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Abstract ─ In order to improve the performance of 

antenna array beamforming in the case of jammer 

motion, a null broadening beamforming approach based 

on covariance matrix expansion is proposed in this 

paper. The covariance matrix of the array is expanded 

through the Kronecker product of an eye matrix and the 

sample covariance matrix. The steering vector of the 

array is also expanded. When the expanded covariance 

matrix is used for beamforming, more linear constraints 

can be constructed compared with the original sample 

covariance matrix, so wider and deeper nulls can be 

obtained with equal number of array elements, or 

similar performance can be obtained with fewer number 

of array elements. Necessary numerical procedures are 

provided and computation complexity is analyzed.  

The validity of the proposed approach is verified by 

theoretical analysis and simulation results. 

 

Index Terms ─ Beamforming, covariance matrix 

expansion, null broadening. 
 

I. INTRODUCTION 
Adaptive antenna beamforming has been widely 

used in radar, sonar, mobile communications and other 

fields. It helps adaptive arrays improve the reception  

of the desired signal and suppress interferences by 

forming nulls at the directions of interferences [1-4]. 

The performance of the adaptive arrays is severely 

degraded if the weights of the arrays are not able to 

adapt sufficiently fast to the changing (nonstationary) 

jamming situation or to the antenna platform motion. 

This issue can be handled, however, if a broad null is 

formed toward the direction of the interference [5-7]. 

Broad nulls can be formed by the approach of 

covariance matrix taper (CMT) [8-11], the concept  

of which is introduced in [10]. The CMT approach  

does not need prior knowledge of the directions of 

interferences. Broad nulls will be formed at all the 

directions of interferences adaptively, and the width of 

the nulls can be controlled. However, as a price, the 

depth of the nulls will be reduced. 

Quadratic constraint sector suppressed (QCSS) is 

another approach of null broadening [12, 13]. The QCSS 

approach needs prior knowledge of the approximate 

directions of interferences. Broad nulls can be formed 

around the directions specified, that is to say, the 

directions of broad nulls can be controlled. In addition, 

both the width and depth of the nulls can be controlled 

by the QCSS approach, and the depth of the nulls can 

be increased. However, the solving process of the 

QCSS approach is complicated, which is a nonlinear 

problem. The approach of linear constraint sector 

suppressed (LCSS) [14] is proposed based on the QCSS 

approach. The quadratic constraint is transformed into a 

set of linear constraints, by which the nonlinear 

problem is transformed into a linear problem and the 

solving process is simplified. The LCSS approach is an 

advanced null broadening beamforming method that 

forms broad nulls through linear constraints, while it 

can be further improved. In order to obtain wider  

or deeper nulls, more linear constraints should be 

constructed by the LCSS approach, which requires 

more degrees of freedom (DOFs) of an antenna array, 

so the DOFs of the antenna array is a restrictive factor 

to the LCSS approach. 

Virtual antenna array is an advanced technique that 

focuses on the methods of forming virtual array 

elements and transforms the real array into virtual 

array, which mainly includes the methods of virtual 

array transformation [15-17] and high order cumulant 

[18-20]. By using the idea of the virtual antenna array 

that forms virtual array elements, a null broadening 

beamforming approach based on covariance matrix 

expansion (CME) is proposed in this paper. In this 

proposed approach, the covariance matrix of an array is 

expanded through the Kronecker product of an eye 
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matrix and the sample covariance matrix. The steering 

vector of the array is expanded as well. Moreover, the 

LCSS approach is combined. Eventually, the broad 

nulls are realized. Compared with the LCSS approach, 

more linear constraints can be constructed by the 

proposed approach. Therefore, when the numbers of the 

array elements of the two approaches are equal, wider 

and deeper nulls can be obtained by the proposed 

approach and the output signal-to-interference-plus-

noise ratio (SINR) can be improved. Besides, similar 

performance can be obtained by the proposed approach 

with fewer number of array elements compared with the 

LCSS approach. The validity of the proposed approach 

is verified by theoretical analysis and simulation results. 

 

II. SIGNAL MODEL AND THE  

QCSS APPROACH 
Assuming that noncoherent narrowband excitation 

sources are far away from the antenna array, we consider 

a uniform linear array (ULA) with N  elements and the 

element space is equal to one-half wavelength. The 

structure of the ULA antenna is shown in Fig. 1. 
 

x

y

0 d 2d (N-1)d  
 

Fig. 1. The structure of the ULA antenna. 

 

The received data ( )tX  can be expressed as follows: 

 ( ) ( ) ( )t t t X AS N , (1) 

where ( )tX
 
is an 1N  snap data vector, A  is the 

matrix of steering vectors, ( )tS
 
is the complex signal 

envelope, and ( )tN  is the noise of the antenna array. 

If 
1[ , , ]T

N W w w  is the weight vector of the 

antenna array, the output power of the array can be 

expressed as follows: 

  
2

( )H H

out i nP E t  W X W R W , (2) 

where E   denotes expectation, ( )H  denotes conjugate 

transpose, and i nR  is the covariance matrix of 

interference-plus-noise. In practice, this matrix is 

commonly replaced by the sample covariance matrix 

with K  snapshots as 
1

ˆ 1 ( ) ( )
K

H

k

k k
K



 R X X . 

Assume that the direction of the source of interest, 

denoted by 
d , is constant during the observation time 

0 t T  . When the interference direction changes 

around 
i

  and the total variation is
i

 , the optimal 

weight vector 
optW  of the QCSS approach will 

minimize the output power 
outP . In addition, the 

desired signal level should be kept and the average 

output power within the sector 
i

  should be lower 

than a pre-set value   in order to obtain a broad null 

with certain depth. These can be expressed as follows: 

 ˆmin     s.t.   ( ) 1,   H H H

d  
W

W RW W a W QW , (3) 

where ( )da  denotes the steering vector of the desired 

signal, and Q  is a matrix of N N  and can be 

expressed as: 

 2

2

1
( ) ( )

i
i

i
i

H

i

d







  









 Q a a . (4) 

The solving process of the optimal weight vector of 

the array in formula (3) is complicated, which is a 

nonlinear problem involving the quadratic constraint. 

To reduce the complexity of the QCSS approach, the 

LCSS approach was proposed in [14], which replaced 

the quadratic constraint by a set of linear constraints. 

 

III. THE LCSS APPROACH 
Ideally, the goal of null broadening is to obtain a 

zero power response at the sector 
i , that is, 

0H W QW . Since Q  is a Hermitian matrix, it can be 

factorized as HQ UΣU , where U  is an N N  

matrix containing the orthonormal eigenvectors of Q , 

and Σ  is an N N  diagonal matrix containing the 

eigenvalues of Q  in a decreasing order. Assume that 

Q  has a rank equal to r , and 
1[ , , ]r r U u u

 
is the 

matrix of eigenvectors that correspond to the larger 

eigenvalues. Then, the quadratic constraint 0H W QW  

is satisfied if 
H

r W U 0 . Therefore, the quadratic 

constraint can be transformed into a set of linear 

constraints, and the optimal weight vector of the array 

can be obtained as follows [14]: 
 

1min   s.t. H H T
W

W RW W C e , (5) 

where [ ( ), ]
d r

C a U , and 
1

[1, ]
T T

e 0 . The solution 

to (5) is: 

 1 1 1

1( ) ( )H

LCSS r   W R C C R C e , (6) 

where the rank r  is the number of linear constraints 

that minimize the average output power of the sector 

i
 . Similar to the QCSS approach, in practice, R  is 

first replaced with the sample covariance matrix R̂ , 

and then the sample matrix inversion method can be 

applied where we calculate 1ˆ 
R  selectively with or 

without diagonal loading (DL). 

The minimal number 'optr  of linear constraints, 

which needs to be determined to ensure that the average 
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output power of the sector 
i

  is lower than the pre-set 

value  , can be expressed as [14]: 

 
' [1,2, , ]

' arg min ( ')
opt

r N

r q r 
 

  , (7) 

where ( ') ( ') ( ')H

LCSS LCSSq r r r W QW . 

When the DOFs of a real array are more than the 

optimal rank 'optr , the broad nulls can be achieved by 

the LCSS approach and the interferences can be 

suppressed. However, if the DOFs of the real array are 

less than the optimal rank 'optr , the width or depth of 

nulls will not be able to reach the requirements. Hence, 

the performance of the LCSS approach can be 

improved by increasing the DOFs of the array to 

construct more linear constraints. 

 

IV. THE CME-LCSS APPROACH 

A. The proposed approach 

The LCSS approach is an advanced null 

broadening beamforming method. However, more 

DOFs of the array will be needed when the 

performance of the LCSS approach is improved. To 

solve the problem, the covariance-matrix-expansion-

based LCSS (CME-LCSS) approach is proposed in this 

paper. Compared with the LCSS approach, more linear 

constraints can be constructed by the CME-LCSS 

approach and the width and depth of nulls can be 

improved. 

An eye matrix is used to expand the sample 

covariance matrix R̂ . The expanded matrix R  can be 

expressed as follows: 

 ˆ R I R , (8) 

where I  is an eye matrix of N N  order and   
denotes the Kronecker product. The steering vector of 

the antenna array is expanded as: 

 ( ) ( ) ( )   b a a . (9) 

It can be observed from formula (8) that the sample 

covariance matrix, R̂  (of N N  order), is expanded to 

matrix R  (of 
2 2

N N  order). From formula (9), the 

steering vector, ( )a  (of 1N  order), of the real 

antenna array is expanded to the steering vector,  

( )b
 
(of 

2
1N   order), of the virtual antenna array. 

Therefore, virtual antenna array elements are formed 

and more linear constraints can be constructed. 

Ideally, the goal of null broadening is to obtain a 

zero power response at the sector 
i

 , that is, 

0H W QW . It can be obtained according to the 

steering vector of virtual antenna array as follows: 

 
2

2

1
( ) ( )

i
i

i
i

H

i

d







  









 Q b b , (10) 

where Q  is a matrix of 
2 2

N N  order.  

We can factorize it as HQ UΣU , where U  is an 

2 2
N N  matrix containing the orthonormal eigenvectors 

of Q , and Σ  is an 
2 2

N N  diagonal matrix 

containing the eigenvalues of Q  in a decreasing order. 

Assume that Q  has a rank equal to r , then 

1[ , , ]r r U u u  is the matrix of eigenvectors that 

corresponding to larger eigenvalues. The quadratic 

constraint 0H W QW  is satisfied if 
H

r W U 0 . 

Therefore, the quadratic constraint can be transformed 

into a set of linear constraints, and the optimal weight 

vector of the array can be obtained as follows: 

 
1min   s.t. H H T

W
W RW W C e , (11) 

where [ ( ), ]d rC b U  and 1 [1, ]T Te 0 . 

According to the Lagrange multipliers, we define:  

 1
1( ) ( ).

2
H H HL   W W RW e C W  (12) 

The solution of ( ) / 0L  W W  is 
1 W R C . 

Substituting W  into 1

H HW C e , we can  obtain that 

1 1

1( )H   C R C e . Finally,   is substituted into W . 

The optimal weight vector of the CME-LCSS 

approach can be expressed as follows: 

 
1 1 1

1( ) ( )H

CME LCSS r   

 W R C C R C e . (13) 

Similar to the LCSS approach, the optimal number 

'optr  of linear constraints for the CME-LCSS approach, 

which needs to be determined to ensure that the average 

output power of the sector 
i

  is lower than the pre-set 

value  , can be expressed as: 

 
' [1,2, ,2 1]

' arg min ( ')opt
r N

r q r 
  

  , (14) 

where ( ') ( ') ( ')H

CME LCSS CME LCSSq r r r  W QW . 

DL can be selectively used to improve the stability 

of the LCSS approach, and the loading to noise ratio 

(LNR) is 10dB . The performance of the CME-LCSS 

approach can also be further improved with DL with 

the same 10LNR dB . 
 

B. Theoretical analysis 

Firstly, the relationship between the sample 

covariance matrix and the expanded covariance matrix 

is illustrated. According to Schmidt’s orthogonal 

subspace resolution theory, the sample covariance 

matrix can be expressed as: 

 ˆ ˆ ˆ ˆ H
R UΣU , (15) 

where Û  is a matrix containing the orthonormal 

eigenvectors of R̂ , and Σ̂  is a diagonal matrix 

ACES JOURNAL, Vol. 32, No.2, February 2017130



containing the eigenvalues of R̂  in a decreasing order. 

The eigenvectors in Û  correspond to the incident 

directions of signals and interferences. The eigenvalues 

in Σ̂  correspond to the power of signals and 

interferences. 

Substituting formula (15) into formula (8) and 

using the properties of Kronecker product [22], we 

know that: 

  

 

  

   

ˆ

ˆ ˆ ˆ   

ˆ ˆ ˆ   

ˆ ˆ ˆ   

   

H

H H

H

H

 

 

   

   



R I R

I UΣU

I U I I ΣU

I U I Σ I U

UΣU

, (16) 

where: 

 
ˆ

ˆ

 

 

U I U

Σ I Σ
. (17) 

It can be seen from formula (17) that both Û  and 

Σ̂  are expanded with an eye matrix. Therefore, the 

information of the incident directions and the power 

contained in the expanded matrix R  is the same as that 

in the sample covariance matrix R̂ . 

Secondly, the relationship between the steering 

vectors of the real antenna array and the virtual antenna 

array is illustrated. 

Since the antenna array is an ULA, its steering 

vector 
 

2 2
sin 1 sin

( ) 1, , ,

T

j d j N d

e e

 
 

 


   
 
 
 

a  is a vector 

of 1N  order. According to formula (9), we know that 

( )b  is a vector of 
2 1N   order, in which there are 

2 1N   non-repetitive elements. To describe this more 

clearly, the expansion of steering vector is shown in 

Fig. 2 as follows. 

 

N 1N 

real array elements virtual array elements  
 
Fig. 2. Schematic diagram of expansion of the steering 

vector of the antenna array. 

 

It is observed from Fig. 2 that the antenna array is 

expanded and virtual array elements are formed. There 

are 2 1N   non-repetitive array elements, therefore more 

linear constraints can be constructed compared with  

the real antenna array. The computational load of the 

proposed approach is increased as the price. The 

computation complexity of the LCSS approach is 
2 3( ) ( )O JN O N , where J  is the number of sampled 

points in 
i

 . The computation complexity of the CME-

LCSS approach is 4 6( ) ( )O JN O N , which is greater 

than that of the LCSS approach. Therefore, the CME-

LCSS approach is more applicable to enhancing the 

situation where the LCSS approach for broadening nulls 

is not effective because the number of array elements is 

not large enough. 

 

V. NUMERICAL EXAMPLES 

AND SIMULATION 
Assuming that the noncoherent narrowband 

excitation sources are far away from the antenna array 

and the element space is equal to one-half wavelength. 

The desired signal illuminates on the antenna array in 

the direction of 0
o

. Three independent interferences are 

from the directions of 50
o

, 20
o

 and 60
o

. The signal 

to noise ratio (SNR) is 0dB . The interferences to noise 

ratio (INR) is 30dB . The number of snapshots is 200. 

With these given conditions, we demonstrate the 

performance of the CME-LCSS approach and the LCSS 

approach via computer simulations. In the end, 

numerical simulation procedures are described. 
 

A. Example 1 

The number of array elements is 15. Assume that 

the widths of broad nulls are set to 10
o

. Broad nulls are 

formed around the three directions of 50
o

, 20
o

and 

60
o

. To compare the CME-LCSS approach with the 

LCSS approach, Fig. 3 shows the beam patterns of the 

two approaches versus the azimuth angle. 
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Fig. 3. Beam patterns of the two approaches. 

 

It can be observed from Fig. 3 that broad nulls are 

formed around the three interferences. The null depth of 
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the CME-LCSS approach is about 130dB , while the 

null depth of the LCSS approach is about 75dB . 

Compared with the LCSS approach, deeper nulls can be 

obtained by the CME-LCSS approach. 

 

B. Example 2 

The number of array elements is 10. Assume that 

the broad nulls, whose widths are both set to 10
o

, are 

formed around the directions of 50
o

 and 60
o

. To 

compare the CME-LCSS approach with the LCSS 

approach when the null widths are equal, Fig. 4 shows 

the beam patterns of the two approaches versus the 

azimuth angle. 
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Fig. 4. Beam patterns of the two approaches. 

 

It can be observed from Fig. 4 that broad nulls can 

be formed around the interferences selectively. Besides, 

the null depth of the CME-LCSS approach is about 

140dB , while the null depth of the LCSS approach is 

about 80dB . Compared with the LCSS approach, 

deeper nulls can be obtained by the CME-LCSS 

approach. 

 

C. Example 3 

Simulation conditions are the same as example 2. 

While the null width of the CME-LCSS approach is 

20
o

and the LCSS approach is 10
o

, the performance of 

the CME-LCSS approach is compared with that of the 

LCSS approach. Figure 5 shows the beam patterns of 

the two approaches. Figure 6 shows the output SINR 

versus the snapshots of the two approaches. Figure 7 

shows the output SINR versus the input SNR of the two 

approaches. 

It is observed from Fig. 5 that the null depth of the 

CME-LCSS approach is about 110dB  when the null 

width is 20
o

, and the null depth of the LCSS approach 

is about 80dB  when the null width is 10
o

. Compared 

with the LCSS approach, deeper and wider nulls can be  

obtained by the CME-LCSS approach. 

From Fig. 6, we know that both approaches need a 

certain number of snapshots to obtain the stable output 

SINR, and the output SINR of the CME-LCSS is 

always higher than that of the LCSS approach. 

It can be observed from Fig. 7 that when the input 

SNR exceeds 10dB , the output SINR of the two 

approaches will tend to be stable. Besides, the output 

SINR of the CME-LCSS approach is always higher 

than that of the LCSS approach. 
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Fig. 5. Beam patterns of the two approaches. 
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Fig. 6. Output SINR versus snapshots. 
 

-20 -10 0 10 20 30
-20

-10

0

10

20

30

SNR (dB)

O
u
tp

u
t 

S
IN

R
 (

d
B

)

 

 

CME-LCSS

LCSS

 
 

Fig. 7. Output SINR versus input SNR. 
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D. Example 4 

Simulation conditions are the same as Example 3. 

Both of the CME-LCSS and the LCSS approach are 

used with DL ( 10LNR dB ). Figure 8 shows the 

output SINR versus input SNR of the two approaches. 
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Fig. 8. Output SINR versus input SNR with DL. 

 

It is observed from Fig. 8 that the output SINR of 

the two approaches will tend to stable when the input 

SNR exceeds 20dB , that is to say, the performance of 

the two approaches are both improved. 

 

E. Example 5 
The CME-LCSS approach is used in an array with 

10 elements, while the LCSS approach is used in an 

array with 19 elements. Broad nulls with widths of  

both 20
o

, are formed around the directions of 50
o

 and 

60
o

. Figure 9 shows the beam patterns of the two 

approaches. 
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Fig. 9. Beam patterns of the two approaches. 

 

It is observed form Fig. 9 that the beam patterns of 

the two approaches are similar. Therefore, approximate 

performance can be obtained by the CME-LCSS 

approach with fewer array elements compared with the 

LCSS approach. 

F. Numerical simulation procedures 

To numerically calculate formula (10), discrete 

points are taken in 
i

  with equal spacing, and the 

integral operation is approximately obtained though the 

summing operation as follows: 

 

theta0=lb:0.01:rb;   

 for i=1:length(theta0) 

   A=exp(-j*2*pi *[0:N-1]'*sin(theta0(i)) *d /lamda); 

   B=kron(A, A);   

   Q_bar=B*B'+Q_bar; 

 end 

 

where ‘lb’ and ‘rb’ stand for the boundary of 
i

 , 

‘kron’ stands for the Kronecker product, ‘A’ stands  

for ( )a  and ‘B’ stands for ( )b . As the number of 

discrete points increases, the accuracy of Q  will 

increase. However, the computation complexity of the 

CME-LCSS approach will be greater. 

The matrix of linear constraints C  in formula (11) 

can be calculated as follows: 

 

[V, D]=eig(Q_bar); 

C_bar=[kron(Ad, Ad), V (:,1:lc)]; 

 

where ‘eig’ stands for eigen-decomposition, ‘V’ stands 

for the eigenvectors matrix of Q , ‘D’ stands for the 

eigenvalues matrix of Q , ‘Ad’ stands for the steering 

vector of the desired signal, and ‘lc’ stands for the 

number of linear constraints that corresponding to the 

large eigenvalues of Q . Then, the optimal weight 

vector of the CME-LCSS approach can be obtained 

using formula (13). 

 

VI. CONCLUSION 
A covariance-matrix-expansion-based linear 

constraint sector suppressed (CME-LCSS) beamforming 

approach is proposed in this paper. Numerical solution 

procedures of CME-LCSS are provided and computation 

complexity is analyzed and compared between CME-

LCSS and LCSS. It is verified by simulations that, 

compared with the LCSS approach, more linear 

constraints can be constructed by the CME-LCSS 

approach, so wider and deeper nulls can be obtained 

with equal number of array elements, or similar 

performance can be obtained with fewer number of 

array elements. 
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