors Ψ‖
c and Ψ⊥

c ,
by performing the cyclic permutations x̃ → ỹ, ỹ → z̃,
z̃ → x̃, 1 → 2, 2 → 3, 3 → 1, and b → c.

Operator matrices Q2×4
c and Q4×2

c :

Q2×4
c =

[
0 0 ∂ỹ −∂x̃

−∂ỹ ∂x̃ 0 0

]
, (15a)

Q4×2
c =




∂x̃ 0
∂ỹ 0
0 ∂x̃
0 ∂ỹ


 . (15b)

The following relationship holds valid,

Q2×4
c Q4×2

c = O2×2. (16)
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Material matrices M4×4
c , M4×2

c , M2×4
c , and M2×2

c :

M4×4
c =




ε11 ε12 ξ11 ξ12
ε21 ε22 ξ21 ξ22
ζ11 ζ12 µ11 µ12

ζ21 ζ22 µ21 µ22


 , (17a)

M4×2
c =




ε13 ξ13
ε23 ξ23
ζ13 µ13

ζ23 µ23


 , (17b)

M2×4
c =

[
ε31 ε32 ξ31 ξ32
ζ31 ζ32 µ31 µ32

]
, (17c)

M2×2
c =

[
ε33 ξ33
ζ33 µ33

]
. (17d)

Field vectors Ψ‖
c and Ψ⊥

c :

Ψ‖
c = [E1, E2, H1, H2]

T , (18a)

Ψ⊥
c = [E3, H3]

T . (18b)

Then the following Dc− and Sc−forms hold valid.

The Dc−form:

{
P4×4M4×4

c +
(
P4×4M4×2

c +Q4×2
c

)

×
[
M2×2

c

]−1 (−M2×4
c +Q2×4

c

)}
Ψ‖

c

+
(
P4×4M4×2

c +Q4×2
c

) [
M2×2

c

]−1
P2×1J̃⊥

c

+P4×2J̃‖
c = ∂z̃Ψ

‖
c . (19)

The Sc−form:

Ψ⊥
c =

[
M2×2

c

]−1 (−M2×4
c +Q2×4

c

)
Ψ‖

c

+
[
M2×2

c

]−1
P2×1J̃⊥

c . (20)

Proof: The constructions of the Dc− and Sc−forms,
expressed in Eqs. (19) and (20), respectively, were per-
formed in exhaustive and painstaking detail in [2], rig-
orously proving the claims in Part III. The proofs of
Parts I and II follow from the proof of Part III by suc-
cessive cyclic permutations as mentioned above.

III. ON THE CONSISTENCY OF
THE Dc− AND Sc FORMS

In this section it is rigorously shown that the derived
Dc− and Sc−forms are, taken jointly, sharply equiv-
alent with the originating governing and constitutive
equations, and thus internally consistent.

Theorem: TheDc− and Sc−forms given in Eqs. (19)
and (20), respectively, are, taken together, sharply
equivalent with Maxwell’s equations and constitutive
relationships, and thus internally consistent.

Proof: The Dc− and Sc−forms given in Eqs. (19)
and (20), respectively, are the starting point. Writing
the Dc−form more explicitly,

P4×4M4×4
c Ψ‖

c +
(
P4×4M4×2

c +Q4×2
c

)

×
[
M2×2

c

]−1 (−M2×4
c +Q2×4

c

)
Ψ‖

c

+
(
P4×4M4×2

c +Q4×2
c

) [
M2×2

c

]−1
P2×1J̃⊥

c

+P4×2J̃‖
c = ∂z̃Ψ

‖
c . (21)

Rewriting the Sc−form,

[
M2×2

c

]−1 (−M2×4
c +Q2×4

c

)
Ψ‖

c

= Ψ⊥
c −

[
M2×2

c

]−1
P2×1J̃⊥

c . (22)

Using (22) for the term in the second line in (21),

P4×4M4×4
c Ψ‖

c +
(
P4×4M4×2

c +Q4×2
c

)

×
(
Ψ⊥

c −
[
M2×2

c

]−1
P2×1J̃⊥

c

)

+
(
P4×4M4×2

c +Q4×2
c

) [
M2×2

c

]−1
P2×1J̃⊥

c

+P4×2J̃‖
c = ∂z̃Ψ

‖
c . (23)

Terms associated with J̃⊥
c drop off,

P4×4M4×4
c Ψ‖

c +
(
P4×4M4×2

c +Q4×2
c

)
Ψ⊥

c

+P4×2J̃‖
c = ∂z̃Ψ

‖
c . (24)

Rewriting and factoring out P4×4,

P4×4
(
M4×4

c Ψ‖
c +M4×2

c Ψ⊥
c

)
︸ ︷︷ ︸

=Φ
‖
c

+Q4×2
c Ψ⊥

c

+P4×2J̃‖
c = ∂z̃Ψ

‖
c . (25)

Recognizing the indicated term in (25) to be equal

to Φ‖
c (defined in [2]),
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P4×4Φ‖
c +Q4×2

c Ψ⊥
c +P4×2J̃‖

c = ∂z̃Ψ
‖
c . (26)

Multiplying (20) from the L.H.S. by M2×2
c ,

M2×2
c Ψ⊥

c =
(
−M2×4

c +Q2×4
c

)
Ψ‖

c +P2×1J̃⊥
c . (27)

Rearranging (27),

M2×4
c Ψ‖

c +M2×2
c Ψ⊥

c︸ ︷︷ ︸
=Φ⊥

c

= Q2×4
c Ψ‖

c +P2×1J̃⊥
c . (28)

Recognizing the indicated term in (28) as Φ⊥
c (de-

fined in [2]),

Φ⊥
c = Q2×4

c Ψ‖
c +P2×1J̃⊥

c . (29)

Taking the derivative with respect to z̃ of both sides,
unpacking Φ⊥

c and Ψ‖
c , and noting J̃⊥

c = J̃3,

∂z̃

[
D3

B3

]
= ∂z̃Q

2×4
c




E1

E2

H1

H2


+ ∂z̃P

2×1J̃3. (30)

Using the commutativity relationships,

∂z̃Q
2×4
c = Q2×4

c ∂z̃, (31a)

∂z̃P
2×1 = P2×1∂z̃, (31b)

equation (30) transforms into,

∂z̃

[
D3

B3

]
= Q2×4

c ∂z̃




E1

E2

H1

H2


+P2×1∂z̃J̃3. (32)

Remembering the definition Ψ‖
c = [E1, E2, H1, H2]

T ,
[2], and considering (26), Eq. (32) reads,

∂z̃

[
D3

B3

]
= Q2×4

c



P4×4




D1

D2

B1

B2


+Q4×2

c

[
E3

H3

]

+ P4×2

[
J̃1
J̃2

]}
+P2×1∂z̃J̃3. (33)

Here, Φ‖
c , Ψ

⊥
c , and J̃

‖
c have been unpacked for greater

clarity. Written more explicitly,

∂z̃

[
D3

B3

]
= Q2×4

c P4×4




D1

D2

B1

B2




+Q2×4
c Q4×2

c

[
E3

H3

]
+Q2×4

c P4×2

[
J̃1
J̃2

]

+P2×1∂z̃J̃3. (34)

In (16) it was established that Q2×4
c Q4×2

c = O2×2,
with O2×2 being the 2×2 null matrix. Thus (34) reads,

∂z̃

[
D3

B3

]
= Q2×4

c P4×4




D1

D2

B1

B2




+Q2×4
c P4×2

[
J̃1
J̃2

]
+P2×1∂z̃J̃3. (35)

Considering,

Q2×4
c P4×4

c

=

[
0 0 ∂ỹ −∂x̃

−∂ỹ ∂x̃ 0 0

]



0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 ,

(36a)

=

[
−∂x̃ −∂ỹ 0 0
0 0 −∂x̃ −∂ỹ

]
, (36b)

and

Q2×4
c P4×4

c

=

[
0 0 ∂ỹ −∂x̃

−∂ỹ ∂x̃ 0 0

]



0 0
0 0
0 1
−1 0


 , (37a)

=

[
∂x̃ ∂ỹ
0 0

]
, (37b)

and using the definition P2×1 = [1, 0]T , (35) reads,

∂z̃

[
D3

B3

]
=

[
−∂x̃ −∂ỹ 0 0
0 0 −∂x̃ −∂ỹ

]



D1

D2

B1

B2




+

[
∂x̃ ∂ỹ
0 0

] [
J̃1
J̃2

]
+

[
1
0

]
∂z̃J̃3. (38)
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Multiplying out,

[
∂z̃D3

∂z̃B3

]
=

[
−∂x̃D1 − ∂ỹD2

−∂x̃B1 − ∂ỹB2

]

+

[
∂x̃J̃1 + ∂ỹJ̃2

0

]
+

[
∂z̃J̃3
0

]
. (39)

Writing component-wise,

∂z̃D3 = −∂x̃D1 − ∂ỹD2

+∂x̃J̃1 + ∂ỹJ̃2 + ∂z̃J̃3, (40a)

∂z̃B3 = −∂x̃B1 − ∂ỹB2. (40b)

Rearranging, remembering the definitions ∂x̃ =
∂x/jω, ∂ỹ = ∂y/jω, and ∂z̃ = ∂z/jω, introduced in
[2], assuming ω �= 0, and multiplying by jω,

divD = divJ̃, (41a)

divB = 0. (41b)

Remembering the definition of J̃ = J/(jω), [2],

divD = div
1

jω
J. (42)

Multiplying by jω( �= 0),

jωdivD = divJ. (43)

Considering the electric charge conservation law,

divJ+
∂ρ

∂t
= 0, (44)

and recalling the exp(−jωt) time-harmonic assump-
tion, Eq. (44) can equivalently be written in the form,

divJ = jωρ. (45)

Thus, Eq. (43) results in,

jωdivD = jωρ. (46)

Dividing by jω( �= 0),

divD = ρ. (47)

Summarizing our results, it can be stated that by
assuming the charge conservation law, Eq. (44), and
using the derived Dc− and Sc−forms, Maxwell’s diver-
gence equations have been established,

divD = ρ, (48a)

divB = 0. (48b)

This completes the relative proof of the internal con-
sistency of the drived Dc− and the associated Sc−
forms, in virtue of their sharp equivalence with the orig-
inating Maxwell’s equations and the constitutive equa-
tions, characterizing fully bi-anisotropic and inhomoge-
neous media.

IV. CONCLUSION

In the accompanying paper, [2], it was shown that
the Maxwell’s equations in fully bi-anisotropic and in-
homogeneous media can be diagonalized resulting in
the D−form. In addition, the existence of an associ-
ated supplementary equation, the S−form, was demon-
strated. In this work it was stringently proved that the
derived (D,S)−forms are internally consistent, based
on the fact that they are sharply equivalent with the
originating Maxwell’s equations and constitutive rela-
tionships. A relative consistency proof was presented
which proceeded along the following line of argument:
(i) It is a known fact that the Maxwell’s curl equa-
tions together with the electric charge conservation law
imply the Maxwell’s divergence equations. (ii) Within
the framework of the classical electrodynamics it is as-
sumed that the Maxwell’s equations are self-consistent
(internal consistency). (iii) Employing the D− and the
S−forms constructed in [2], and utilizing the charge
conservation law, this paper established the Maxwell’s
divergence equations. (iv) The sharp equivalence of the
D− and the S−forms with Maxwell’s curl equations,
and the consistency of Maxwell’s curl equations, imply
the consistency of the D− and S−forms. The discus-
sion in [3] provides a glimpse on possible wide-ranging
implications of the proposed theoretical framework.
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