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Abstract ─ This paper presents extraction technique 

applied to the double higher order surface integral 

equation method of moments and discusses the 

numerical results compared with previously implemented 

extraction method and numerical Gauss-Legendre 

integration. 
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moments, integral accuracy, integration extraction 

technique, surface integral equation.  

 

I. INTRODUCTION 
This paper presents our ongoing study of 

convergence behavior of near-singular (potential) and 

near-hypersingual (field) integrals for double higher 

order large-domain surface integral equation method of 

moments (SIE-MoM). The fast and accurate integral 

computation that will effectively give the MoM matrix 

entries is essential in the computational electromagnetics 

(CEM). The main challenge arises with small source-to-

field distances which often occur in microstrip and 

printed circuit design but are part of almost any model 

analysis. The technique for integral evaluation presented 

here uses the singularity extraction method. The 

analytically evaluated integral of the principal singular 

part is computed over a parallelogram which surface is 

defined to be similar to the surface of the generalized 

quadrilateral in the near area of the singular point. 

Numerical integrals over parallelogram and quadrilateral 

are using Gauss-Legendre quadrature formula.  

 

II. THE METHOD 

A. 2D double higher order (DHO) integrals 

In the DHO SIE-MoM the 2D surface integrals  

are defined on the Lagrange-type generalized curved 

parametric quadrilateral MoM-SIE surface elements (in 

Fig. 1) defined in the parametric u-v domain as [1]: 
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where rkl are vector coefficients and Ku and Kv  

are geometrical orders (Ku, Kv  1). The current is 

approximated by higher order polynomial basis functions 

[1] leading to 2D integrals over the quadrilateral having 

the following form: 
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where s and hs represent singular and hypersingular 

integrals respectively, i and j are arbitrary polynomial 

orders of the basis functions, β is propagation 

coefficient, f is the operating frequency, ε and μ are 

permittivity and permeability of the dielectric medium 

respectively and R is the distance of the source point 

from the field point.  
 

 
 

Fig. 1. Quadrilateral element. 
 

B. Parallelogram for the extraction technique  

The quadrilateral element and the parallelogram 

constructed at projection point (u0, v0) are shown in Fig. 

2. The distance of the point on the parallelogram and 

singular point is defined as: 

 vuaavauadR vuvup  cos2222222 , (3) 

where au, av and cosα are computed to take into account 

the curvature of the quadrilateral element, Δu = u-u0,  

Δv = v-v0 and d is the distance between singular point 

and the close point projection on the quadrilateral element. 
 

C. Taylor’s expansion and analytic integration 

The relation between quadrilateral and parallelogram 

parametric surfaces is given by: 

 ),(),(),( 22 vutvuRvuR P  , ),(1),( vuxRvuR P  , (4) 

where x(u,v) = t(u,v)/Rp
2(u,v). The singular and  
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hypersingular parts of integrands for the integration 

over the parallelogram are represented through Taylor’s 

expansion over x having in mind (4). Analytical integrals 

are computed by dividing parallelogram into triangles 

and using recursive formulas similarly to the procedure 

described in [2]. 
 

 
 

Fig. 2. Quadrilateral patch and parallelogram constructed 

at projected point. 

 

D. Projected points outside of the patch 

For the case of large and negative 2auavcosαΔuΔv 

contribution in (3), |x(u,v)| becomes large because 

Rp
2(u,v) is taking a small value. As a result, the Taylor’s 

expansion over x does not approximate the (hyper) 

singular function well. In this situation, when the 

projection point is outside of the element domain, the 

parallelogram is constructed using parameters at the 

closest point, i.e., the most singular point on the 

quadrilateral. For the large values of |x(u,v)|, the patch 

is divided into four parts and the extraction method is 

applied to each part separately (example in Fig. 5). 
 

 
 

Fig. 3. Singular integral convergence for u0 = 0.1,  

v0=-0.1 and i=0, j=0 orders of the basis function. 

 

III. RESULTS 
The results shown in Figs. 3-5 are computed for 

second order curvilinear patch (one of the six patches 

modeling 1 m radius sphere) shown in Fig. 2. The 

integral convergence is obtained for d=5e-7 and 

β=0.77546 and results are compared to Gauss-Legendre 

numerical integration and previously implemented 

traditional (old) extraction technique. 
 

 
 

Fig. 4. Singular integral convergence for u0 = 0.1,  

v0=-0.1 and i=6, j=6 orders of the basis function. 

 

The NGL label on the graphs represents the square 

root of the number of Gauss-Legendre points used  

for the numerical integration over quadrilateral or 

parallelogram. The relative convergence error is 

computed as III
~~

-logδ 10 , where I
~

 is the integral 

obtained using described extraction method with high 

value of Gauss-Legendre points and I represents the 

integrals as function of NGL. 

Results in Fig. 5 are computed for the point 

described in part D of previous section and the 

improvement in convergence is shown for the divided 

patch method. 
 

 
 

Fig. 5. Hypersingular integral convergence comparison 

for u0 = 1.1, v0=1.1 and i=0, j=0 orders of the basis 

function. Patch is divided at (0.8, 0.8) point in u-v domain. 
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IV. CONCLUSION 
New extraction method is introduced and the 

method is verified with results. The convergence 

improvement is shown compared to the traditional 

extraction technique as well as further improvements 

achieved by dividing the patch. The convergence 

improvement is due the integral of the difference of the 

two functions defined over the constructed parallelogram 

and quadrilateral being accurately evaluated with small 

number of integration points. 
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