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Abstract ─ We develop a methodology that enables the 

proper introduction of high-order spatial operators in an 

unconditionally-stable, split-step, finite-difference time-

domain scheme. The proposed approach yields spatial 

approximations that guarantee better balancing of 

space-time errors, compared to standard fourth-order 

expressions. The latter are not as efficient as expected, 

due to their unmatched order with the scheme’s second-

order temporal accuracy. Our technique treats the 

dispersion relation as an error descriptor, derives spatial 

formulae that change with the cell shape and time-step 

size, and rectifies the performance over all frequencies. 

Index Terms ─ Finite-difference time-domain (FDTD) 

methods, numerical-dispersion relation, split-step 

approaches, unconditionally-stable methods. 

I. INTRODUCTION
Among the diverse advances of Yee’s finite-

difference time-domain (FDTD) method [1,2], 

approaches featuring unconditional stability [3] belong 

to the most significant contributions. Numerical schemes 

such as the alternating-direction implicit [4] and the 

locally one-dimensional FDTD techniques [5] are free 

from constraints governing their temporal sampling 

density, which is an advantageous property in many 

electromagnetic simulations. Other solutions based on 

split-step procedures [6-8] also exhibit similar behavior, 

and have been the subject of various studies [9,10]. 

In the context of the aforementioned implicit 

methods, the improvement of temporal accuracy can be 

a computationally expensive task, as it commonly 

requires the increase of the intermediate stages for the 

successive update of field components. On the other 

hand, direct incorporation of high-order spatial operators 

is a simpler and more straightforward approach towards 

performance upgrade, although it too augments the 

algorithm’s complexity. Since the combination of 

accurate spatial approximations with low (first or second) 

temporal order usually impedes the full exploitation of 

high-order operators’ potential, amending techniques may 

be applied for further error mitigation. The implementation 

of constant-valued correctional coefficients, calculated 

in diverse ways, is a popular practice in this category of 

useful concepts [11,12]. 

This paper’s purpose is to efficiently incorporate 

four-point spatial approximations into a two-dimensional 

(2D) four-stage split-step FDTD (SS-FDTD) method, 

aiming at a balanced treatment of space-time errors. Our 

approach exploits the scheme’s dispersion relation to 

represent the inherent discretization errors. By using 

the estimator’s Taylor polynomial, improvement over 

all frequencies is facilitated, while its trigonometric 

expansion leads to accuracy correction irrespective of 

propagation direction. The resulting unconditionally-

stable algorithm performs better than its counterpart with 

standard high-order operators, verifying the optimal use 

of computational resources. 

II. MODIFIED 4-STAGE SS-FDTD METHOD

The considered SS-FDTD scheme has second-order

temporal accuracy, and the time-stepping is performed 

according to the following splitting approach: 
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where [I] is the 33 unitary matrix, [u] = [Ex Ey Hz]T is 

the vector with the three field components in 2D, Δt is 

the time increment, and [A],[B] are derivative matrices: 

 

1

1

0 0

[ ] 0 0 0

0 0

y

y

D

D





 
 

  
 
 

A , 1

1

0 0 0

[ ] 0 0

0 0

x

x

D

D





 
 

   
 
 

B . (2) 

In its conventional form [8], the methodology relies on 
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standard second-order approximations of the derivatives. 

Here, we adopt four-point symmetric expressions, 
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whose final form is determined via an analytical 

procedure that aims at suitable error cancellation. 

The basic element of the proposed optimization 

approach is the scheme’s numerical dispersion relation, 

and its utilization as a means to express the inherent 

dispersion errors. The dispersion relation is obtained 

after introducing plane-wave forms in (1), 
j( )

0[ ] [ ] x yt k x k y
e

  
u u , (5) 

and requiring the existence of non-trivial solutions for 

the resulting system ( cosxk k  , sinyk k  , k  is the

numerical wavenumber). In essence, the condition, 
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is obtained, where 
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and matrices [ ] , [ ]  are derived from [ ]A , [ ]B , 

respectively, after replacing the 
xD , yD operators with:
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The resulting dispersion equation has the form: 
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Of crucial importance is the definition of the error 

formula that is used to represent the discretization flaws. 

As we are interested in combating the inaccuracies 

pertinent to the phase velocity, we define, 
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which practically describes the deviation from the 

numerical dispersion relation, once the numerical wave-

vector has been replaced by its exact value k = ω/c0. 

Now, the determination of the optimum spatial operators 

is reduced to the following problem: find suitable 

coefficients 
1

xC , 
2

xC , 
1

yC , 
2

yC , so that the magnitude of 

( , )   is rendered as close to zero as possible, for all 

frequencies ω and propagation angles θ. 

In order to satisfy – to the best possible degree – the 

aforementioned requirements, the Taylor-series of (13) 

with respect to the spatial increment is exploited. 

Specifically, we are working on the expression: 
(2) 2 (4) 4( , ) ( )( ) ( )( )k x k x           . (14) 

This expansion effectively isolates the dependences on 

frequency and propagation direction, which significantly 

facilitates their separate treatment. Specifically, accuracy 

improvement irrespective of frequency is now possible, 

by cancelling the corresponding δ coefficients, which 

do not depend on ω. If it was possible to accomplish 

δ(2) = δ(4) = … = 0, a totally error-free FDTD scheme 

would be devised. Apparently, this is an observation of 

merely theoretical interest, since the discretization error 

can be controlled only to a certain degree in practice. In 

our case, we are proceeding with the manipulation of the 

δ(2) and δ(4) coefficients. 

Starting from the second-order term, we find that: 
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where R = Δy/Δx, τx = cosθ, τy = sinθ, and Q determines 

the time-step size, via: 
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In (16), Q = 1 yields the well-known Yee’s stability 

criterion. Clearly, the second-order term vanishes if: 

1 23 1u uC C  , u = x,y, (17) 

In essence, (17) guarantees that the spatial operators are 

at least second-order accurate, which is necessary so that 

their error matches the corresponding temporal one. 

The treatment of the δ(4) term is more involved, as it 

is expressed according to: 
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where (17) has already been partially substituted for 

simplicity. It is clear that δ(4) cannot be eliminated, as the 

corresponding SS-FDTD scheme cannot accomplish 

fourth-order space-time accuracy. A more realistic goal 

is to render δ(4)  as small as possible, so that better overall 

performance is attained, compared to standard fourth-

order spatial approximations. For this reason, (18) is 

rearranged, using the identities: 

4 3 1 1
cos(2 ) cos(4 )

8 2 8
x     , (19) 
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Taking (19)-(23) into account, δ(4) is expressed as a 

finite trigonometric series, and two additional constraints 

can be derived from the vanishing of an equal number of 

terms. If the series’ constant term is set equal to zero, the 

following equation is obtained: 
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The last equation is extracted from the coefficient of the 

cos(2θ) term, resulting in: 
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The solution of the system comprising (17), (24), and 

(25) yields the optimum spatial operators, whose final

form takes into account the cell shape and the time-step

size, as the resulting coefficient expressions are:
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Consequently, the procedure followed herein 

concludes that the standard fourth-order operators are the 

most suitable choice, only if a very small time step (i.e., 

Q  0) is selected. This, however, is not the case in 

unconditionally-stable FDTD methods, and modified 

approximations that do not necessarily preserve the 

maximum order of accuracy can guarantee lower 

dispersion flaws. 

III. ASSESSMENT OF METHODOLOGY
The stability of the numerical scheme is revealed by

obtaining the eigenvalues of its amplification matrix. 

The latter is equal to 2[ ][ ] [ ]L L L , as defined in (6), 

(7), and its eigenvalues are: 1 1  , and, 
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It can be shown that the magnitude of λ1,2,3 is 1, 

regardless of the time-step size. Hence, the specific SS-

FDTD updates are unconditionally stable. An exemplary 

plot of the eigenvalues on the complex plane is given in 

Fig. 1 when R = 1, the spatial density is 40 cells per 

wavelength, and Q  50. As expected, all values lie on 

the circumference of the unit circle. 

Fig. 1. Eigenvalues of the amplification matrix on the 

complex plane for various Δt. 

Next, the algorithm’s accuracy is assessed in terms 

of the dispersive error affecting the phase velocity, 

whose value /c k  is extracted from the dispersion 

relation (10), and the overall error is estimated from: 

2
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The positive impact of the modified operators on the 

scheme’s accuracy is illustrated in Fig. 2, where the 

SS-FDTD method that applies standard fourth-order 

approximations is also depicted (time-steps five and ten 

times larger than Yee’s stability limit are considered). 

The plotted curves reveal a significant error reduction 

that is not confined within specific frequency bands. In 

fact, the evidence show that a specific accuracy level can 

be now accomplished with twice as large a time-step, 

thanks to the sophisticated design of the algorithm, 

ensuring better utilization of computational resources. 

Fig. 2. Error et versus mesh density for different Δt. 

IV. NUMERICAL RESULTS
The performance of the modified SS-FDTD algorithm 
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is evaluated considering an 8 cm  6 cm cavity, bounded 

by perfectly conducting walls. First, we perform two sets 

of simulations, one for the TE11 mode at 3.123 GHz and 

one for the TE21 mode at 4.504 GHz. The computational 

space comprises 200  150 cells and tests are conducted 

for different time-step magnitudes. In essence, the 

maximum L2 error of Hz is recorded for a time period 

equivalent to 2000 iterations when Q = 2. The results are 

displayed in Table 1, where the standard fourth-order 

operators and the proposed ones are compared. It is 

verified that significant error cancellation is accomplished 

regardless of the time-step size. Specifically, accuracy is 

improved by 3.5 times in the first case, and by 4.2 times 

in the second case, verifying the potential of the new 

derivative approximation. 

Using the same configuration as previously, the 

second test pertains to the detection of the structure’s 

first 24 resonant frequencies. Now, an 80  60 grid is 

used, and simulations for 32768 time-steps with Q = 5 

are performed. Figure 3 displays the absolute errors in 

the frequencies of the detected modes, and the superior 

spectral properties of the proposed SS-FDTD method are 

clearly illustrated. Specifically, the average error of the 

standard scheme is 55.07 MHz, which is suppressed to 

only 7.31 MHz by the modified operators. 

Table 1: Maximum L2 errors for different time-step sizes, 

in the cavity problems with single-mode support 

TE11 Mode TE21 Mode 

Q Standard Proposed Standard Proposed 

2 1.05103 2.94104 3.11103 7.31104 

4 4.19103 1.18103 1.24102 2.92103 

6 9.42103 2.65103 2.80102 6.59103 

8 1.67102 4.72103 4.95102 1.17102 

10 2.61102 7.38103 7.71102 1.84102 

Fig. 3. Absolute error in detecting the resonant frequencies 

of a rectangular cavity. 

V. CONCLUSION
We have successfully remedied the accuracy of an 

unconditionally stable SS-FDTD method, by deriving 

modified spatial operators with three-cell stencils. The 

form of these approximations is determined via a design 

procedure that balances space-time errors over all 

frequencies better than standard formulae. The modified 

scheme outperforms its conventional counterpart, as it 

guarantees similar error levels with larger time-steps.  

REFERENCES 
[1] K. S. Yee, “Numerical solution of initial boundary

value problems involving Maxwell’s equations in

isotropic media,” IEEE Trans. Antennas Propag.,

vol. AP-14, pp. 302-307, 1966.

[2] A. Taflove and S. C. Hagness, Computational

Electrodynamics: The Finite-Difference Time-

Domain Method. Artech House, Norwood, MA, ed.

3, 2005.

[3] G. Sun and C. W. Trueman, “Accuracy of three

unconditionally-stable FDTD schemes,” ACES J.,

vol. 18, no. 4, pp. 41-47, Nov. 2003.

[4] F. Zheng, Z. Chen, and J. Zhang, “A finite-

difference time-domain method without the Courant

stability conditions,” IEEE Microw. Guided Wave

Lett., vol. 9, no. 11, pp. 441-443, Nov. 1999.

[5] J. Shibayama, M. Muraki, J. Yamauchi, and H.

Nakano, “Efficient implicit FDTD algorithm based

on locally one-dimensional scheme,” Electron.

Lett., vol. 41, no. 19, pp. 1046-1047, Sept. 2005.

[6] J. Lee and B. Fornberg, “A split step approach for

the 3-D Maxwell’s equations,” J. Comp. Appl.

Math., vol. 158, no. 2, pp. 485-505, Sept. 2003.

[7] W. Fu and E. L. Tan, “Development of split-step

FDTD method with higher-order spatial accuracy,”

Electron. Lett., vol. 40, no. 20, pp. 1252-1253,

Sept. 2004.

[8] M. Kusaf and A. Y. Oztoprak, “An unconditionally

stable split-step FDTD method for low anisotropy,”

IEEE Microw. Wireless Comp. Lett., vol. 18, no. 4,

pp. 224-226, Apr. 2008.

[9] A. Grande, J. A. Pereda, A. Serroukh, I. Barba, A.

C. Cabeceira, and J. Represa, “Reinterpreting four-

stage split-step FDTD methods as two-stage

methods,” IEEE Trans. Antennas Propag., vol. 61,

no. 11, pp. 5818-5821, Nov. 2013.

[10] D. Y. Heh and E. L. Tan, “Further reinterpretation

of multi-stage implicit FDTD schemes,” IEEE

Trans. Antennas Propag., vol. 62, no. 8, pp. 4407-

4411, Aug. 2014.

[11] W. Fu and E. L. Tan, “A parameter optimized ADI-

FDTD method based on the (2,4) stencil,” IEEE

Trans. Antennas Propag., vol. 54, no. 6, pp. 1836-

1842, June 2006.

[12] Q.-F. Liu, W.-Y. Yin, Z. Chen, and P.-G. Liu, “An

efficient method to reduce the numerical dispersion

in the LOD-FDTD method based on the (2,4)

stencil,” IEEE Trans. Antennas Propag., vol. 58,

no. 7, pp. 2384-2393, July 2010.

ZYGIRIDIS, KANTARTZIS, TSIBOUKIS: FOUR-STAGE SPLIT-STEP 2D FDTD METHOD WITH ERROR-CANCELLATION FEATURES 143


	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887




 
 
    
   HistoryItem_V1
   DelPageNumbers
        
     Range: all pages
      

        
     1
     640
     293
            
                
         AllDoc
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     TR
     
     123
     TR
     1
     0
     629
     187
     0
     8.0000
            
                
         Odd
         128
         1
         AllDoc
              

       CurrentAVDoc
          

     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     128
     126
     64
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     TL
     
     123
     TR
     1
     0
     629
     187
    
     0
     8.0000
            
                
         Even
         128
         1
         AllDoc
              

       CurrentAVDoc
          

     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     128
     127
     64
      

   1
  

 HistoryList_V1
 qi2base





