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Abstract ─ A novel, efficient, and simple 
modification to standard marching-on-in-time 
(MOT)–based time-domain integral equation 
(TDIE) solvers is presented. It allows for the use of 
high-order temporal interpolators without the need 
to extrapolate and predict future unknowns. The 
order of these temporal interpolators is increased as 
the distance of source and testing quadrature points 
increases. The proposed TDIE solver significantly 
increases the accuracy of solutions by exploiting 
high-order temporal interpolation at no significant 
extra computational cost. Numerical examples are 
presented to validate the proposed method.

Index Terms - Marching-on-in-time (MOT), 
temporal interpolator, and time-domain integral 
equation (TDIE). 

I. INTRODUCTION 
MOT–based TDIE solvers represent an 

increasingly mature technology for analyzing 
transient electromagnetic wave interactions with 
perfect electrically conducting (PEC) surfaces. To 
allow for the solution of large-scale scattering 
problems, these solvers often are accelerated by 
multilevel plane wave time domain (PWTD) [1] or 
time-domain adaptive integral methods (TD-AIM) 
[2]. Their stability and accuracy has been observed 
to be closely related to the method used for 
discretizing the surface current in both space and 
time as well as the method used for evaluation of 

MOT matrix elements [3-5]. To increase the 
accuracy of the spatial discretization, high-order 
interpolatory [6, 7] or hierarchical [8] spatial basis 
functions are often used. To enhance the solver’s 
stability, smooth temporal basis functions are 
preferred [9, 10]. Two basis functions often used for 
this purpose are Lagrange [11] and Quadratic B-
Spline (QBS) interpolants [10]. Their frequency 
spectra decay as 1/f 2 and 1/f 3, respectively; this 
renders the QBS slightly preferable. 

In this paper a new MOT scheme that allows 
for the use of different temporal interpolators 
depending on the distance between source and test 
points, is presented. The advantages of the 
proposed method are threefold: (i) It increases the 
accuracy of a TDIE solver without sacrificing its 
stability or computational efficiency. (ii) It 
alleviates the introduction of spurious high-
frequency modes into the solution without the need 
to extrapolate and/or predict future unknowns. (iii) 
When applied to TDIE solvers based on time 
domain Green’s functions (TDGFs) of layered 
media [12-15], in addition to the above-mentioned 
advantages, which lead to more stable TDIE 
solvers, the proposed method significantly 
decreases the computational expense of taking the 
convolution of TDGFs with temporal interpolators 
by increasing the temporal smoothness. 
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II. STANDARD TIME DOMAIN EFIE 
Consider a perfect electrically conducting 

(PEC) surface S with unit normal vector n̂ that 
resides in a homogeneous medium with 
permittivity �  and permeability � . The incident 
electric field ( , )inc tE r induces a current ( , )tJ r  on 
S, which generates the scattered electric field 

sca ( , )tE r . The total electric field 
sca( , ) ( , )inc t t�E r E r  tangential to S  vanishes.  The 

same therefore is true for its time derivative,  
inc scaˆ ( , ) ( , ) 0 .t t S� �� � � 	
 �n E r E r r0�( , ) ( , )( , ) ( , )) ( , )) ( ,

fore is true for its time de
00�inc sca( ) ( )sca) ( )sca 0inc ( ) ( )) (sca 0inc ( ) ( )) (scainc ( , ) ( , )) ( ,(sca  (1) 

Here, a dot on a symbol implies temporal 
differentiation, and 

sca 1
( , ) ( , ) ( , )t t t�

�
� � � 

�E r A r A r( , )( , )( ,( )( , )( ,(sca ( , ))Esca ( , ))  (2) 

with 

( , )
( , ) ,

4S

Rt
ct d

R�

� �
�� ��

J r
A r r  (3) 

1 /c ��� is the speed of light, and R �� �r r . To 
solve equation (1), ( , )tJ r  is spatially discretized 
as, 

1

( , ) ( ) ( ) ;
sN

n n
n

t I t
�

��J r S r  (4) 
( )nI t is the temporal signature of the nth spatial 

basis function ( )nS r . Assuming that ( , )inc tE r  is 
temporally quasi-bandlimited to frequency maxf
and vanishingly small for S	r and 0t � , ( )nI t
can be reconstructed from its samples, 

( ) , 1,2,...,n n j tI j t I j N� � �  (5) 
as

1

( ) ( )
tN

n n j
j

I t I T t j t
�

� � ��  (6) 

where the time step max1 (2 )t f�� � , �  is a 
temporal oversampling factor typically chosen in 
the range 3 20,�� �  and ( )T t j t� � is a suitably 
chosen interpolator. Equation (6) and (4) imply the 
following space-time discretization of ( , )tJ r ,

1 1

( , ) ( ) ( ).
s tN N

n j n
n j

t I T t j t
� �

� � ���J r S r  (7) 

Substituting equation (7) into equations (1-3) and 
enforcing the resulting equation by Galerkin testing 
in space and point matching in time yields [1, 2,16-
18], 

1

, 1,2,...,
tN

i j j i t
j

i N�
�

� ��Z I V  (8) 

where 

� � ( ) ( , ) , .inc
i m j mjm m

S

V i t ds I I� �� � � �
 ��� S r E r( ,inc ( ,(((  (9) 

and 
� �

( ) ( )
( )

4

( ) ( )1
( )

4

k mn

m n

S S

m n

S S

Z

RT k t ds ds
R c

RT k t ds ds
R c

�
�

��

�

�

�

�� �� �

� �
 � 
 � �� � �

�� ��

�� ��

S r S r

S r S r

(T k((

.
 (10) 

A temporal interpolator ( )T t satisfying,  
( ) 0,T t t t� � ��  (11) 

is said to be causal. For causal interpolators, 
0, 1,2,3,...k k� � �Z  (12) 

and equation (8) reduces to the standard MOT 
equations from which the expansion coefficients Inj
can be retrieved, one time step at a time, 

1

0
1

, 1,2,..., .
i

i i i j j t
j

i N
�

�
�

� � ��Z I V Z I  (13) 

Next we demonstrate that condition (11) can be 
relaxed without relinquishing the MOT form of 
equation (13). 

III. DISTANCE-DEPENDENT 
TEMPORAL INTERPOLATORS  

A. Concept 
By discretizing the spatial integrations in 

equation (10) by Ntqp test quadrature points and Nsqp 
source quadrature points, equation (8) can be 
rewritten as,

� �
1 1

1 1 1

,
,

1

,
,

1

(( ) )

(( ) )

t s

tqp sqps

t

t

N N

i i j jm mn n
j n

N NN

mq nq
n q q

N
mq nq

mq nq n j
j

N
mq nq

mq nq n j
j

V Z I

w w

R
a I T i j t

c

R
b I T i j t

c

�
� �

�
�� � �

�
�

�

�
�

�

� � � �� 
 � 
 �

�

�
� � ��



�

� � � � �
�

� �

� � �

�

�

(( )T i j(( )))

(14) 
where 

,
,

,
,

( ) ( )
,

4

( ) ( )

4

m mq n nq
mq nq

mq nq

m mq n nq
mq nq

mq nq

a
R

b
R

�
�

��

�
�

�

�
�

�

��
�

� �
 � 
 �
�

S r S r

S r S r

 

(15)
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with ,mq nq mq nqR � ��� �r r  , mqr and nq ��r  are position 
vectors of qth quadrature point of mth spatial basis 
function and thq � quadrature point of nth spatial 
basis functions, respectively, wmq and wnq' are the 
corresponding quadrature weights.  

The two summations inside brackets of 
equation (14) are nothing but the temporal 
interpolation of ( )nI t

re noth
( )nI (n and ( )nI t , respectively at 

time , /mq nqt i t R c�� � � . More clearly from 
equation (6) we have, 

, ,

1

, ,

1

( ) (( ) )

( ) (( ) )

t

t

N
mq nq mq nq

n n j
j

N
mq nq mq nq

n n j
j

R R
I i t I T i j t

c c
R R

I i t I T i j t
c c

� �

�

� �

�

� � � � � �

� � � � � �

�

�( ) (( )mq nq
n n j

R tN

I i t(n j(( )(( )n j

t

� � ) (( )(( )mq nq,t (( )(( ))�

.

(16) 

It is easy to see that by replacing T(t) by any other 
interpolatory function, equations (14)-(16) still 
remain valid. Moreover, this replacement can be 
done based on the position of source and test 
quadrature points. Therefore, a more flexible 
restriction on T(t) to satisfy equation (12) is, 

,( ) 0, mq nqR
T t t t

c
�� � �� � .            (17) 

This condition means that as the distance of source 
and test quadrature points increases, it is allowed to 
choose wider temporal interpolator T(t) that 
contradicts equation (11) and still use the MOT 
scheme of equation (13). 

In the next section B-Spline functions of 
arbitrary order, which are used in numerical results 
as distance-dependent interpolators are defined. 

B. B-Spline functions 
B-Spline functions of order m are defined as, 

( ) (0) ( 1)1
( ) ( ) ( ), 1,2,3,m mb t b t b t m

t
�� � � �

�
 (18) 

where ‘*’ denotes temporal convolution and

(0) 1 , 1
( ) ( ) .

0 , otherwise

t
tb t rect t
t

�
��� � ��� ��

 (19) 

Consider the shifted B-Spline functions defined as, 
( ) ( ) ( / 2) , 2,3,4,m mb t b t t m� � � � �

,
 (20) 

Given the definition in equation (18), the spectrum 
of shifted B-Spline functions of equation (20) is, 

 !

( ) 1

1

( ) Sinc ( )

1 sin( )

m m j f t

m
j f t

m

b f t f t e

f t e
ft

�

��
�

� � �

�
� �

� � � �

�" #� $ %
& '�

( )b f( ) ( )(�

 (21) 

which indicates that the spectrum of B-Spline 
function of order m, decays as  1/f (m+1) . 

Shifted B-Spline functions of different orders 
are depicted in Fig. 1. An arbitrary function s(t) can 
be expanded in terms of B-Spline functions of 
equations (18) and (19) as, 

( )( ) ( ) ( ), {0,1,2, }m

n
s t s n t b t n t m

�(

��(

� � � 	� ( )( ) ( ), {0,1,2, }( ) ( ),( ) ( ),( )
�(

) ( ),) ( ),) (( )��
.(22) 

Note that for the special case of m=1, equation (18) 
is the standard triangular (hat) function and 
equation (22) is nothing but a piecewise linear 
interpolation of s(t). Considering equations (20)and 
(22), it is obvious that an arbitrary function s(t) can 
also be expanded in terms of shifted B-Spline 
functions of equation (20) as,

( )( / 2) ( ) ( )

, {2,3,4, }

m

n
s t t s n t b t n t

m

�(

��(

�� � � � �

	

� ((
�(

�
}.

 (23) 

By applying the restriction in equation (17) it is 
seen that ( ) ( )mb t� can be safely used in TDIE 
solvers for distances R satisfying, 

( 2)
.

2

mR c t�
) �  (24) 

Note that (2) ( )b t� is the only shifted B-Spline 
temporal interpolator defined in equation (20) that 
satisfies equation (17) for the worst case of 

, 0mq nqR � �  and therefore is selected as temporal 
interpolator for near distances of source and test 
quadrature points in numerical results. 

Fig. 1. Shifted B-Spline functions of different order. 
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IV. NUMERICAL RESULTS 
In parts A and B of this section, the above 

solver is applied to the analysis of scattering from a 
sphere and cube illuminated by the modulated 
Gaussian plane wave,  

2[( )/ 2 ]
0ˆ(r, ) cos(2 ).ptinc t e f* + � *� ��E x  (25) 

with ˆ /t c* � � �r z , the center frequency 
0 40 MHzf � , the delay 60.5 10pt s�� � , and 

6 / (2 )BWf+ �� with the nominal bandwidth 
20 MHzBWf � . The MOT time step is 

106.25 10t s�� � � and the number of time steps 
1600tN � . In these examples, shifted B-Splines of 

order 2, 3,m � and 4 are used for 0.0938 mR � ,
0.1875 m 0.0938 mR) , , and 0.1875mR , ,
respectively, in agreement with the condition of 
equation (24). Frequency-domain results attributed 
to the solver were obtained by Fourier transforming 
time-domain data while accounting for the spectral 
content of the incident field. 

In part C of this section the proposed distance-
dependent temporal interpolation scheme is applied 
to a recently developed TDIE solver for analyzing 
planar structures in layered media. 

A. Sphere 
The surface of a PEC sphere of radius 1 m

(centered about the origin) is discretized using 48 
curvilinear patches, resulting in 72sN � spatial 
RWG basis functions [19]. Each patch is obtained 
by means of an exact mapping from a reference 
RWG patch onto the sphere surface. 

Fig. 2 (a) shows the bistatic radar cross section 
(RCS) for 0- �  and 180 0.� / /  for frequency 

43f � MHz and different choices of temporal 
interpolating functions. 

Fig. 2 (b) shows the relative error of the 
computed RCS with respect to Mie series solution. 
The norm of current vector jI is plotted in 

Fig. 2 (c). Clearly the use of a shifted QBS 
temporal interpolator results in more accurate 
results compared to Lagrange interpolators [11, 20].
Moreover, as expected, using distance-dependent 
variable order B-Splines of Fig. 1 as temporal 
interpolators, significantly increases the accuracy 
without affecting the stability of solutions. By 
exploiting variable order B-Splines as temporal 
interpolators, the worst case relative error in RCS is 
decreased by 48 % with respect to the case where 
only QBS is used as temporal interpolator. 

B. Cube 
The surface of a PEC cube with side length of 

1 m (centered about the origin and with cube edges 
aligned with the major coordinate axes) is 
discretized using 256 flat patches, resulting in 

384sN � spatial RWG basis functions. Since there 
is no analytical solution for the cube example, the 
results of the TDIE solver when the surface current 
of the cube is densely discretized using 1773 RWG 
spatial basis functions are considered as reference 
solution for comparison. The results for frequency 

50f � MHz and different choices of temporal 
interpolating functions are plotted in 

Fig. 3. Accuracy improvements on par with 
those observed in the previous example when using 
distance-dependent high-order B-Splines are
obtained here leading to 45% decrease in worst case 
relative error in RCS with respect to the case where 
only QBS is used as temporal interpolator. 

C. Microstrip patch antenna array
As the last example, to show the ability of the 

proposed variable-order and distance-dependent 
temporal interpolator scheme in increasing the 
accuracy and therefore the stability of the TDIE 
solvers, this scheme is incorporated into a recently 
developed TDIE solver based on the TDGFs of the 
layered media [15]. In this solver the direct 
convolution of the TDGFs with temporal 
interpolators are computed using a novel and highly 
efficient 2D finite difference scheme. 

Consider a 2 by 1 array of microstrip patch 
antenna as shown in 

Fig. 4 (a). The units in this figure are in 
millimeter. The patch antenna is located over a PEC 
backed dielectric substrate with relative 
permittivity of 2.2r� � and thickness of h=1.524 
mm. The antenna is fed by a modulated Gaussian 
voltage signal of, 

2[( )/ 2 ]
0( ) cos(2 ).pt teV t f t+ �� ��  (26) 

With the center frequency f0 = 4.5 GHz, the delay 
80.5 10pt s�� � , and 6 / (2 )BWf+ �� with the 

nominal bandwidth fBW = 2 GHz. The surface of the 
antenna array is discretized using 468 triangular 
patches, resulting in Ns=614 spatial RWG basis 
functions. The MOT time step is set to 

125 10t s�� � � .
First, we only use QBS as temporal interpolator 

for all distances of the source to test quadrature 
points as is used in standard TDIE solvers. 

For comparison we also run the solver when 
shifted B-Splines of order 2, 3,m � and 4 are used 
for 1mmR � ,1mm <1.6 mmR/ , and 
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1.6mmR , , respectively as temporal interpolators 
in agreement with the condition of equation (24). 
The TDIE solver runs for Nt=10000 time steps. 
The stability of the TDIE solver is shown in 

Fig. 4 (b) where the norm of current vector is 
plotted. As can be seen from this figure, the 
standard TDIE solver is instable while the proposed 
TDIE solver based on variable order and distance-
dependent temporal interpolators gives stable 
results. 

(a) 

(b) 

(c) 

Fig. 2. Bistatic RCS of a unit PEC sphere at 43 MHz 
for different choices of temporal interpolators. The 
surface of the sphere is modeled using 48 
curvilinear triangular patches. (a) Bistatic RCS, (b) 
relative error in the RCS with respect to Mei’s 
series solution, and (c) norm of current vector at 
each time step. 

(a) 

(b) 

(c) 

Fig. 3. Bistatic RCS of a PEC cube with side length 
of 1 m at 50 MHz for different choices of temporal 
interpolators. The surface of the cube is modeled 
using 256 flat triangular patches. (a) Bistatic RCS, 
(b) relative error in the RCS with respect to 
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reference solution, and (c) norm of current vector at 
each time step. 

It is worth mentioning that in the second run the 
only change with respect to the first run is that a 
fixed temporal interpolator i.e., QBS is replaced 
with the high-order and distance-dependent 
temporal interpolators. This replacement not only 
may increase the accuracy of the solver but also 
significantly decreases the cost of computing the 
convolution of temporal interpolators with the 
TDGFs of layered media by using much more 
smooth temporal interpolators for non-near pair of 
source-testquadrature points. 

Fig. 4 (c) shows the reflection amplitude |S11| of 
the patch antenna achieved by using a proper post 
processing technique applied to the stable time 
domain surface currentoutput of the proposed TDIE 
solver based on distance-dependent temporal 
interpolators. The results are being compared with 
that of the commercial software ADS-Momentum, 
which is based on frequency domain method of 
moments (MoM). A good agreement between the 
results of two methods is observed. 

V. CONCLUSION 
A new MOT-TDIE solver that uses distance-

dependent high-order temporal interpolators was 
introduced. The solver tunes the basis functions’ 

temporal support to the distance between source 
and observer points, maximizing temporal 
smoothness and avoiding non-causal excitations 
along the way. When compared to classically 
formulated MOT-TDIE schemes, the new method 
can markedly improve solution accuracy by 
suppressing high-frequency, out-of-band spurious 
solution components stemming from the use of 
temporal interpolators with spectral support far 
exceeding that of the excitation. The proposed 
distance-dependent interpolation scheme is also 
very advantageous in TDIE solvers for analyzing 
electromagnetic interactions with structures 
residing in layered media. In this case the proposed 
method not only may increase the solution accuracy 
but also can significantly decrease the cost of 
computing the convolution of temporal 
interpolators with the TDGFs. 
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80
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Fig. 4. TDIE analysis of the patch antenna array (a) 
antenna layout (the units are in millimeter), (b) 
norm of current vector at each time step using 
proposed TDIE solver and standard TDIE solver,
and (c) the amplitude of the reflection coefficient 
|S11| achieved using the proposed TDIE solver and 
its comparison with the results of ADS-Momentum. 
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Abstract � In this paper, contribution of spherical 
conformal ultra-wide band (UWB) bow-tie 
antenna on enhancement of breast tumor detection 
capability of a radar-based microwave imaging 
system is investigated through simulation, 
demonstrating the potential of the novel antenna 
element used in a half-spherical antenna array 
surrounding the breast. The designed conformal 
antenna operates efficiently across the band from 1 
GHz to 8 GHz, and it is immersed in a coupling 
medium in order to get a good impedance 
matching with the breast. Images are successfully 
formed by using delay-and-sum (DAS) algorithm 
for the detection of a spherical tumor model with 2 
mm diameter. The tumor is located at 40 mm 
depth inside three different breast phantom models 
with homogeneous fatty breast tissue, quasi-
heterogeneous mix of fibro-glandular and fatty 
breast tissues and homogeneous fibro-glandular 
tissue, respectively. Fidelity factor, indicating the 
maximum cross correlation between observed and 
excitation pulses, of the conformal bow-tie is 
found to be around 13% more than that of the 
planar bow-tie at 40 mm depth. The use of the 
spherical conformal antenna presents an excellent 
solution to increase tumor responses by at least 2.3 
dB, as well as to decrease mutual coupling effects 
between array elements, compared to the same 
system with planar bow-tie antennas.  
  

Index Terms - Breast cancer, conformal bow-tie 
antennas, and UWB microwave imaging.  
 

I. INTRODUCTION 
Early diagnosis and treatment are the hot keys 

to survive from breast cancer. The present 
“golden” standard screening technology for 
detecting early-stage breast cancer is X-ray 
mammography. However, it has several 
limitations, especially when dealing with younger 
women who have dense breast tissues. It also 
requires painful and uncomfortable breast 
compression and exposes the patient to ionizing 
radiation.  

Electromagnetic waves and antennas have a 
huge application area, and one of the challenging 
areas is remote sensing systems and detection 
systems using microwaves, today. Increasing 
demand on non-destructive sensing or detecting 
breast tumor keeps this subject hot in this field. 
There are various passive and active microwave 
techniques, which have been proposed as an 
alternative especially to the most widely used X-
ray mammography; such as microwave radiometry 
[1], hybrid microwave-induced acoustic imaging 
[2], microwave tomography [3], and UWB 
microwave radar technique [4-6]. 

Currently, there are two main active methods 
that involve illuminating the breast with 
microwaves and then measuring transmitted or 
backscattered signals, such as microwave 
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tomography and radar-based imaging. In 
microwave tomography, a nonlinear inverse 
scattering problem is solved to reconstruct an 
image of the spatial distribution of dielectric 
properties in the breast. On the other hand, UWB 
radar-based imaging approach deals with only to 
identify the presence and location of significant 
scattering obstacles such as malignant breast 
tumors [7].   

There is a small contrast between healthy and 
diseased breast tissues at X-ray frequencies [4]. 
However, resolution in X-rays is absolutely better 
than in microwaves. On the other hand, the 
physical basis for microwave detection of breast 
tumor is the significant contrast in the electrical 
properties of the normal and the malignant breast 
tissues [4], which exists in the earliest stage of 
tumor development. Another advantage of the 
microwave imaging technique is that it would be 
nonionizing and it doesn’t require painful breast 
compression. Other available screening techniques 
such as ultrasound and MRI are either less 
effective or are too costly.  

Because of its excellent advantages, recent 
years have shown a dominant interest in UWB 
microwave imaging technique, for a particular 
technique to detect and locate a breast tumor [4-
15]. This technique specifically involves 
transmitting and receiving short duration pulses 
for various locations of UWB probe antenna or 
alternatively by an antenna array controlled with 
switches. The UWB imaging technique offers 
creation of an image, which can be formed by 
combining all of the signals (Sii and Sij, i�j) 
coming from different antennas. Well-known DAS 
algorithm would be used to create microwave 
images of breast cancer tumors [4]. In order to 
enhance tumor detection capability, the radar-
based technique requires the use of more sensitive 
antennas operating over a considerable UWB 
frequency range. 

In this study, UWB microwave imaging 
technique is used in the 1 GHz – 8 GHz frequency 
range, which guarantees balance between 
reasonable contradictory needs of better spatial 
resolution, better penetration depth [11], less 
attenuation of electromagnetic waves through the 
breast and smaller dimensions of a multi-function 
active imaging system. The selected frequency 
range is expected to provide reasonable tumor 
detection capabilities. In particular, since the skin 

reflections back to the antenna adversely affect 
imaging results, better penetration of 
electromagnetic waves into the breast tissue will 
be determined by operating the antenna in a 
coupling medium whose dielectric properties are 
close to the breast tissue. Antenna size would also 
be selected to be smaller since the wavelength in 
the coupling medium will be smaller than air. 

Several different types of antennas have been 
considered and reported over the past decade by 
research groups involved in radar-based UWB 
breast imaging; such as ridged pyramidal horn [7], 
UWB planar bow-tie [8], cross-polarized types [9-
10], U-slot [11-12], antipodal Vivaldi [13], 
stacked microstrip patch [12, 14], tapered slot 
[15], etc. These antennas were generally used and 
tested in planar, cylindrical or spherical scanning 
surfaces, as a single element or in an antenna 
array. There are also a lot of advantages of using 
circular or hemispherical antenna array 
configurations compared to planar ones; such as 
increased tumor detection sensitivity, 
enhancement on signal reception [16], increased 
illuminated coverage area inside the breast [17], 
better signal-to-clutter (S/C) ratio [18], etc. 
However, mutual coupling effects of array 
elements can negatively impact antenna 
performance and imaging results, too [19]. 

On the other hand, in order to detect the weak 
reflections from small tumors located in tissues 
ranging from fatty breast to glandular, a high 
sensitive antenna is required to send and receive 
electromagnetic waves with low pulse distortion 
and low mutual coupling effects in the array. Since 
antennas are assumed to be operating in the near 
field region in which spherical waves exist, 
antenna geometry and polarization should be 
appropriately selected to perfectly match with the 
spherical waves inside the breast, too [20]. 

This paper presents herein spherical conformal 
bow-tie antennas to improve tumor detection 
capability of the microwave imaging system. 
Conventional planar UWB bow-tie antennas are 
curved onto a hemi-sphere surface to investigate 
its effects on enhancement of tumor responses and 
signal energies [21]. 

Seven UWB spherical conformal bow-tie 
antennas are located 4.7 mm above different half-
spherical breast phantoms that are modeled on the 
full-wave electromagnetic simulator (CST 
Microwave Studio®), which is based on the FIT 
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method, to calculate the performance of the 
antennas.  All of the time-domain signals (Sii and 
Sij, i�j) coming from different antennas are 
obtained from the simulation model with and 
without 2 mm diameter tumor at 40 mm depth 
inside breast phantom models with homogeneous 
fatty breast tissue, quasi-heterogeneous mix of 
fibro-glandular and fatty breast tissues, and 
homogeneous fibro-glandular tissue, by feeding 
each antenna sequentially. Recorded data are 
processed on DAS algorithm, and then images of 
the computed backscattered signal energies for 
each pixel are created as a function of position. 
Imaging results of the microwave imaging system 
with the conformal bow-tie antennas are 
successfully compared to the same system with 
planar bow-tie antennas. 

This paper is organized as follows: the layered 
half-spherical breast phantom model, antenna 
design results and antenna array structure are 
introduced with comparative antenna simulations 
in section 2, followed by pulse distortion analysis. 
In section 3, after briefly outlining the DAS 
imaging algorithm, imaging results and 
discussions are given for different breast phantom 
models. Section 3 also presents tumor responses 
for the novel antenna and mutual coupling effects 
of array elements with comparative results in 
details. Finally, the findings of the study are 
briefly given in section 4. 
 

II. SIMULATION STUDY 
A. Layered half-spherical breast phantom 
models 

Layered breast phantom model consists of a 
skin tissue layer with thickness of 2 mm and three 
different half-spherical tissues with radius of 58 
mm under the skin, such as homogeneous fatty 
breast, quasi-heterogeneous mix of fibro-glandular 

and fatty breast, and homogeneous fibro-glandular 
tissues (Fig. 1). The homogeneous fatty breast, 
quasi-heterogeneous and homogeneous fibro-
glandular phantom models represent “mostly fatty”, 
“heterogeneously dense” and “very dense” phantom 
models, respectively. 

The breast phantom is surrounded by a 
coupling medium in which antennas are placed, to 
reduce adverse effects of signal reflections at the 
antenna-air-breast interface [15]. Non-dispersive 
relative dielectric permittivity εr and conductivity 
σ values of skin, ducts, fatty breast, fibro-
glandular and tumor tissues are selected, as in 
Table I. Dielectric properties of the coupling 
medium are selected as εr = 9, σ = 0 S/m [18]. 
  
Table I: Dielectric properties of the tissues. 

Tissue εr σ (S/m) 
Skin [15] 36 4 
Ducts [11] 37.96 4.5 
Fatty Breast Tissue [7] 9 0.4 
Glandular Tissue [11] 21.5 1.7 
Tumor [18] 50 7 
 
Differently sized glands of spherical (radius 8.5 

mm < r < 12.5 mm) shape [22] are embedded in the 
fatty breast tissue for the quasi-heterogeneous 
phantom model, as shown in Fig. 1 (b).  

 
B. Antenna design 

Use of the spherical conformal antenna 
structure is presented here for breast cancer 
imaging, and it is aimed to be used as an element of 
a half-spherical array encircling the breast as part of 
a microwave imaging system operating between 1 
GHz and 8 GHz. The intended use of conformal 
antenna is expected to increase the dynamic range 
of the system as well as to diminish mutual 

   
(a) (b) (c) 

 
Fig. 1. Schematic illustration of layered half-spherical breast phantom models with (a) homogeneous 
fatty breast tissue, (b) quasi-heterogeneous mix of fibro-glandular and fatty breast tissues, and (c) 
homogeneous fibro-glandular tissue. 
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coupling effects between array elements and pulse 
signal distortion through the breast. 

The planar bow-tie antenna (26 mm × 40 mm), 
which is curved onto a hemi-sphere surface is 
aimed to be used as an UWB probe element of a 
half-spherical antenna array (Fig. 2 (a)). The 
wavelength at the center frequency (4.5 GHz) is 22 
mm inside the coupling medium. The antenna-skin 
distance has been obtained as 4.7 mm, by 
optimizing the distance with parametric sweep for 
the purpose of best matching over the bandwidth. 
This value is close to the expected theoretical 
distance, which is approximately quarter-
wavelength at the center frequency [23, 24]. If the 
antennas are not located at this optimal distance, the 
antenna gain is reduced. 

 

  
(a) (b) 

 
(c) 

 
Fig. 2. (a) Spherical conformal bow-tie antenna, (b) 
simulation model of spherical conformal bow-tie 
antenna array in front of the breast phantom, and (c) 
return loss of the spherical conformal bow-tie 
antenna in the half-spherical antenna array 
encircling different breast phantoms.  

 
The conformal bow-tie antenna is designed for 

operating with other antenna elements in the half-
spherical antenna array and also in front of the 
breast phantom model (Fig. 2 (b)). Comparative 
results of return loss of the conformal bow-tie 
antenna encircling different breast phantom models 

are shown in (Fig. 2 (c)). The simulation results are 
obtained for the 1st antenna located at the center of 
the half-spherical antenna array, as shown in Fig. 2 
(b). The results show that the -10 dB bandwidth of 
the antenna, which is operating in the half-spherical 
antenna array surrounding the breast phantom 
extends from nearly 1 GHz to above 8 GHz. 

As the UWB microwave imaging system 
operates in the time domain by sending a narrow 
pulse to penetrate the breast and measures the 
scattered pulses, it is important to study distortion 
when the radiated pulse propagates through 
especially the quasi-heterogeneous breast phantom 
[15]. For this purpose, the transmitted pulse from 
the 1st antenna located at the center of the half-
spherical antenna array is monitored at different 
distances normal from the antenna aperture. The 
time domain performance of the conformal bow-tie 
antenna will be compared to that of the planar bow-
tie antenna, as in Fig. 3. 
 

 
(a) 

 
(b) 

 
Fig. 3. (a) Spherical conformal bow-tie antennas 
and (b) planar bow-tie antennas, in the presence of 
quasi-heterogeneous breast phantom model. 

 
In order to find out the distortion level in the 

transmitted pulses inside the breast phantom 
model, the fidelity factor is calculated at different 
locations within the breast. The fidelity factor is 
defined as the maximum magnitude of the cross 
correlation between the observed pulse ( ( )Rs t ) at 

a certain distance and the excitation pulse ( ( )Ts t ) 

[12], 
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where dτ  is the required time delay for obtaining 
maximum magnitude of the cross correlation.  
 The results indicate an increasing pulse 
distortion as the signal propagates through the 
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heterogeneous breast phantom due to the multiple 
reflections inside the phantom model [15]. For the 
case with planar bow-tie antenna, the fidelity 
factor decreases more and it becomes 45.2 % at 40 
mm depth inside the breast (Fig. 4). On the other 
hand, the fidelity factor is kept at higher values in 
overall when the antenna is spherical conformal 
bow-tie. That is around 58.2 % at 40 mm depth 
inside the breast. Moreover, for the conformal 
bow-tie antenna presented in this paper, the 
fidelity factor is within reasonable values (around 
more than 60 %) even inside the breast phantom 
[25]. 
 

 

 
 
Fig. 4. Calculated fidelity factors with respect to 
distance from the antenna, in the presence of 
quasi-heterogeneous breast phantom model.  
 
 

In order to find out mutual coupling effects of 
array elements in Fig. 3, conformal and planar 
bow-tie antennas are compared to each other for 
S21 characteristics between the 1st and 2nd antennas, 
as shown in Fig. 5. It is observed that the overall 
S21 characteristics of the conformal antenna show 
less mutual coupling effects, with the exception of 
higher coupling effects in around 1 GHz -1.3 GHz 
and 3.6 GHz - 5 GHz frequency bands. However, 
these bands correspond to 24 % of the whole band. 
Moreover, the areas under the curves of S21 
characteristics versus frequency for the conformal 
antenna are less than that of the planar antenna, 
indicating lower mutual coupling effects in the 
overall. 

 

 
 
Fig. 5. S21 characteristics of conformal and planar 
bow-tie antennas in the half-spherical antenna 
array encircling different breast phantoms. 
 

III. IMAGING RESULTS AND 
DISCUSSION 

When one of the seven UWB bow-tie antennas 
in the array is excited by Gaussian pulse, backscat- 
tered time-domain signals (Sii and Sij, i�j) are 
recorded. This procedure is repeated by feeding 
each antenna sequentially, for cases with and with-
out 2 mm diameter tumor. Therefore, 49 time-
domain signals (including 28 independent time-
domain signals) coming from different antennas 
are recorded for each case. Tumor response signals 

ij
TS  are obtained by calibrating the recorded signals 

as in equation (2), 

                  ij ij ij .T

withtumor without tumor
S S S= −            (2) 

The tumor response signals are additionally 
compensated for 1/r attenuation of electric fields 
inside the breast. When the 1st antenna is fed and 
signal is received from 3rd antenna, one can easily 
compute time delay for the possible tumor location 
depicted in Fig. 6. Accordingly, time delay 
between the transmitted signals from 1st antenna 
and the received signal by 3rd antenna can be 
computed as in equation (3), regarding velocities 
of electromagnetic fields in different media, 
individually,  

         
( )

( ) ( ) ( )

( ) ( ) ( )

31 31 31
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31

31 31 31
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Fig. 6. Illustration of mutual coupling effects (red 
paths) and signal path, when 1st antenna is fed and 
3rd antenna is in receiving mode (black path).  
 

In fact, the heterogeneity of the breast would 
change the velocities inside the breast. As the 
antenna positions with respect to each other are 
known, the mean velocities inside three different 
breast phantom models are successfully obtained 
by using time-delay differences between 
arbitrarily selected S54 and S74 time-domain 
signals, as shown in Fig. 7. Although, the DAS 
algorithm is known as unsuitable for the frequency 
dispersive tissues, the same practical method can 
also be successfully used with the DAS algorithm 
for both heterogeneous and dispersive breast 
phantom models without any detected tumor 
location error [21]. However, only non-dispersive 
case is considered for simplicity, in this paper. 

Total tumor response for each pixel is 
obtained, as in equation (4), regarding computed 
time delays between each antenna and pixel 
points, one by one [4]. Then, images of the 
computed scattered signal energies for each pixel 
are created as a function of position, 

                 ( ) ( )( )
2

7 7
d

ij ij
i 1 j 1

.TT r S rτ
= =

� �
= � �
� �
		� �            (4) 

Firstly, the effect of spherical conformal 
antenna structure on the tumor response will be 
compared to that of the planar bow-tie antenna. 
Three different breast phantom models are used in 
the simulations. Since the peak-to-peak voltage of 
the excitation pulse ( ( )Ts t ) is 1.7 V, the tumor 

response (in dB) is calculated using the 
“uncompensated” time-domain tumor response 
signals 

ij
TS , as follows [8],  

( )
( )ij

20 log .
1.7

T

peak peak
S

Tumor Response dB −


 �
� 
= ⋅
� 

� �

(5) 

Tumor responses (in dB) corresponding to 
highest signal levels 

i2
TS  and lowest signal levels 

i7
TS , are given in Fig. 8, with comparable results 

for conformal and planar bow-tie antennas 
operating in the presence of different breast 
phantom models. Each neighbor antenna is 
separated by 25o with respect to the bottom center 
of the breast phantom (0, 0, 60 mm). As an 
example, in the case of 

42
TS , 

12
TS , and 

72
TS  tumor 

response signals, � is equal to -75o, 0o, and 75o, 
respectively (See Fig. 6).  

Comparing the calculated tumor response 
levels of the conformal bow-tie antenna with those 
of the planar bow-tie antenna, they increase when 
the conformal antennas are used (Fig. 8). Signal 
enhancement is observed between 2.3 dB and 5.7 
dB in overall for the conformal antenna case. The 
reduction of tumor responses in the planar bow-tie 
antenna case is possibly related with worse pulse 
distortion and mutual coupling effects (Fig. 7). 
The conformal structure also achieves good 
polarization matching with spherical waves inside 
the breast, because of its spherical conformal 
geometry, too [20]. The tumor response levels of 

   
(a) (b) (c) 

 
Fig. 7. Velocities obtained by using time delays between S54 and S74 signals for (a) homogeneous fatty, 
(b) quasi-heterogeneous, and (c) homogeneous fibro-glandular breast phantom models. 
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67
TS  and 

77
TS  show unexpected increment for the 

case of antennas operating in the presence of 
homogeneous fibro-glandular breast phantom, as 
shown in Fig. 8 (b). Obtained 

67
TS  and 

77
TS  signals 

are found to be lower than the minimum detectable 
signal level in the simulation software, resulting 
wrong computation of tumor responses. 
 

 
(a) 

 
(b) 

 
Fig. 8. Results of tumor responses (dB) 
corresponding to (a) 

i2
TS  and (b) 

i7
TS , with respect 

to �. 

 
On the other hand, the peak tumor responses 

of the conformal antenna for both 
i2
TS  or 

i7
TS  are 

found about 1 dB and 23 dB larger when the 
antenna is operated in the presence of 
homogeneous fatty breast and quasi-heterogeneous 
phantoms, respectively, than when it’s operated in 
the presence of homogeneous fibro-glandular 
breast phantom. The tumor response results, in 

Fig. 8, also show dynamic range requirements for 
the detection of the tumor with 2 mm diameter at 
40 mm depth. Since dynamic range of a vector 
network analyzer can reach down to -140 dB for 
experimental measurements [26], the tumor 
responses are not high enough to detect the tumor 
embedded in the homogeneous fibro-glandular 
breast, mimicking very dense breast tissue. 

Moreover, the area under the curves of tumor 
responses versus different � angles decreases as 
the breast becomes denser with fibro-glandular 
tissues. As expected, these results also show that 
detecting tumor in homogeneous fatty breast tissue 
is easier than in quasi-heterogeneous and 
homogeneous fibro-glandular tissues, respectively. 
 Normalized imaging results of breast cancer 
tumor with 2 mm diameter are presented in 
logarithmic scale, as shown in Fig. 9. 
Normalization is done within each breast phantom 
case, separately. Comparing the calculated signal 
energies of the conformal bow-tie antenna with the 
planar bow-tie antenna, signal levels increase 
when spherical conformal antennas are used. The 
increment is 4.8 dB, 6.9 dB, and 3.1 dB in the 
presence of homogeneous fatty breast, quasi-
heterogeneous, and homogeneous fibro-glandular 
breast phantoms, respectively. 

On the other hand, the 50 cm × 40 cm imaging 
area in Fig. 7 is sampled with 1-mm pixel 
resolution and the DAS algorithm was performed 
on a single core of an Intel i5-2410M @ 2.30 
GHz. In this case, the computation time is too long 
(i.e., more than half of a day) to obtain only one 2-
D microwave image. Therefore, parallel 
computing tools on graphics processing units of a 
workstation with multicores as well as 
computationally efficient algorithms should be 
used to speed up the computation time for imaging 
[29]. 

The calibration measurements over the breast 
without tumor (equation (2)) cannot be used in 
clinic applications. Because differential imaging 
method [6] does not require a background 
measurement, it can be used in clinical scenarios. 
The first measurement should be performed with 
the array in a given position, then the array is 
rotated (in a horizontal plane, around its central 
vertical axis) and a second measurement is 
recorded. Those two measurements are then 
subtracted, resulting in a differential signal, which 
is used as an input into imaging algorithm. A 
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detailed description of this method can be found in 
[6]. More anatomically realistic breast phantom 
models with dispersive dielectric properties [27-
28] should be included to observe the feasibility of 
the spherical conformal bow-tie antennas better for 
use in the microwave imaging system. However, 
obtained results are encouraging that an 
improvement could be also achieved by adding 
more and smaller conformal antennas to the array 
encircling the breast, to enhance detection 
capability of the microwave imaging system more 
[6]. 

 

  
(a) 

  
(b) 

  
(c) 

 
Fig. 9. Images of breast cancer tumor with 2 mm 
diameter embedded in (a) homogeneous fatty 
breast, (b) quasi-heterogeneous, and (c) 
homogeneous fibro-glandular breast phantoms. 
 

IV. CONCLUSION 
An UWB spherical conformal bow-tie antenna 

array surrounding the breast has been designed 

and tested on the full-wave electromagnetic 
simulator, in order to investigate the effects of 
conformal structure on tumor detection capability 
of the microwave radar-based imaging system. 
The proposed bow-tie antenna with spherical 
curvature would be an attractive candidate element 
for radar-based breast cancer detection to achieve 
good polarization matching with spherical waves 
inside the breast as well as low pulse distortion 
and low mutual effects between array elements. 
 Time domain behavior of the conformal 
antenna has indicated better pulse distortion 
performance through the breast, comparing with 
the planar bow-tie. The mutual coupling effects of 
the conformal antenna have been reduced in 
overall compared to that of the planar antenna, too. 
Images of the spherical tumor with 2 mm diameter 
have been successfully formed by using the DAS 
algorithm. Tumor responses have been increased 
in between 2.3 dB and 5.7 dB with the use of the 
spherical conformal antenna. Obtained simulation 
results are reasonably reliable and promising; 
however, experimental work based on microwave 
radar-based differential imaging technique is 
required with anatomically realistic breast 
phantom models. 
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Abstract � A compact coplanar waveguide (CPW) 
fed ultra-wideband (UWB) antenna with a band-
notched performance is presented in this paper. 
The band-notched UWB antenna is designed on a 
26×34×1.6 mm3 substrate. It consists of a circle 
ring with a T-shape construct, three rectangular 
matching branches, a rectangular transition 
branch, and a CPW feed line. The antenna is 
simulated and the geometrical parameters of the 
antenna selected with Ansoft HFSS. The simulated 
results show the impedance bandwidth covers 
from 3.0 GHz to 11.0 GHz with the notched 
rejection band of 5.1 GHz - 5.8 GHz. A prototype 
was fabricated and tested. The measured and 
simulated results show that the proposed antenna 
gives bidirectional radiation pattern in the E-plane 
and omnidirectional radiation pattern in the H-
plane with relatively flat gains in the pass-band. 
Due to its compact configuration, the antenna can 
find good UWB applications. 
  
Index Terms - Antenna, band notching, coplanar 
waveguide (CPW), impedance matching, and 
ultra-wideband (UWB). 
 

I. INTRODUCTION 
In February 2002, the Federal Communication 

Commission (FCC) allocated a frequency band 3.1 
GHz-10.6 GHz for ultra-wideband (UWB) 
applications [1]. Since then, designs of the ultra-
wideband (UWB) wireless systems have garnered 

great attention. The UWB systems have many 
advantages, such as excellent immunity to 
multipath interference, large bandwidth and high 
speed data rate. One of the most important 
components in an UWB wireless system is the 
antenna. Designing such an antenna faces many 
challenges, because the antenna has to have the 
special properties such as omni-directional pattern, 
ultra-wideband impedance bandwidth, constant 
gain, low profile, and easiness for manufacture [2]. 

Many antennas have been explored and 
developed for UWB wireless systems, such as 
monopole patch antenna [3], slot antenna [4], and 
fractal antenna [5]. By using optimization method, 
good characteristics of radiation, transmission, and 
impedance bandwidth can be achieved [6]. 

Many existing wireless communication and 
radio systems operate in a frequency band that 
overlaps with the UWB band, such as IEEE 
802.11a in USA (5.15 GHz-5.35 GHz and 5.725 
GHz-5.825 GHz), HIPERLAN/2 in Europe (5.15 
GHz-5.35 GHz and 5.47 GHz -5.725 GHz) [7]. As 
a result, an existing system should not cause any 
interference to an UWB system and vice versa. 
One of the approaches to achieve the objective is 
to embed filters into UWB circuits, but it will 
increase the UWB system complexities. A much 
better way is to design UWB antennas with band-
notched characteristics. To this end, many band-
notched antennas have been designed and 
developed. 
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Among the band-notched UWB antennas 
reported so far,  the most popular are those with 
resonance structures added on radiators or feeding 
structures; they include U-shape slots [8-11], T-
shape construct [12-14], �-shape strip [13], SRR 
and CSRR structures [15], stepped impedance stub 
[16]. All of them can have good performance in 
rejection or notched bands, and some of them even 
have multiple notched bands [8-10, 15-17]. 

On the other hand, planar monopole antennas 
have many advantages for UWB applications 
because of their compact size and stable radiation 
[18]. An UWB antenna fed by a coplanar 
waveguide (CPW) has the properties of low 
profile, wide bandwidth, low loss, and easy 
integration with electronic circuits; therefore, it is 
widely used in communication systems.  

In this paper, a planar monopole band-notched 
UWB antenna fed by CPW is proposed. The band-
notched characteristic is achieved by embedding a 
T-shape structure in the antenna’s radiator and 
using three matching branches to adjust high 
frequency characteristic of the antenna.  

The remainder of the paper is organized as 
follows. First, the geometry of the proposed 
antenna is described in section II. Analysis and 
simulation of the effects of the antenna parameters 
on impedance bandwidth are presented in section 
III. After that, the experimental results are 
presented to compare with the simulation results in 
section IV. Finally, in section V, conclusions are 
drawn. 
 

II. THE PROPOSED ANTENNA 
Figure 1 shows the geometry of the proposed 

antenna with a band-noched characteristic. The 
antenna is symmetrical about the x-axis. It consists 
of a circle ring radiation patch, three rectangular 
matching branches, a rectangular transition branch 
and a CPW. The band rejetion characteristic is 
mainly achieved by embedding a T-shape 
construct in the cirlcle ring radiation patch. The 
width of the T-shape construct is W5 and W6. The 
length is L5 and L6. The width and length of the 
two matching branches on the left side and on the 
top side are W2 and L2, W4 and L4, respectively. 
The thickness of the antenna is h. The physical 
dimensions of the antenna are shown in Table I.  

 
III. ANTENNA DESIGN AND ANALYSIS 

In this section, analysis and simulation results 

are presented. The Ansoft HFSS was used to carry 
out all the simulations. 
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Fig. 1. Geometry of the proposed antenna. 
 
 
Table I: Physical dimensions of the proposed 
UWB antenna (unit: millimeters). 

Parameter Value Parameter Value 

L 34.00 W 26.00 
L1 13.46 W1 11.15 
L2 3.31 W2 1.00 
L3 14.55 W3 2.00 
L4 0.58 W4 1.00 
L5 5.00 W5 0.50 
L6 3.54 W6 0.50 
L7 3.00 W7 0.82 
h 1.60 h1 6.00 
R1 

G 

9.50 
0.85 

R2 5.91 

 
In the proposed antenna, the circular ring 

patch and the T-shape construct are equivalent to 
an inductor and a capacitor. The T-shape construct 
as a band-notched structure was analyzed in [12, 
13]. At the resonant frequency, the construct can 
cause an impedance change that leads to 
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impedance mismatching near the notched band. 
The matching branches and the circle ring are then 
introduced to compensate for the change as well as 
to adjust the width of the notched band. As a result, 
L5, L6, R2, and L2 are considered as main design 
variables that determine the performances of the 
antenna. 

In general, the T-shape construct mainly affect 
the notched band, and have a slight influence on 
the pass band. Considering possible coupling 
between the T-shape construct and the circle ring 
patch, length L5 and L6 should not be too large. 
Because the length of the T-shape is measured 
collectively by L5 and L6, L5 +L6 is chosen as the 
analysis parameter. Figure 2 shows the simulated 
VSWR with various lengths of the T-shape 
construct. It is clearly seen from the figure that 
length L5 + L6 has a significant effect on the 
notched frequency. The rejection or notched 
frequency band shifts from around 5.6 GHz to 4.3 
GHz when the length L5 + L6 increases from 7.9 
mm to 9.9 mm, while the pass band is only 
affected slightly. 

 

 
 

Fig. 2. Simulated frequency response of VSWRs 
with various L5 + L6. 

 
Figure 3 shows the variations of the notched 

band with respect to R2. It is obvious that the 
longer R2, the wider nothed bandwidth. VSWR 
increases from 4.3 to 8.0 as R2 increases from 5.2 
mm to 7.2 mm, while the notched frequency only 
decreases slightly with the R2. 

Figure 4 shows the simulated VSWRs with L2 
varying from 1.9 mm to 3.5 mm. It can be seen 
that the upper-end frequency decreases as L2 
increases. When L2 changes from 1.9 mm to 3.5 
mm, the upper frequency decreases to 10.5 GHz, 
while the lower frequency hardly changes. This is 

because increasing the branches L2 is equal to 
increasing the equivalent current length and 
decrease the resonant frequency [13]. After a 
detailed simulation analysis, the phsical 
parameters are set as shown in Table I.  

 

 
 

Fig. 3. Simulated frequency response of VSWRs 
with various R2. 
 

 
 

Fig. 4. Simulated frequency response of VSWRs 
with various L2. 

 
IV. EXPERIMENTAL RESULTS 

The proposed antenna was fabricated and 
tested. Its photographs are shown in Fig. 5. The 
dielectric substrate used in the antenna was FR-4 
with dielectric constant of 4.4, loss tangent of 
0.02, and substrate thickness of 1.6 mm. SMA 
connector was used for transition between the 
CPW and coaxial cable for the measurement 
purpose. 

VSWR was measured using Agilent E8362B 
PNA. The measured and simulated VSWRs are 
shown in Fig. 6. It can be seen that the simulated 
VSWR is less than 2.0 from 3.0 GHz to 11 GHz 
with a notched rejection band of 5.1 GHz-5.8 GHz, 
while the measused antenna bandwith covers the 
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range of 3.5 GHz - 10.6 GHz with a noteched 
rejection band of 4.8 GHz - 5.8 GHz. The 
discrepancy between the simulated and measured 
VSWR can be attributed to fabrication errors and 
differences between the electrical properties used 
in the simulations and those of the actual materials.  

 

    
                     

                   (a)                                  (b) 
 
Fig. 5. Photographs of the proposed antenna; (a) 
front view and (b) rear view. 

 

 
 

Fig. 6. Measured and simulated VSWR. 

 
Figure 7 shows the far-field radiation patterns 

of the E-plane and H-plane at 5 GHz, 5.4 GHz, 6 
GHz, and 7 GHz, respectively. 5.4 GHz is within 
the notched band. It can be seen that the patterns 
of the antenna at these frequencies are roughly 
omnidirectional in the H-plane. In the E-plane, 
they remain roughly bidirectional patterns. Figure 
7 (b) indicates that the antenna has much lower 
gains in the notched band than those at other 
passband frequencies. The cross-polarization in 
the negative x-direction is much higher than that in 
other directions, which could be mainly due to the 

SMA connector that alters the distribution of the 
current. 

  

 
E-plane 

 
 

 
H-plane 

 

(a) 
 

 
E-plane 

 

 
H-plane 

 

(b) 
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E-plane 

 
H-plane 

(c) 

 
E-plane 

 
H-plane 

 

(d) 
 

Fig. 7. Measured and simulated radiation patterns 
of the proposed antenna at (a) 5 GHz, (b) 5.4 GHz, 
(c) 6 GHz, and (d) 7 GHz ( Measured Co-
polarization; Simulated Co-polarization; 

Measured Cross-polarization;  Simulated 
Cross-polarization). 

Figure 8 shows the measured and simulated 
gains of the proposed antenna from 3 GHz to 11 
GHz. The figure indicates that the proposed 
antenna has good gain flatness except that in the 
notched band. Sharp gain decresases occur in the 
vicinity of 5.4 GHz, thus clearly indicating the 
band-notched effect of the T-shape construct. 

 

 
 

Fig. 8. The measured and simulated gains of the 
proposed antenna. 

 
V. CONCLUSION 

In this paper, a CPW-fed band-notched UWB 
antenna is presented. The circle ring radiation 
patch is used to give a wide bandwidth for UWB 
applications while three rectangular branches are 
employed to improve impedance conditions at 
high frequencies. The notched band, covering the 
WLAN band, is achieved by a T-shaped construct 
embedded inside the circle ring patch. The 
measured VSWR shows that the proposed antenna 
achieves a bandwidth ranging from 3.5 GHz-10.6 
GHz with the notched band of 4.8 GHz-5.8 GHz.  
The proposed antenna has simple structure and 
presents omnidirectional patterns across the whole 
operating band in H-plane. The antenna has a 
compact size of 26× 34 × 1.6 mm3. Measurement 
results show that the antenna is suitable for UWB 
applications.  
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Abstract � The propagation of light along an 
infinite 2D chain of silver nanorods is analyzed 
and the dispersion for this waveguide is computed 
using field computation for a finite chain of 
nanorods. In this work, generalized multipole 
technique is used for the analysis. This method 
calculates the imaginary and real parts of the 
propagation constant by exciting the chain in one 
end and observing propagation of modes along the 
chain far enough from the excitation. It is shown 
that a short chain of finite length is sufficient for 
the calculation of the phase constant while the 
attenuation constant requires a longer chain. Field 
distribution is depicted for even and odd modes 
and it is shown that in the simulated frequency 
range only two modes can be excited and can 
propagate along the waveguide. 
  
Index Terms  � Generalized multipole technique, 
Modal analysis, surface plasmon polariton, and 
waveguide. 
 

I. INTRODUCTION 
The ability of confining electromagnetic fields 

below the diffraction limit has made plasmonic 
waveguides a promising candidate for integrated 
optics. After Takahara et al. [1] demonstrated the 
possibility of guiding electromagnetic energy 
below the diffraction limit, various structures have 
been proposed as plasmonic waveguides. Quinten 
et al. [2] were the first to introduce a chain of 
metallic nanoparticles as a waveguide. Since then, 
this waveguide has been studied in many 
researches [3-15]. 

Several computational methods have been 
used for the analysis of nanoparticle-chain 

waveguides. Dipole approximation (DA), finite-
element method (FEM), and finite-difference time-
domain (FDTD) are commonly used methods. 
Dipole approximation is easy to implement and 
accurate for structures in which spacing of 
nanoparticles is significantly larger than particle 
dimensions. This method cannot be used for 
structures in which L / r < 3, where L is the 
separation between particles and r is the radius of 
the particle [16, 17]. Moreover, for particles of an 
arbitrary shape, calculation of polarizability 
demands additional numerical efforts. 
Improvements to DA like considering retardation 
effect [18], quadrupole, and higher-order 
multipoles effect [16, 19] and adding the effect of 
layered background [20-22] have been proposed, 
yet it is not commonly used for a waveguide 
comprising arbitrary shaped nanoparticles with 
small inter-particle distance. FDTD and FEM are 
also common tools for analyzing plasmonic 
waveguides [4, 23]. However, in plasmonic 
structures, at frequencies near the plasma resonant 
frequency, electromagnetic (EM) fields are mainly 
confined around particles. Therefore, for domain 
discretization methods, such as FDTD and FEM, a 
very fine mesh is needed to achieve acceptable 
accuracy. A comparison between domain 
discretization and boundary discretization methods 
can be found in [24]. According to [24], boundary 
discretization methods show higher precision and 
are less time consuming for 2D plasmonic 
structures. 

Generalized multipole technique (GMT) is a 
boundary discretization method, which has already 
been used for the modal analysis of nanoparticle-
chain waveguides [8, 11]. This method is 
applicable to structures with / 3L r < . Also, GMT 
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is capable of analysis of a waveguide comprising 
arbitrary shaped nanoparticles. Nevertheless, GMT 
works with smaller matrices, which leads to less 
physical memory consumption compared with the 
domain discretization methods. Dispersion 
diagram for a 2D and 3D waveguide of 
nanoparticles is calculated in [8, 11] using GMT. 
In these researches, the propagation constant is 
calculated by finding the extrema of a cost 
function, like error or field intensity. Finding 
extrema of this function requires calculation of the 
cost function at different frequencies, which can 
be time consuming. However, the extrema of the 
function can be affected by changes in the field 
distribution of the modes or coupling among 
modes for different frequencies. Moreover, finding 
the attenuation constant needs extra calculation. 

An improved modal analysis is presented in 
this work. The EM field distribution in a finite 
chain of nanorods is analyzed and the complex 
wavenumber using the complex value of the EM 
field at certain sampling points is calculated. The 
propagation of the EM field in a finite chain of 
nanorods is computed using GMT formulation. 

 
II. GENERALIZED MULTIPOLE 

TECHNIQUE FORMULATION FOR 2D 
NANOSTRUCTURES  

Generalized multipole technique is a 
frequency-domain method for solving Maxwell’s 
equations after subdividing the solution domain 
into homogeneous subdomains [25]. The EM field 
in each subdomain is expanded in terms of the EM 
field generated by a number of multipoles placed 
outside the subdomain. The unknown amplitude of 

the multipoles are calculated satisfying boundary 
conditions with minimum error. 

For a two-dimensional z-invariant problem, 
the z-components of the electric and magnetic 
field at a given point r

�
 generated by lN

 
clusters 

of multipoles can be expanded as,  
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in which the l-th cluster containing N multipoles is 
located at lr

� . The coefficients lnC  and lnD   are 
the amplitudes of TEz and TMz multipoles, 
respectively, k is the wave-number of the 

subdomain in question and lϕ is the angle at 

which location r
�

 is seen by the multipoles placed 
at lr

� . There are a total of 2 (2 1)lN N +

 
multipoles. 

In a finite chain composed of m nanorods, as 
shown in Fig. 1, there are m+1 subdomains. For 
each subdomain, the z-components of the EM field 
can be expanded using equations (1a) and (1b) 
with clusters placed outside of the subdomain. 
Fields of the subdomain D1 are expanded by all the 
clusters represented by (+) and fields inside each 
nanorod are expanded by a set of clusters placed 
around it. Excitations can be placed at arbitrary 
positions and are represented by (*). 

Matching of the tangential field components 
on the boundaries is ensured by means of 
generalized point matching (GPM). Matching 
tangential magnetic and electric fields at matching 
points leads to the following system of equations, 

 

` 
 
Fig. 1. Schematic of a finite chain containing m nanoparticles. 
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where 
i

C

D

� �
� �
� �

 are the unknown amplitudes of the 

multipoles expanding the EM field in the i-th 
subdomain, [ ]B

exc
 is the tangential excitation 

fields at the matching points with the excitation 
placed in the first subdomain at (*) locations in 
Fig. 1 and the matrices [ ]i

A  relate the unknown 

coefficients to the tangential fields at the matching 
points of the i-th subdomain.  

Equation 2 presents an over-specified system. 

It can be reshaped to yield [ ] [ ]
C

A B
D

� �
=� �

� �
 , which 

may not have an exact solution. This equation is 
solved after computation of the pseudo-inverse of 
the [ ]A  matrix, which minimizes the error defined 

by,  
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III. MODAL ANALYSIS  

In general, a metallic nanorod waveguide has 
various modes with different propagation 
constants. By its arbitrary excitation, a group of 
waveguide modes are excited and will propagate 
along the nanorods. If there is a dominant mode at 
each given frequency, other modes are attenuated 
according to a larger attenuation constant. Hence, 
by moving away from the excitation point, the 
amplitudes of the non-dominant modes decay 
faster than the amplitude of the dominant mode.  

In a periodic structure for which only one 
mode propagates along the x-direction, the mode 
fields satisfy the Bloch condition, 

 ( ) ( ), , , jkLf x L y f x y e−
+ =

� �
 (4) 

where f
�

 denotes the electric or magnetic field, x 
represents the propagation direction, L is the 
period of the structure, and ( )k jβ α= −  is the 
propagation constant. In principle, by sampling the 

function f
�

 at various x, values one can determine 
the propagation constant, k. 

For a finite but long waveguide and far from 
the excitation end, one may assume single-mode 
propagation of the dominant mode. Taking both 
the forward and backward propagating dominant 

mode into account, we may express ( ), f x y
�

 as, 

( ) ( ), ( ) , ,jkx jkxf x y Ae Be u x y−
= +

� �
       (5) 

where u
�

 is a periodic function in x, A, and B 
represent the amplitudes of the forward and 
backward propagating dominant mode, 
respectively. To determine A, B, and k, the total 
field must be sampled at least at three different 
locations. As a result of which, a system of three 
complex equations is obtained. Note that the three 
sampling points have a spacing of L in the x-
direction and have identical y-values, so the 
function ( ), u x y

�
 has no influence on 

determination of the unknowns A, B, and k. Note 
that depending on the polarization of the excitation 
field, TEz or TMz modes are excited. Therefore, 

the function f
�

 is given either by equation (1a) or 
(1b). 

For a symmetric waveguide with respect to the 
propagation direction, i.e., the x-direction, modes 
can be classified as even or odd in terms of the 
electric or magnetic field component. If the 
waveguide is excited with even (odd) excitation, 
only even (odd) modes will be present along the 
finite chain. Thus, using an appropriate excitation, 
even (odd) dominant mode can be characterized. 

Furthermore, taking symmetry along the x and 
y-axis into consideration, we decrease the number 
of unknown coefficients and thus the boundary 
points.  

Figure 2 shows a finite chain excited 
symmetrically. MN represents the symmetry plane 
of the structure. Because of this symmetry, it will 
be adequate to solve Maxwell’s equations only in 
one half of the structure. Other advantage of a 
symmetric excitation is that the amplitudes of 
forward and backward modes have to be equal in 
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the middle of the structure. This eliminates one 
equation and one unknown coefficient. 

 
 
Fig. 2. A finite chain excited symmetrically. 
 

There are two ways to verify the single-mode 
approximation discussed above. First, one can 
compare the field of the calculated mode and the 
total field at other points. Second, one can 
consider two existing modes in the waveguide. If 
the amplitude of the second mode is negligible 
compared to the first one, then the single-mode 
approximation leads to appropriate results. The 
following system of equations must be solved if 
two modes are propagating along the waveguide,  

1
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       (6) 
where A and B are the amplitude of the first and 
second modes in the middle of the chain, 
respectively, whereas k1 and k2 are the propagation 
constants of these modes. The points P1, P2, P3, 
and P4 are shown in Fig. 2. 

 
IV. CONVERGENCE 

Before we present the numerical results, we 
must investigate the convergence of our method. 
Convergence of wavenumber can be checked with 
respect to the defined error (equation (3)) and the 
number of nanorods of the chain. Existence of a 
propagating mode, in a given frequency, is an 
essential prerequisite for convergence of the 
wavenumber. The next section shows (Fig. 6) in 
the simulated waveguide modes propagated in the 
0.1 / 0.13L λ< <  frequency range. Hence, we 
investigate the convergence in this frequency 
range. 

Figure 3 shows convergence of the computed 
wavenumber with respect to error. As shown in 
Fig. 3 (a), increasing the number of unknown 
coefficients decreases error. As error decreases, 
the propagation constant converges to its actual 
value (Fig. 3 (b)). Increasing the number of 
unknown coefficients increases computational cost 
and time exponentially. Hence, a compromise 
should be made between accuracy and 
computational time. 

 
 
Fig. 3. Convergence of the wavenumber with 
respect to the number of unknown coefficients. 
 

The second factor affecting convergence of 
the wavenumber is the number of nanorods in the 
chain. Increasing the chain length reduces the 
unwanted effects of the source and the non-
dominant modes. Figure 4 shows effects of the 
chain length on β and α. It shows that β  
converges for a shorter chain whereas this is not 
the case for α. It should be noted that the 
convergence at higher frequencies is faster. 
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Fig. 4. Convergence of the wavenumber with 
respect to the number of nanorods. The 
geometrical and electrical parameters used for 
obtaining these diagrams are given in section V. 
 

V. RESULTS 
Using the method explained above, 

propagation of the EM field is calculated for a 

waveguide of nanorods. The waveguide comprises 
100 silver nanorods with r = 25 nm and d = 55 nm 
(Fig. 1). Experimental data of [26] are used for the 
electrical permittivity of silver. The EM fields of 
both inside and outside of nanorods are expanded 
using six clusters of multipoles (Nl = 6) with N = 2 
for even modes and nine clusters of multipoles (Nl 
= 9) with N = 6 for odd modes. The clusters of 
multipoles, which expand the EM field outside and 
inside of the rods are placed at R1 = r/4 and R2 = 
2r, respectively. This set of order and location of 
the multipoles leads to an error of less than 0.7 % 
in the entire frequency range. 
 A typical EM field calculation showing 
propagation of the EM field along the chain is 
illustrated in Fig. 5. The inset of the Fig. 5 shows 
the amplitude of the magnetic field generated by 
the sources in free space. Note that an array with a 
null in the x-direction is used for the excitation of 
TE modes. Figure 5 shows the propagation of the 
EM field along the chain for the same excitation.  
This figure clearly shows that the EM field is 
guided along the chain.  

In order to calculate the dispersion diagram, 
the waveguide is stimulated by two sets of 
excitations; even excitation, which only generates 
longitudinal modes and odd excitation for 
generating transverse modes. Figure 6 shows the 
normalized amplitudes,

 
, e oA A , of the dominant 

 
 
Fig. 5. Propagation of the EM field along the chain. This figure shows the normalized amplitude of the 
magnetic field for an even excitation. The inset shows the magnetic field of the sources in free space. 
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mode for even (longitudinal) and odd (transverse) 
modes, respectively. As is shown in Fig. 6 (a), the 
even mode propagates along the chain in 
normalized frequencies below 0.145. In this 
figure, solid and dash lines show the amplitudes of 
the first ( A ) and the second ( B ) modes of 

equation (6), respectively. As the amplitude of the 
second mode is negligible in comparison with the 
first one, the single-mode approximation is 
acceptable in the normalized frequency range 
0.06 / 0.145L λ< < ; thus, the non-propagating or 
the higher-order modes do not highly affect the 
results.  

 
 
Fig. 6. Amplitudes of the first and second modes; 
(a) even modes and (b) odd modes. 

 
Such as the even mode, the odd mode shows 

similar behavior in this frequency range. The 
higher normalized cutoff frequency is about 0.145. 
At this frequency the attenuation increases 
considerably. The lower normalized cutoff 

frequency for the odd mode is about 0.12, as will 
be discussed further in what follows.  

 
 
Fig. 7. Propagation (a) and attenuation (b) 
constants for the even and odd modes. 
 

The propagation constant for the even and odd 
modes is calculated and depicted in Fig. 7 (a). The 
results are in agreement with the results reported 
by Talebi and Shahabadi [8] for the first even and 
odd modes. Also, the accuaracy of the GMT 
results is compared and validated with other 
techniques in [11, 24]. There is no higher-order 
modes or their extinction length is smaller than the 
length of the simulated chain. Note that α and β 
are calculated simultaneously as a complex wave-
number. Figure 7 (b) shows the attenuation 
constant α for even and odd modes. According to 
Fig. 4 (b), at lower frequencies, a longer chain is 
needed for the attenuation constant to converge. 
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For a chain of 100 nanorods results for the 
normalized frequncies below 0.12 are not accurate, 
but follow the well-known behavior of the 
attenuation constant. The field distributions for 
these modes at a normalized frequency of 

/ 0.14L λ =  are depicted in Fig. 8. 

 
 
Fig. 8. Distribution of the normalized amplitude of 
the magnetic field at L/�=0.14 (a) even mode and 
(b) odd mode. 
 

The confinement of the EM wave is an 
important characteristic of nanorod-chain 
waveguides. Let us define /R r  as the normalized 
spacing from the waveguide axis at which the 
longitudinal component of the poynting vector 
drops to half of its maximum value. Figure 9 
shows this normalized spacing /R r  as a function 
of the normalized frequency. The inset of this 
figure shows the normalized poynting vector 
( max/P P ) in the propagation direction for 
different distances from the chain axis at the 
normalized frequency, / 0.132L λ = . This figure 

reveals that the even mode is more confined in 
comparison to the odd mode. Also, it shows that as 
the frequency increases, the EM field becomes 
more confined by the chain. 

 
 
Fig. 9. Confinement of the EM fields for the even 
and odd modes. 

 
VI. CONCLUSION 

In this paper, we calculated the dispersion 
diagram of a nanorod-chain waveguide using 
GMT and demonstrated that the propagation and 
attenuation constants can be obtained directly by 
observing propagation of modes along a finite 
chain. Using GMT, it is observed that a short 
chain of finite length is sufficient for the 
calculation of the phase constant. However, the 
attenuation constant, α, requires a longer chain. 
These parameters are calculated for two 
propagating modes in the normalized frequency 
range of 0.06 / 0.18L λ< < . This method is more 
effective for calculation of the propagation and 
attenuation constants for modes with higher 
attenuation in comparison with previous report [8].  

Although, we have demonstrated this method 
for the modal analysis of a 2D waveguide of 
nanorods, it can be used for the analysis of 3D 
waveguide structures containing nanoparticles of 
an arbitrary shape. 
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Abstract─In this paper, two transmitarrays are 
designed, analyzed, and simulated for satellite 
applications. The first transmitarray is designed for 
dual linear polarization at a center frequency of 12 
GHz. The second transmitarray is designed for two 
frequency bands: 17.15 GHz to 17.9 GHz for 
vertical polarization and 11.5 GHz to 12.4 GHz for 
horizontal polarization. The dual polarization is 
obtained by an independent adjustment of the 
dimensions of two orthogonal slots in the 
transmitarray unit cell. The design is carried out 
independently for each polarization. The 
transmitarray unit cell uses two dielectric substrate 
layers arranged to be one on each side of a 
conducting plane. On each substrate, one face has 
metallization containing the patches, and the other 
face has metallization containing the ground plane. 
The two patches are coupled by two cross slots of 
lengths LV and LH in the ground plane and each 
patch is loaded with two cross slots of lengths LV/2 
and LH/2. The unit cell achieves 360o of phase 
agility with less than 3.8 dB of variation in the 
transmission magnitude in the tuning range. The 
transmitarray consisted of 17×17 elements with the 
unit cell size were set at 13 mm. A circular feed 
horn is located on the central normal to the 
transmitarray and the configuration looks like a lens 
antenna. Two separate feeding pins are used to 
excite the horn antenna for horizontal and vertical 
polarizations. The results are worked out using two 
basically different numerical techniques, the finite 
element method, FEM, and the finite integration 
technique, FIT. Good agreement was obtained. 
  
Index Terms ─ DRA, dual-band, Polarization, and 
Transmitarray. 

I. INTRODUCTION 
Transmitarray antenna is a good candidate for 

high-gain and broadband performance. It also has 
the privileges of light-weight, simple to fabricate, 
and inexpensive to manufacture [1]. As a high gain 
antenna, it is suitable for applications, such as radar, 
satellite communications, and remote sensing. The 
transmitarray performance is related to lens 
techniques. Its size and weight are advantages 
relative to shaped dielectric lenses. Furthermore, its 
feed can be placed directly in front of the aperture 
without causing blockage losses or affecting the 
radiation patterns that are inherent in a reflectarray 
configuration [1]. The objective of the 
transmitarray unit cell is to add a phase shift to the 
waves passing it, such that the phase shift should 
become adjustable in the range of 0 to 360o. The 
main drawback of the transmitarray is its limited 
bandwidth, which is mainly due to the limited 
bandwidth of the element itself [2]. A number of 
different transmitarray configurations have been 
reported in the literature. These configurations can 
be classified according to the techniques that were 
used to adjust the phase of the incoming wave.  
Transmitarrays were designed using stub-loaded 
microstrip patches [3], and others using elements 
connected through multiple layers by a delay line 
[4]. A broadband four-layer transmitarray using 
double square printed ring elements is illustrated in 
[1]. 

A design of multilayer dielectric resonator 
transmitarray for near-field and far-field fixed 
RFID reader application at 5.8 GHz is presented in 
[5]. A three-layer printed reflectarray for dual 
polarization with different coverage in each 
polarization for space applications has been 
designed and tested in [6]. Also, a new application 
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of aperture coupled dielectric resonator as a cell 
element in design of a dual linear polarized 
reflectarray at X-band is investigated in [7]. A dual 
linear polarized printed reflectarray using slot 
loaded patch elements is investigated in [8]. The 
goal of this paper is to design a dual-polarization 
dual-band transmitarray. Two transmitarrays are 
simulated. The first transmitarray is designed for 
dual polarization at 12 GHz. The second 
transmitarray is designed for two frequency bands: 
17.15 GHz to 17.9 GHz for vertical polarization and 
11.5 GHz to 12.4 GHz for the horizontal 
polarization. The results are developed using finite 
element method [9] and compared with that 
determined using the basically different finite 
integration technique [10].In this work a single feed 
horn is used for horizontal and vertical polarization 
at different frequency bands instead of dual feeds 
used in [7, 8]. The two orthogonal linear 
polarizations can be controlled independently by 
using two orthogonal slots in the cell element. The 
slot lengths are used to control the transmission 
phase. For dual band operation, each of the 
orthogonal slots is designed to resonant at one of 
the two considered frequency bands. 

 
II. THE CELL ELEMENT 

The cell element in a transmitarray is the 
crucial part, which determines most of the 
parameters of the array. The cell is that, which 
controls the bandwidth, the polarization, and the 
transmission coefficient of the array. The cell 
should provide the amplitude and phase shift 
needed at each location in the array to produce the 
specific radiation in the specific direction. To reach 
full flexibility in getting the radiation in any 
specific direction, the cell element should be able to 
add any needed phase shift in the range from 0� to 
360�. The unit cell is designed for having 
transmission phase variation from 0o to 360o with 
corresponding transmission magnitude variation 
from 0 to nearly -3 dB. The unit cell design process 
is go for this goal. 

A thin dielectric slab will produce a constant 
phase shift of the order of several degrees (around 
2 or 3 degrees). A slotted ground plane between two 
dielectric slabs will produce a phase shift ranging 
from 0� to about 175� depending upon the length of 
the slot as given in Fig. 1. To increase the phase 
shift of the transmitted wave a conducting square 

patch is added on one side face of the slab and 
centered with the ground slot. This actually made 
things worse and reduced the phase shift by about 
20�. Then adding a slot on the patch parallel to the 
ground slot and centered with it but of half its length 
has improved the phase shift by adding 100� to that 
of the ground slot to reach about 280� maximum as 
shown in Fig. 2. This structure can be represented 
as two sections of waveguides connected in tandem 
to produce a delay of 280� for a travelling wave. To 
achieve the 360� needed, a third section of a 
waveguide is added in tandem. This is done by 
adding a similar slotted patch on the opposite face 
of the composite dielectric to end up with the cell 
element shown in Fig. 3. This completes the cell 
structure with three slotted elements on top of each 
other (in tandem) and in a symmetrical way on the 
same axis to add the phase shift of each section to 
end up with the needed 360� as shown in Fig. 3. 
Thus, by changing the length of the slots, the 
needed phase shift at each location in the array is 
obtained. The length of the ground slot is changed 
but with keeping the length of the slots on the 
patches to be half the accompanying ground slot 
length. The total response of the complete cell 
becomes similar to critical coupling in inductive 
coupled tuned circuits. 

 

 
 
Fig. 1. A slotted ground plane sandwiched between 
two dielectric slabs. 
 

To get the cell responding in a similar way to 
two orthogonal linearly polarized waves,   identical 
slots orthogonal to the first ones is added on both 
patches on the two outer faces as well as on the 
ground plane to end up with the cell structure 
shown in Fig. 4. As expected, due to the 
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orthogonality of the slots, there is no mutual effect 
has been noticed between the orthogonal groups of 
slots sharing the same cell. 

 

 
 

Fig. 2. The transmission coefficient after adding the 
slotted patch. 

 

 
 

Fig. 3. The complete cell structure for one 
polarization. 

 
III. STRUCTURE, SIMULATION, AND 

NUMERICAL RESULTS 

A. Case A: Dual-polarization transmitarray at 
12 GHz 

Figure 4 depicts the layer distribution and 
materials employed in the transmitarray unit cell. It 
consists of two patches on either side of a ground 
plane, coupled by two cross slots of lengths LV and 
LH in the ground plane. Each patch is loaded with 
two cross slots of lengths LV/2 and LH/2. The slot 
widths were set at Wv=WH =0.7 mm. The 
transmitarray unit cell uses two substrate layers 
with εr = 4(Eccostock HIK500F). The unit cell size 
(L) was set at 13 mm. The cell dimensions are 

summarized in Table I. these dimensions are 
optimized to give transmission phase of 360o at the 
center frequency with maximum transmission 
magnitude.  

 

 
 

 
Fig. 4. Reconfigurable transmitarray element 
structure. 
 
Table I: The unit cell dimensions 

 
The transmission magnitude and phase are 

determined using the finite element method based 
simulator. The software was used to model an 
infinite array of elements. This procedure assumes 
that the transmission from each individual element 
surrounded by elements of different sizes can be 
approximated by the transmission of an infinite 
array of identical elements. An infinite array was 
modeled to simulate a single element enclosed 
within the appropriate magnetic and electric 
waveguide boundary conditions, as shown in Fig.5. 
A plane wave was used as the excitation of a two-
dimensional infinite array of similar elements. In 
this simulation, lossless materials were assumed 
and only normal incidence was considered for a 
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linearly polarized incident wave. The simulation 
results have achieved a 360o of phase agility with 
less than 3.8 dB of variation in transmission 
magnitude throughout the tuning range as shown in 
Fig. 6. The results are validated by a good 
agreement compared with that calculated by the 
finite integration technique.  

 

 
 

Fig. 5. Structure of waveguide simulator. 

 

 

 
Fig. 6. Transmission (a) magnitude and (b) phase 
versus slot length LH with LV = 0, at f = 12 GHz. 

 

Figure 7 illustrates the transmission coefficient 
magnitude and phase for different values of the slot 
length LV. It shows that the transmission coefficient 
can be tuned by varying the slot length LH without 
being really affected by the cross slot length LV. 
This behavior demonstrates that two orthogonal 
linear polarizations can be controlled independently 
by the two orthogonal slots. A transmitarray 
composed of 17×17 elements with fixed dimension 
(L) of 13 mm and covering an area of 221 mm × 
221 mm was designed and simulated.  

 

 

 
Fig. 7. Transmission (a) magnitude and (b) phase 
versus slot length LH with several LV at f = 12 GHz. 
 

 A circular horn was used as the feed, with focal 
length to diameter ratio, F/D, set to 1.0 to decrease 
the level of the sidelobes in the radiation pattern. 
The transmitting horn antenna illuminates one side 
of the transmitarray. The feed horn was positioned 
such that the transmitarray was prime-focus fed. 
This feed position provides an illumination level at 
the transmitarray edges of -10 dB for E-plane and -
9 dB for H-plane at 12 GHz. The feed horn was 60 
mm long, with an aperture radius of 25mm. Two 
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separate feeding pins are used to excite the horn 
antenna for V and H polarizations. A schematic of 
the transmitarray configuration showing the feed is 
shown in Fig. 8. 

 

 
Fig. 8. Transmittarray layout fed with circular horn 
antenna. 
 

To design transmitarray elements; the phase of 
the transmitted wave should have a progressive 
variation over the whole surface. This implies that 
phases in the whole range from 0o to 360o should be 
used for the transmission coefficient with minimum 
insertion loss through the structure. The 
transmitarray is designed for linear polarization in 
the two cases of H-polarization (with the electric 
field on the direction of x axis) and V-polarization 

(with the electric field on the direction of the y-
axis). The beam shaping for each polarization is 
achieved by adjusting the phase of the transmitted 
coefficient at each element independently for each 
linear polarization. The required phase shift for 
each polarization was realized by adjusting the slot 
length that is either LV or LH. Figure 9 (a) shows the 
distribution of the slot length LV for horizontal 
polarization while Fig.9 (b) shows the distribution 
of the slot length LH for the vertical polarization. 
Figure 9 (c) shows the variation of the cross slot 
lengths for vertical and horizontal polarizations 
along the transmitarray elements. 
 

 

 
Fig. 9. Slot lengths for vertical and horizontal 
polarization. 
 

As the total structure of the transmitarray is 
very large, simulation with the FEM requires a huge 
memory size, which is difficult. Consequently, the 
transmitarray was modeled and simulated only by 
FIT method. For V-polarization, computed 
radiation patterns components (co-polar and cross-
polar) are shown in Fig. 10 at the operating 
frequency 12 GHz. Very high isolation between 
polarizations is achieved. The first sidelobe levels 
in the E- and H-planes are approximately 12 dB and 
11.2 dB below the main peaks, respectively. The 
gain as a function of frequency is shown in Fig. 11. 
A 7.5 % bandwidth (0.9 GHz) is achieved with 1 
dB gain variations. The simulated results for the H-
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polarization are shown in Fig. 12. The gain as a 
function of frequency is depicted in Fig. 13. The 
performances for the V and H polarizations are 
almost identical.   

 

 
Fig. 10. E-plane and H-plane pattern plot for a 
boresight 17 × 17 transmitarray at 12 GHz for V-
polarization. 
 

 
Fig. 11. 17×17 Transmittarray peak gain versus 
frequency for V-polarization. 

B. Case B: Dual-polarization dual-band 
transmitarray 

In this case, the transmitarray has been 
designed to produce a focused beam at 17.5 GHz 
for V-polarization and also at 12 GHz for H-
polarization for satellite applications. Each 
polarization is controlled by adjusting the cross 
slots lengths, LV and LH, respectively according to 
the frequency of operation for each polarization. 
The range of the slot length LV is changed as shown 
in Fig. 14. The slot width WV = 0.5 mm and WH = 
0.7 mm in this case are used to get the phase 
transmission curve covering the range of 360o 
phase shift. The cross slots lengths for vertical and 
horizontal polarizations for each array element are 
shown in Fig.15. E-plane and H-plane far-field 
patterns of the transmitarray at 12 GHz and 17.5 
GHz are depicted in Fig.16. The gains versus 
frequency in the two bands are illustrated in Fig. 17. 

 
Fig. 12. E-plane and H-plane pattern plot for a 
boresight 17 × 17 transmitarray at 12 GHz for H-
polarization. 
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Fig. 13. 17×17 Transmittarray peak gain versus the 
frequency for H-polarization. 
 
 

 
 

 
Fig. 14. Transmission (a) magnitude and (b) phase 
versus slot length LV with several LH at f = 17.5 
GHz. 
 

 
 

Fig. 15. Cross slots lengths for vertical and 
horizontal polarizations. 
 

 

 
Fig.16. E-plane pattern plot for a boresight 17 ×17 
transmitarray. 
 

The vertical polarization here is operating at a 
higher frequency relative to that for the horizontal 
polarization. Thus, using the same overall 
dimensions of the array the beamwidth for the 
higher operating frequency (V-polarization) is 
narrower than that for the lower frequency (H-
polarization). Also, the width of the slots for the 
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higher operating frequency has been selected 
narrower than that for the lower operating 
frequency. This variation in slot width resulted in a 
narrower bandwidth as shown in Table II.  
 

 
Fig. 17. 17×17Transmittarray peak gain versus 
frequency. 
 
Table II: compare the radiation characteristics for 
H-polarization and V-polarization. 

 
IV. CONCLUSION 

The design and analysis of a dual-polarization 
dual-band transmitarray were presented in this 
paper. Two cases are considered, transmitarray, for 
vertical and horizontal linear polarization at 12 
GHz for case A, while another one designed at two 
center frequencies, 17.5 GHz for vertical 
polarization and 12 GHz for horizontal polarization 
in case B. The transmitarray consists of 17×17 
elements. The radiation patterns for each 
polarization are achieved by adjusting the phase of 
the transmission coefficient at each transmitarray 
unit cell independently for each polarization. The 
slot lengths are used to control the transmission 
phase. Full-wave analysis using the finite element 
method is applied. The results are validated by 
comparing with that calculated by the finite 
integration technique. Good agreement was shown.   
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Abstract � A broad-band power divider, based on 
proposed novel split ring resonators, with the use 
of surface-mount components, is presented in this 
paper. This paper is focused on the design of 
generalized novel split ring resonators in a fully 
planar configuration. This novel split ring 
resonator exhibits multiple, alternating backward 
and forward-transmission bands, and is therefore 
promising for the synthesis of wideband 
microwave components. The equivalent circuit 
models, including parasitic parameters, of the 
structures is presented (based on electrically small 
planar resonators), the detailed procedure for the 
synthesis of these resonators by using the 
proposed circuit model, is illustrated. It is shown 
that excellent results in both performance and size 
can be obtained through the proposed approach, 
fully compatible with planar technology. 
  
Index Terms - Equivalent circuit models, power 
divider, and split-ring resonators (SRRs).  

 
I. INTRODUCTION 

In the past several years, the feasibility to take 
advantage of the unusual properties of the so-
called metamaterial technology has led to a great 
deal of research activity [1-5]. At microwave 
frequency bands, the propagation medium is 
generally fabricated from transmission lines, 
loaded by split-ring resonators (SRRs) or 
implemented in a dual configuration with respect 
to a conventional one, namely with lumped series 

capacitances and shunt inductances [6-7]. The 
intense work carried out in the research group of 
Barcelona, Spain, is particularly representative of 
the SRR technology with several proposals, 
notably in terms of configurations on the basis of 
split-ring resonator and complementary split-ring 
resonator schemes [8].  

On the other hand, the power divider and 
combiner are very important components for 
microwave power amplifiers [9]. Recent years, 
there has seen a worldwide effort to develop 
broadband power dividers due to the trend of 
wideband mobile systems [10-11]. Several power 
dividers based on the SRRs have been proposed. 
However, they are either high insertion loss or 
narrow band between output ports. To address this 
issue, this paper presents a novel broad-band 
power divider based on the SRRs but with 
improved performance compared with those 
previously mentioned work.  
 

II. SYNTHESES OF BULK 
METAMATERIAS 

Among much geometry proposed to date, 
edge-coupled split ring resonators (EC-SRR) has 
been studied in great detail for the design of such 
artificial media. The split ring structure can 
support resonant wavelengths much larger than the 
diameter of the ring [12]. The EC-SRR structure 
changes the real part of magnetic permeability 
from positive to negative values, when signals 
with frequencies higher than the resonance 
frequency propagate through it. This negative 
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permeability can be employed with negative 
dielectric constant originating from another 
structure to produce negative refractive index 
materials [13]. In other words, the physical 
dimension is much smaller than the resonant 
wavelength, thus offering a quasi-static resonant 
effect and allowing very compact components 
designs. 

When the EC-SRR shown in Fig. 1 (a) is 
excited by a time-varying external magnetic field 
directed along the z-axis, the cuts on each ring 
(which are placed on the opposite side of the EC-
SRR) force the electric current to flow from one 
ring to another across the slots between them, in a 
form of a strong displacement current. The slots 
between the rings therefore behave as a distributed 
capacitance, and the whole EC-SRR has the 
equivalent circuit. EC-SRRs can be modeled as an 
LC resonant tank by virtue of the distributed 
capacitance (denoted as C) between concentric 
rings and inductance (denoted as L) of overall 
rings, as shown in Fig. 1 (b). The L is the SRR 
self-inductance and C is the capacitance associated 
with each EC-SRR half. The capacitance is C = 
πrCpul, where r is the mean radius of the EC-SRR, 
and Cpul is the per unit length capacitance along 
the slot between the rings. The total capacitance of 
this circuit is C/2 considering taking into account 
the series connection of the capacitances of both 
EC-SRR halves. R is the actual electromagnetic 
loss of the microstrip. Taking into account the 
circuit model, its resonance frequency can be 
expressed as, 

 

0 1/w LC=  .                        (1) 

 
 

 
Fig. 1. (a) The typical edge-coupled split ring 
resonator (EC-SRR) and (b) its equivalent circuit 
model. 

Spirals are well-known resonators in planar 
microwave circuitry. They can be used for the 
design of negative magnetic permeability and left-
handed media [14]. This design also provides a 
strong magnetic dipole at resonance, thus being 
useful for metamaterial design. The electrical size 
can still be reduced by increasing the number of 
turns. This property is a clear advantage, as it 
implies a smaller electrical size at resonance. We 
have found that the printed circuit in Fig. 2 (a) has 
the same size as the one in Fig. 1 (a), but its 
resonant frequency is approximately one-half 
lower, which is shown in equation (2). From the 
equivalent circuit in Fig. 2 (b), it indicates that the 
resonance frequency of the 2-SR w0[2-SR] would be 
half of the resonance frequency of the EC-SRR 
w0[EC-SRR] with the same size [15]. Thus, the 2-SR 
is much easier to design and implement in RF and 
microwave circuits, 

0[2 ] 0[ ]

1

2SR EC SRRw w− −=   .                (2) 

 
 
Fig. 2. (a) Typical two-turns spiral resonator (2-
SR) and (b) its equivalent circuit model. 
 

Based on microstrip technology, the layout 
and the canonical lumped circuit model 
corresponding to the proposed new 2-SR unit cell 
are characterized in Fig. 3 (losses have been 
excluded). Figure 3 (b) depicts the circuit model of 
the symmetrical unit cells shown in Fig. 3 (a). The 
LH contribution capacitance across the slot 
between the rings has been introduced into the 
model as CL. The LH contribution, LL represents 
the inductance generated by the 2-SR self-
inductance. Similarly, the right-handed (RH) 
contribution contains the distributed shunt 
capacitance CR and series inductance LR, which 
are made by distribution parameters effect from 
the transmission line. To validate the use of the 
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proposed new 2-SR unit cell for compact circuit 
design, a power divider implemented by means of 
an impedance inverter is designed and tested [16]. 
Apart from power dividers, this unit cell will find 
applications in the designs of compact impedance 
matching, filter and many other passive circuits 
[17]. 

 

 
 
Fig. 3. Layout and canonical lumped circuit 
models of the new 2-SR unit cell; (a) the new 2-
SR unit cell and (b) its equivalent circuit. 

 
 

III. POWER DIVIDER DESIGN 
The geometry of the proposed novel wideband 

power divider is shown in Fig. 4. This power 
divider printed is on a 0.254 mm thick RT5880 
(substrate with dielectric constant εr = 2.2 and loss 
tangent tanδ = 0.0009) with overall dimension of 
15×14.97 mm2. The size of inner-square (R1, R2) 
should be adjusted to determine the central 
frequency of power divider as shown in Fig. 5. For 
fixed R1 and R2, the resonance frequency could be 
increased by decreasing length of branch (h), as 
shown in Fig. 6. It can also be obtained from Fig. 
6 that the return loss of the power divider 
increases with increasing the branch length. These 
optimization works were managed by using 
commercial 3-D electromagnetic software high 
frequency structure simulator (HFSS) [18]. 

 
IV. RESULTS DISCUSSION 

To validate the proposed design, the novel 
two-turns spiral SRR unit cell based power divider 
was fabricated. The photograph of the fabricated 
component is shown in Fig. 7. The prototype has 
been characterized and its relevant measured 

scattering parameters (return losses and 
transmission coefficients) are shown in Fig. 8. By 
comparing the measured and simulated scattering 
parameters in Fig. 8, well agreement between 
simulated and measured results is obtained for the 
novel wideband microstrip power divider. 
However, the measured central frequency (5.4 
GHz) is slightly higher than the simulated one 
(5.25 GHz). This shift is attributed to fabrication 
tolerances, connectors, and the substrate properties 
[19-21]. The measured return loss is below -20 dB, 
and the measured insertion loss, at each branch, is 
approximately -3.2 dB at the central frequency. 
The slightly higher loss of approximately 0.2 dB is 
due to inaccuracies in fabrication of the structure. 
Figure 9 shows simulated electric field distribution 
at simulated central frequency (5.25 GHz) on the 
proposed broad-band power divider. It can be seen 
that the proposed power divider achieves equal 
power dividing performance at the operating 
frequency. The measured results show that this 
novel unit cell can be used in the design and 
fabrication of miniaturized RF and microwave 
circuits [22, 23]. 

 
 

 
 
Fig. 4. Geometry of compact power divider, 
dimensions are R1 = 0.9 mm, R2 = 1.29 mm, d1 = 
0.2 mm, d2 = 0.2 mm, g = 0.19 mm, h = 1.02 mm, 
S = 10.9 mm, W = 15 mm, and L = 14.97 mm. 
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(a) 

 
(b) 

 
Fig. 5. S-parameters of (a) different radius of R1 
and (b) different radius of R2.  

 
 
Fig. 6. S-parameters of different height of squares 
(h). 

 
 
Fig. 7. Photograph of the proposed power divider. 

 
 
Fig. 8. Measured and simulated frequency 
responses for the thrus (S21 and S31), and the 
return loss (S11) of the wideband power divider. 
 

 
 
Fig. 9. Simulated electric field distriution at 
simulated central frequency (5.25 GHz) on the 
proposed wideband power divider. 
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V. CONCLUSION 
A novel Wilkinson power divider using novel 

two-turns spiral resonator (2-SR) was proposed. 
The power divider not only shows excellent 
performance in a wide band, but also has compact 
size due to the use of proposed two-turns spiral 
SRRs cells. The new model developed is suitable 
for the design of compact broad-band microwave 
components, as has been demonstrated through the 
design and fabrication of a power divider. It can be 
easily implemented in microwave integrated 
circuit. 
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Abstract � An efficient method for scattering 
analysis from slightly rough surfaces is 
introduced. This method can be used in ray tracing 
algorithm where the computational efficiency is 
important due to the complexity and size of 
problems. In this method, the Kirchhoff approach 
is used for a periodic extension of the finite 
surface, which is approximated by strong 
harmonics of its Fourier series. Typical asphalt 
surfaces are analyzed by this method in 
millimeter-wave band and validated with the 
method of moments. The dominant scattering 
angles and ray widths of the scattered field can be 
easily used in ray tracing algorithm. The 
computation time and accuracy of results show 
that this method can be used for rough surface 
scattering analysis in ray tracing algorithm 
efficiently. 
   
 Index Terms - Electromagnetic scattering by 
rough surfaces, Fourier series, Kirchhoff approach, 
method of moments, and Ray tracing. 
 

I. INTRODUCTION 
The problem of scattering from rough surfaces 

has been the subject of intensive researches over 
the past decades. Scattering consideration from 
these surfaces in ray tracing algorithm is another 
challenging problem. The existent empirical 
models have no enough accuracy [1, 2]. 
Furthermore, accurate numerical analysis of 
scattering from these surfaces [3, 4], is not 
practical for use in ray tracing algorithm due to the 
computational costs.  

The Kirchhoff approach is a classical 
scattering analysis solution based on the tangent 
plane approximation and is valid for surfaces with 

large radii of curvature [5]. This method has an 
analytical closed-form solution for finite length of 
a periodic rough surface (finite periodic surface, 
like ( ) cos( )f x xα=  for L x L− ≤ ≤ , /L mπ α= , 

2m = , 3 , …) [6].  

In this paper a novel method is introduced for 
plane wave scattering analysis from slightly rough 
surfaces using strong harmonics extraction and the 
Kirchhoff. The rough surfaces are assumed to be 
in the validity region of the Kirchhoff approach. 
The Kirchhoff approach is utilized for the finite 
periodic surface, which is composed of different 
harmonics. First, a given rough surface is 
considered as a period of a periodic surface and is 
represented by its Fourier series. Then the surface 
is approximated by its strong harmonics. At last, 
the Kirchhoff approach is used for computation of 
scattering from the approximated surface. An 
important parameter is the number of extracted 
harmonics, N . Small N  makes a big deviation 
from original rough surface when big N  increases 
the computation time. Typical asphalt surfaces in 
millimeter-wave band are simulated using this 
method. Results are compared to the method of 
moments’ results for plane wave incidence using 
the resistive sheet tapering method [7]. It is shown 
that extracting enough harmonics leads to a good 
global conformity to the accurate answer. Closed-
form scattering coefficient can efficiently 
represent the scattered field as a sum of rays, 
directed to dominant scattering angles. This 
method can be easily integrated to ray tracing 
algorithm. 

In the next section, Kirchhoff approach for 
finite periodic surfaces is presented. Section III is 
about the strong harmonics extraction. In section 
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(4) 

IV, numerical results of the scattering computation 
for slightly rough Gaussian surfaces are shown. 
The paper is concluded in section V. 
 

II. KIRCHHOFF APPROACH FOR 
PERIODIC SURFACES 

Consider a one dimensional rough surface 
( )z f x=  of length 2L  as shown in Fig. 1. The 

normalized scattering coefficient for a plane wave 
scattering from a rough surface is defined by, 

0

,s

s

E

E
ρ =                             (1) 

where sE  is the scattered field and 
0sE  is the field 

reflected in the specular direction ( s iθ θ= ) by the 
same size smooth conducting plane under the 
same angle of incident. 
 

 
 

Fig. 1. Rough surface and tangent plane 
approximation.  
 

For a perfect electric conductor surface, 
equation (1) has a closed analytic form by using 
the Kirchhoff approach [6], 

( )1
( , ) ( , )
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θ θ

±
±
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+

v.r

 

= sθ θ+    = ,iθ θ−                               

where +  and −  denote TE and TM incident, 
respectively, iθ , sθ  are incident and scattering 
angles, k  is the wave number, ˆ ˆ( )xx f x z= +r(x)  

and v  is the difference of incident and scattered 
wave vectors,  

ˆ ˆ .x zv x v z i sv = k k+ = −                    (5) 

The second term in equation (2) is the edge effect. 
It is negligible for L λ>>  if ( ) ( ) 0f L f L= − =  [6]. 
Now consider a periodic surface with period Λ  
(i.e., ( ) ( )f x f x= + Λ ). So in equation (2) 

exponential term ( )j xe v.r  will be periodic, 

       2xv mπΛ = , 1m = , 2 , 3 , … .         (6)                           

It is shown that in [6], 

sin sinsm i m
λ

θ θ= +
Λ

; ( =0m , 1± ,  …). (7) 

Equation (7) is the well-known grating 
equation. For distinct iθ , equation (7) is satisfied 

by specific m . First consider ( )1L n n= + Λ , where 

n  is an integer and 10 1n≤ < . Then, after some 
simplifications, 

( )

0

1

( , ) 1
( , )
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j xi sm
i sm

F
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L
C n

L
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ρ θ θ
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(9) 
The symbol 1( )C n  represents the edge effect. For 
each smθ  there is a lobe around it with half-width 
of [6], 

sec( ).
2sm smL

λ
θ θΔ ≈                    (10)                           

Consider a sinusoidal surface, i.e., 
( ) cosf x h Kx= , where 2 /K π= Λ  is the phase 

constant of the surface. Equation (8) yields to [6], 

 ( , ) ( , ) ( ),m
i sm i sm mj F J sρ θ θ θ θ±

≈ ±     (11)              

(cos cos ),z i sms v h kh θ θ= = − +       (12)                  

where smθ  is given by the grating equation (7) for 
each valid m , and ( )mJ s  is the m-th order of the 
first kind Bessel function. This solution leads to 
some scattering lobes, directed to smθ  angles with 
half-width of smθΔ . 
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III. STRONG HARMONICS 
EXTRACTION FOR RANDOMLY 

ROUGH SURFACES 

In the first step of strong harmonics extraction 
analysis, the rough surface (Fig. 1), is considered 
as a period of a periodic function (with period of 

2LΛ = ) represented by its Fourier series. This 
series is a summation of cos( )n nKxα  and 

sin( )n nKxβ  terms. Consider the first harmonic 
coefficient of cosine part, 1α  and 1N −  strongest 
coefficients among other nα s and nβ s. The 
selected harmonics are sorted based on their 
incremental indices. Now the sorted coefficients 
are saved in new variables na  and nb  and their 
indices are saved in new variables nc  and nd , 
respectively. So the approximated rough surface is  

1
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1
2
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2
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m m
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=
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= + +

=

=
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, = , .a K N N N
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π π
α= = + =

Λ
  (13) 

na  and nb  can be computed numerically. To drive 
the closed analytical form of the normalized 
scattering coefficient, the first harmonic ( cos( )Kx ) 
is always kept. It must be notified that equation 
(13) is an approximation of ( )z f x=  on its 
domain, i.e., from L−  to L  ( 2LΛ = ). Applying 
equation (8) to the approximated surface, equation 
(13), ignoring the edge effect and after some 
simplifications, the normalized scattering 
coefficient becomes (see appendix A), 
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where 

            i z is v a= , 1i = , 2 , 3 , … , 1N ,    (15)                      

i z iw v b= , 1i = , 2 , 3 , … , 2N ,    (16)                   
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where zv  is the ẑ -component of v , and m  is 
defined by grating equation (7). Equation (14) is 
an ( 1N − )-dimensional series. The Bessel 
function has intensive decreasing form as its order 
increases. So the infinite summations of equation 
(14) can be replaced by the terms of iq  and ip  in 
[ , ]M M− .  

Equation (14) is the closed-form normalized 
scattering coefficient for the slightly rough perfect 
conductor surfaces. To use this method in ray 
tracing algorithm, the scattered field can be 
assumed as some rays (exactly m  rays, where 
m is given by equation (7)) directed to smθ  with 
the normalized amplitude given by truncated form 
of equation (14). So one can choose the dominant 
angles using an appropriate amplitude threshold 
and import them in ray tracing algorithm. In the 
next section we validate this formulation and 
explain about different parameters of it. 

 
IV. VALIDATION AND RESULTS 

To validate the above method, we consider the 
asphalt surface with roughness parameters of 
Table I. Both types of considered asphalt surfaces, 
satisfy the Kirchhoff approach condition for 
millimeter wave band ( 5mmλ =  and 10 mmλ = ) 
[5]. The formula in equation (14) is for perfect 
conductor surface, but in millimeter-wave band, 
one can replace the lossy dielectric surface with 
perfect conductor as a good approximation 
because of the small penetration depth [10]. These 
two Gaussian random surfaces are generated 
numerically by spectral approach [3]. Without loss 
of generality, an even extension of each surface is 
generated. So the coefficients mb  are zero. 
Extraction of the first harmonic and the strong 

1N −  harmonics is the next step. Table II shows 
this process and their prominent extracted Fourier 
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series coefficients. Criterion for approximation is 
20%Δ ≤ , where 

( ) ( )
,

( )

L

L
L

L

f x f x dx

f x dx

−

−

−
Δ =
�
�

�
             (19) 

while ( )f x  is the original rough surface and  

( )f x�  is the approximated surface given by 
equation (13). An efficient approach to find the 
dominant coefficients of Fourier series is defining 
an internal error criterion, which computes the 
change of Δ  in each step of finding ia ( )ib . Then 

if the evaluated ( )i ia b  satisfy this internal 

criterion, it means that the derived Fourier 
coefficient is dominant and it could be kept. 
Otherwise, that would be ignored. The second step 
is the calculation of smθ . Valid smθ  and m  could 
be found by equation (7). By replacing smθ  in 
equation (14), approximated ( , )i smρ θ θ  could be 
solved for each smθ . For each smθ  scattering 
angle, there is a lobe with half-width that is given 
by equation (10). For validation, the method of 
moments (MOM) is used [3, 9]. 
 
Table I: Asphalt surface parameters [8]. 

 
Table II: Strong harmonics extracted for two 
asphalt surface for Δ � 20%. 

Δ  { }na  N Asphalt surface type 

18.22%  { }1 3 4 8, , ,a a a a  4 Type1 

14.83%  { }1 3 8 10 17, , , ,a a a a a  5 Type2 

   
Because in the harmonics extraction method 

the incident wave is supposed to be a uniform 
plane wave and the edge effect is ignored, so for 
validating the results with MOM, uniform plane 
wave incident must be considered in numerical 
analysis too. For this goal, resistive sheet tapering 
method is used [7]. In this method, a relatively 
small portion of the sample surface is used to 
suppress the edge currents. Figures 2 and 3 show 
the normalized scattering coefficient for these two 
types of asphalt surfaces in two wavelengths 

( 5mmλ =  and 10 mm , respectively). iθ , the 

incident angle is 30�  and 8M =  is chosen. It can 
be seen that for the rougher surface (type 2), 
scattering in non-specular direction becomes more 
prominent than the other (type 1). The deviation 
between the harmonic extraction analysis and 
MOM results of Figs. 2 and 3 is due to some 
approximation in deriving the relation in equation 
(14). But the global behavior of the scattered field 
pattern has an acceptable conforming to MOM. 

The main reason for deviation of the results 
with MOM is related to this fact that the MOM 
reported results are related to scattering 
computation of large number of realizations for 
desired Gaussian rough surface, which are 
averaged. Therefore, our method has this ability to 
follow this average behavior acceptably. One of 
the error sources is the truncation of the series in 
equation (14) (value of M ) and the other is the 
number of the extracted harmonics ( N  in 
equation (13)). Consider the asphalt surface type 
1. Now consider three different scattering angles 
in Fig. 2 (a); 30sθ =

� , 11.53sθ =
� , 30sθ = −

� . 
Positive angles are in clockwise. For these angles, 
normalized scattering coefficient for 6M = , 8 , 
10 , and 12  are calculated and shown along with 
the MOM results in Table III. Due to small 
magnitude of the high order Bessel functions, 
ignoring the high values of M  gives acceptable 
results. We can see that the differences between 

6M =  and 8M =  are negligible. The results for 
10M =  and 12M =  are the same. It can be 

concluded that the truncation of series in equation 
(14) does not cause a big change in the results. 
Another important error source is the number of 
the extracted harmonics. Higher N , increases the 
order of series in equation (14) and consequently 
the time of the computation process would 
increase severely. 

 
 

Table III: (30 , )smρ θ�  for different values of 
M (truncation effect in series of equation (14)). 

30smθ = −
�  

( : 0.0830MOM ) 
11.53smθ =

�  
( : 0.0950MOM ) 

30smθ =
�  

( : 0.9812MOM ) 
M  

0.1033 0.1000 0.9655 6 
0.1044 0.1001 0.9698 8 
0.1074 0.1002 0.9700 10 
0.1074 0.1002 0.9700 12 

   

Asphalt surface type (mm)σ  (mm)cl  

Type1(slightly rough asphalt) 0.36  5.2≈  

Type2 (very rough asphalt) 0.7  5≈  
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(a) 

 
(b) 

 

Fig. 2. Strong harmonics extraction analysis for 
asphalt type 1, L = 5 cm (a) θi = 30o, λ = 10 mm 
and (b) θi = 30o, λ = 5 mm, mean time for MOM is 
8 min while for the relation in equation (19) is less 
than 5 sec.  
 

 
(a) 

 
(b) 

Fig. 3. Strong harmonics extraction analysis for 
asphalt type 2, L = 5 cm (a) θi = 30o, λ = 10 mm 
and (b) θi = 30o, λ = 5 mm, mean time for MoM is 
8 min while for the relation in equation (19) is less 
than 5 sec. 

Figure 4 represents the results for different 
number of extracted harmonics, N = 3, 4, 5, and 7, 
for rough surface of type 1 asphalt. For small N , 
( N = 3), a big error ( 30%Δ = ) in the 
approximation of the original surface resulted a 
bad conformity to the MOM method. It is obvious 
that by increasing N, a better answer is achievable 
(Fig. 4 (b), (c), (d)). By extracting more harmonics 
to some extent, the accuracy of the method will 
improve. But extracting more harmonics doesn't 
make notable change in the global form of the 
scattering pattern. So it can be seen that 
approximation with Δ � 20% gives acceptable 
converged results. For two surfaces above, 4-5 
strong harmonics must be extracted for Δ � 20% 
(Table II). Our simulations show that decreasing Δ 
from 20% to 10% results 2% change in ρ(θi, θsm). 
One can define a threshold for the normalized 
scattering coefficients to select the dominant 
scattering angles. These angles show proper rays 
for ray tracing algorithm. The results are shown in 
Table IV for a -30dB threshold. Consequently, 6 
rays is extracted and listed in Table IV. Apart from 
the specular direction with dominant amplitude, 
there are 5 rays, which are above the threshold (-
30 dB). The ray width of each ray is also indicated 
in the following table. 

Table IV: Selected scattering angles and the ray 
widths for threshold of -30dB.  
Selected 

smθ  53.13o 36.86o 30o 23.57o 11.53o -30o 

(30 , )smρ θ� -22.2dB -20.8dB -0.13dB -19.5dB -20.2dB -21.0dB 

smθΔ  9.568o 7.162o 6.589o 6.251o 5.847o 6.589o 

 
V. CONCLUSION 

A new method for rough surface scattering 
analysis for ray tracing algorithm is introduced. 
This method is enough accurate, computationally 
efficient and can be integrated well with the ray 
tracing algorithm. A rough surface is extended to a 
periodic rough surface first. Then, the surface is 
approximated by its strong harmonics of the 
Fourier series. The Kirchhoff approach is used for 
the approximated surface over a period, i.e., the 
length of the original rough surface. The scattering 
pattern in this method can be assumed as a sum of 
different rays at different angles, called the 
scattering angles. Using a proper threshold, the 
dominant rays can be chosen to be used in ray 
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tracing algorithm. The numerical results show a 
good global conformity to the results of the 
method of moments. The method is 
computationally efficient and can be easily 
integrated to the ray tracing algorithm. 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 
Fig. 4. Strong harmonics extraction analysis for 
asphalt type 1, L = 5 cm (a) N = 3(Δ = 30%), (b) N 
= 4(18.22%), (c) N = 5(Δ = 10.32%), and (d) N = 
7(Δ = 8.03%), mean time for MoM is 8 min while 
for the relation in equation (19) is 0.2, 0.9, 1.3, and 
4.5 sec for N = 3, 4, 5, and 7, respectively. 
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APPENDIX A 

By replacing the approximated rough surface 
of equation (13) into equation (8) and ignoring the 
edge effect, 
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we also have in [11], 
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Using equations (21) and (22) in equation (20) and 
by replacing Kx t= , equation (20) is changed to, 
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(23)           
where is  and iw  are defined in equations (15) 
and (16). Then by using another Bessel identity in 
[11] yield,  

2
cos

0

1 ( )
2

zjmt jv h t m
m ze dt j J v h

π

π
+ =� ,      (24)                           

in equation (23), relation (14) will be concluded. 
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Abstract � This paper proposes a novel approach 
for designing compact ultra-wideband (UWB) 
band-pass filter with a good tri-notch-band 
characteristic, which is obtained by using the ring-
stub multimode resonator (MMR). The equivalent 
model of the filter is achieved by using odd/even 
excitation resonance condition. The characteristics 
of the designed filter are investigated and analyzed 
by means of IE3D. This filter is designed, 
analyzed, fabricated, and measured successfully. 
Experimental and numerical results show that the 
proposed filter, with compact size of 25×10 mm2, 
has an impedance bandwidth range from 3 GHz to 
10.6 GHz with the triple notch bands at 4.14 GHz, 
6.1 GHz, and 7.1 GHz. The proposed filter can be 
incorporated into UWB radio systems in order to 
efficiently enhance the interference immunity 
from undesired signals. 
  
Index Terms - Multimode resonator, notch band, 
RF identification (RFID) communication, ring-
stub, and UWB filter.  
 

I. INTRODUCTION 
Since the Federal Communications 

Commission (FCC) released the frequency band 
from 3.1 GHz to 10.6 GHz for commercial ultra-
wideband (UWB) communication applications in 
February 2002, the radio system has been 

receiving great attention from academic, 
governmental and industrial field [1]. An UWB 
band-pass filter (BPF) is one of the key passive 
components to realize a UWB radio system. 
Therefore, a number of demands have been placed 
on the design of BPFs with large fractional 
bandwidths (FBWs). Recently, many efficient 
methods and viable structures have been proposed 
to develop UWB various BPFs [2-5]. The typical 
structures, including a low and high-pass filter 
configuration [2], coplanar waveguide (CPW) 
forms [3], right/left-handed structure [4], 
multimode resonator (MMR) [5], have been 
proposed and investigated. Although, most of 
these UWB BPFs are suitable for practical use, 
they still have some drawbacks, such as smooth 
out-of-band rejection performance and complex 
structures. 

In addition, the UWB frequency band overlaps 
with the existing narrowband communication 
systems, which means that those radio signals may 
interfere with UWB systems and vice versa. To 
reduce the potential interference, a compact 
communication system, which operates in UWB 
frequency band requires a small BPF with a 
notched band characteristic in order to avoid being 
interfered by the undesired radio signals. Recently, 
many methods have been investigated to design an 
UWB BPF with a notched band, such as 
embedded open-circuited stub [6], defected ground 
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structures (DGS) [7], mismatch transmission line 
[8], parasitic coupled line [9] and E-shaped 
microstrip stepped impedance resonator (SIR) 
[10], which can effectively suppress undesired 
radio signals. Nevertheless, they are still large in 
size [6], not compatible with monolithic 
microwave integrated circuits (MMIC) [7], 
complex structure [8], and cannot provide multi-
notch-band [6-10], such as tri-notch-band. 

We propose a novel approach for designing 
compact UWB band-pass filter with a good tri-
notch-band characteristic in this paper. The 
proposed tri-notch-band characteristic is obtained 
by using the ring-stub multi-mode resonator 
(MMR), and the central frequencies of these notch 
bands are 4.14 GHz, 6.1 GHz, and 7.1 GHz, 
respectively, so that the designed UWB filter can 
be used for 3.5 GHz WiMAX, 5.5 GHz WLAN, 
and 6.8 GHz RFID communication applications. 
The middle ring-stub MMR is analyzed by using 
odd and even mode. By using this method, we can 
get the whole resonance condition of the MMR. 
Compared to the previous UWB notch-band filters 
in [7-12], the tri-notch-band realized in the 
proposed filter can be operated simultaneously. 
The performance of the filter is simulated by using 
the IE3D software and implemented on the 
substrate with a relative dielectric constant of 6.15 
and a thickness of 0.635 mm. Simulated and 
measured results agree reasonably well. 

 
II. FILTER GEOMETRY 

The proposed BPF is a modified form of the 
UWB ring resonator BPF presented in [13]. The 
configuration of the prototype UWB filter in [13] 
is shown in Fig. 1 (a). Next, we construct a 
simplified filter, which is illustrated in Fig. 1 (b). 
Then, several folded stubs are inserted into the 
middle ring resonator of the simplified filter to 
generate the desired tri-notch-band characteristic, 
and the configuration of our proposed triple band-
notched UWB filter is shown in Fig. 1 (c). This 
filter is printed on a RT/Duorid 6006 with a 
dielectric constant of 6.15 and a thickness of 0.635 
mm. The proposed filter is composed of two inter- 
digital hairpin resonator units, a middle ring-stub 
MMR, folded stubs and two 50 � SIR-fed 
structures. 

 To simplify the analysis process, the odd-
even-mode method is employed to analyze the 
proposed filter, which is also referred to the 

articles [14-15]. Figure 2 shows the equivalent 
transmission line model of the proposed UWB 
filter with triple notch bands. The proposed 
transmission-line circuit model shown in Fig. 2 
can be illustrated in Fig. 3 by using the odd-even-
mode method with T-T′  as the reference plane. 
Since 

4 1 1= + = 4
πθ θ θ ′

, we use this known condition 

to simplify the designed filter structure. 
 

  
(a)                                     (b) 

 
(c) 

 

Fig. 1. Geometry of the proposed filter. 
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Fig. 2. Equivalent transmission line model of the 
proposed UWB filter. 
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(a) odd-mode 
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(b) even-mode 

 

Fig. 3. Equivalent transmission line model of the 
proposed UWB filter with odd/even modes. 
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(b) even-mode 
 

Fig. 4. Simplified equivalent transmission line 
model of the proposed UWB filter for odd and 
even modes. 
 

The equivalent transmission line model of the 
proposed UWB filter shown in Fig. 3 is simplified 

and shown in Fig. 4. The input admittance inoddY of 

the odd-mode resonator and  inevenY  of the even-

mode resonator are expressed as follows, 
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The resonance condition can be achieved at Rinodd 
= 0 then we have, 
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θ
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Because 6θ ′ is very small � then 6 0θ ′ → and 

6tan 0θ ′ → . So the resonance condition  can be 

simplified as,  
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. 

Furthermore, 1 1θ θ′ ≈ � 6 62θ θ′′ ′′′≈ . Thus, the 

resonance condition can be simplified as, 7tanθ =0 

and 6 6 8tan cot tan =0θ θ θ′′ ′′′+ − . Thus, we have, 
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The resonance condition can be achieved at Yineven 
= 0. Because 6θ ′ is very small, then 6 0θ ′ → and 

6tan 0θ ′ → . Ψ  can be simplified as, 
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Here, 6 62θ θ π′′ ′′′≈ → , then we have 6 2

π
θ ′′′ →  

and 6tanθ ′′′ → ∞ . In this case, 0inevenY = is 

impossible. So the resonance condition is 

7tanθ =0 and 6 6 8tan +cot tan =0θ θ θ′′ ′′′ − . Above 

all, L7 is designed to control the center frequency 
of one notch band independently and L8/L6 are 
designed to adjust the center frequencies of the 
others notched bands. 
The frequency characteristics of the ring-stub 
multi-mode resonator are simulated by using IE3D 
as shown in Fig. 5. Lf , Mf and Uf denote the 

central frequencies of the lower, middle, and upper 
notched bands, respectively. It can be seen from 
Fig. 5 (a) that L6 has important effects on 

Lf and Uf  while Mf  remains constant. It can be 

seen from Fig. 5 (b) that L7 changes the center 
frequency of Mf . With the increase of L7, the 

center frequency of the middle notch band moves 
to the lower frequency. So, we can control the 
middle notch band by adjusting the dimension of 
L7. According to the Fig. 5 (c), we can see that L8 
has important effect on Uf , which changes 

dramatically by tuning L8. Based on the 
discussions above, firstly Lf was designed by 

tuning the structure parameters (such as L6 and 
L8), and then Mf  was designed by, adjusting L7. 

Finally, fU was chosen by adjusting L6 and L8. 
The required three resonant frequencies of the 
notched bands can be simultaneously obtained by 
choosing the proper dimensions of the middle 
ring-stub multi-mode resonator and the stubs. 
 

 
 

(a) Variation of insertion loss with parameter L6. 
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(b) Variation of insertion loss with parameter L7. 
 

 
 

(c) Variation of insertion loss with parameter L8. 

 
Fig. 5. Simulated insertion loss of the proposed 
asymmetric structure for varying parameters. 
 
 

III. RESULTS AND DISCUSSION 
In this paper, geometric parameters of the 

filter were adjusted and optimized by means of 
IE3D. Optimal parameters of the tri-notch-band 
UWB filter are listed in Table I. To verify the 
effectiveness of the proposed filter, the filter with 
tri-notch-band is fabricated and measured. The 
fabricated filter is shown in Fig. 6. The 
performance of the proposed filter is measured by 
using Anristu 37347D vector network analyzer. 
Figures 7 and 8 demonstrate the frequency 
responses of proposed tri-notch-band UWB band-
pass filter. Here, only S11 is adopted to analyze 
the proposed filter since the size of this filter is 
very small. The measured results agree well with 
the simulated results which help to verify the 
accuracy of the simulation. The differences 

between the simulated and measured values may 
be due to the errors of the manufactured filter. The 
fabricated filter has a measured pass-band from 3 
GHz to 10.6 GHz, while the center frequencies of 
the notched bands are 4.14 GHz, 6.1 GHz, and 7.1 
GHz. The group delays are shown in Fig. 9, 0.2 ns 
and 0.6 ns at the mid-band frequency of lower 
pass-band and at the mid-band frequency of upper 
pass-band, respectively. It should be noted that the 
ring-stub MMR can generate three notched band at 
the desired frequency with no significant influence 
on the wide pass-band performance of the filter. In 
a word, the proposed UWB BPF has a good tri-
notch-band characteristic for implementing the 
functions of UWB radio system. 

 

 
 
Fig. 6. The photo of the proposed tri-notch band 
UWB filter. 
 

 

 
 

Fig. 7. Comparison between simulated and 
measured results for |S21| of the fabricated filter. 
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Table I: Dimensions of the proposed tri-notch 
band UWB filter. 

Dimensions of the proposed tri-band filter (unit: 
mm) 
PARAMETER SIZE PARAMETER SIZE 

L1v 5.12 W1 0.46 
L1h 5.92 W2 5.2 
L2 4.25 W3 1.3 
L3 0.25 W4 0.11 
L4 5.39 W5 1.15 
L5 2 W6 0.4 
L6 3.8 W7 0.4 
L7 5.1 W8 0.4 
L8 5.1   

 

 
 
Fig. 8. Comparison between simulated and 
measured results for |S11| of the fabricated filter. 

 

 
 

Fig. 9. Group delay of the fabricated filter. 

IV. CONCLUSION 
In this article, a compact UWB band-pass 

filter with an ultra-narrow tri-notch-band 
characteristic has been developed and 
manufactured. Inserting ring-stub MMR to the 
original UWB BPF leads to blocking undesired 
existing radio signals. The ring-stub multi-mode 
resonator can generate three narrow notched bands 
corresponding to the undesired radio signal 
frequencies with no significant influence on the 
wide pass-band performance of the filter. The 
measured results show that the proposed filter can 
cover the entire UWB band with three notch 
bands. The proposed filter is promising for using 
in UWB systems due to its simple structure, 
compact size, and excellent performance. 
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Abstract � We present gain characteristics of 
microstrip patch antennas covered with 
metamaterial substrate composed of split-ring 
resonators (SRRs) and metallic strip. To determine 
the performance of the SRR-metallic strip 
mounted on microstrip patch antenna, the 
metamaterial has been proposed as an effective 
medium with extracted constitutive parameters. 
Simulation results are supported by experimental 
measurements. The experimental results confirm 
that the metamaterial covered patch antenna 
improves gain by an amount of -5.68 dB (60.3%) 
as well as radiation pattern (-8 dB to +20 dB) at 
WLAN communication. 
 
Index Terms - Effective parameters, FDTD, gain, 
patch antenna, metamaterial, and split ring 
resonator. 
 

I. INTRODUCTION 
Microstrip patch antenna is one of the most 

commonly used antenna in portable 
communication devices due to compact, 
conformal, low cost, and ease of fabrication 
properties. Although, it offers many advantages as 
mentioned, it has some disadvantages, which 
result from conductor and dielectric losses. Beside 
this, gain reduction and poor directionality are also 
observed in this antenna due to surface waves [1]. 
Conductor and dielectric losses can be minimized 
by using better conducting metal and low loss 
dielectric substrate, but these choices result in 
higher fabrication cost. Gain, bandwidth 
enhancement, miniaturization, and broadband 

directionality can be provided by using 
metamaterial structures [2-6]. Metamaterials are 
manmade structures designed to have properties 
that may not be found in nature. These structures 
have both negative effective permittivity and 
permeability at the same frequency range. It 
causes negative effective refractive index in the 
structure [7]. These properties of metamaterial 
provide novel application opportunities to several 
disciplines, such as microwave and optical 
cloacking, focusing of images, and sensing of 
biological and chemical substances.   

Metamaterials have also many application 
areas for novel antenna systems [8-11]. One of the 
applications of metamaterials is miniaturization of 
the microstrip antennas with different types of 
artificial materials. The conventional way to 
reduce the antenna size is to use high permittivity 
substrate. This approach reduces the wavelength 
of the signal in the substrate [12]. But, this design 
results in more energy consumption due to high 
permittivity, since it decreases the bandwidth of 
the antenna impedance. One another way is to 
remove the substrate to minimize the effective 
dielectric constant. This application restricts the 
wave to travel in the substrate, hence, improving 
the gain of the patch antenna has been possible 
[13, 14]. However, the maximum gain 
enhancement does not exceed 2 dB with all these 
techniques and the directionality also does not 
change too much. Hence, many different solutions 
are proposed to overcome these problems, such as 
utilization of metamaterials with patch antenna 
[15-18]. 
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This article describes a novel way to enhance 
both the gain and directionality of patch antenna 
used for WLAN application. Split ring resonators 
(SRR) for negative permeability and metal strip 
for negative permittivity are used to improve both 
gain and directionality of patch antenna. The 
effective permittivity of strip and permeability of 
SRR are evaluated by both finite element method 
(FEM) based high frequency structure simulator 
(HFSS) and finite difference time domain method 
(FDTD) based computer simulation technique 
(CST). The dimensions of the inclusions are 
optimized to realize negative values of the 
constitutive parameters at the operating frequency 
of antenna. The SRRs and metal strips are 
fabricated with optimum dimensions to provide 
negative constitutive parameters at 2.4 GHz. The 
fabricated metamaterial is mounted on microstrip 
patch antenna to observe the effects on it. The 
measurement results are in good agreement with 
simulated values. It has been noticed that the 
metamaterial considerably enhances the gain of 
the patch antenna. 
 

II. METAMATERIAL DESIGN AND 
CONSTITUTIVE PARAMETERS 

Figure 1 illustrates the front and back side of 
metamaterial structure, which consists of both 
circular split ring resonator (SRR) and metallic 
strip (MS). The combination structure is designed 
on two sides of 10 mm × 10 mm × 1.6 mm FR4-
epoxy (� = 4.4, μ = 1, and dielectric loss tangent 
�� = 0.02). While the SRR produce magnetic 
material-like responses and exhibit negative 
permittivity the MS acts as strong dielectric and 
exhibits negative permeability [19]. 

 

 
 

Fig. 1. Front and back view of metamaterial. 
 
All the dimensions of the SRR and MS are 

optimized by HFSS to achieve negative 

permittivity and permeability at 2.4 GHz. The 
TEM wave is applied to the metamaterial. E field 
is applied paralel to the MS and H field is applied 
normal to the plane of SRR. It means that the 
system is a direction dependent. The periodicity of 
one unit cell with SRR-MS is obtained by 
assigning perfectly electric conductor-PEC (side 
normal to E field) or perfectly magnetic 
conductor- PMC (side normal to H field) to the 
sides of the unit cell. The constitutive parameters 
are evaluated from scattering parameters (S11 and 
S21) by using Nicolson Ross Weir (NRW) 
approximation [20, 21], 

 

                               (1) 

   ,            (2) 

�eff = n/z ; μeff = n.z                          (3) 

where z, d, and k0 represent impedance, thickness 
of the metamaterial and free space wave number, 
respectively. The effective permittivity, 
permeability and refractive index are denoted by 
�eff, μeff, and n, respectively. The simulations are 
realized up to 6 GHz. All of the electromagnetic 
constitutive parameters are negative at 2.4 GHz. 
Hence, this structure can be used as negative 
refractive index metamaterial with patch antenna 
operating at this frequency as shown in Fig. 2. 

Microstrip patch antenna is fabricated to 
operate at frequency range in which permittivity 
and permeability of metamaterial utilized with this 
antenna are negative. In this study, the frequency 
of 2.4 GHz is chosen for the operating frequency 
of microstrip patch antenna of which 
specifications are shown in Table I. 

 
Table I: Dimensions of patch antenna on FR4 
laminate. 

Parameter Magnitude Unit 
Operating frequency 2.4 GHz 
Patch length(L) 59 mm 
Patch Width(W) 42.4 mm 
Laminate length  (Lg) 75 mm 
Feed coaxial - 
Laminate Thickness 1.6 mm 

 
The microstrip patch antenna is fabricated on an 
FR4 substrate (� = 4.4, μ = 1, and dielectric loss 
tangent �� = 0.02). 
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Fig. 2. Effective parameters of metamaterial. 
 

The evaluated results are obtained by HFSS 
and CST simulators and measured results of 
microstrip patch antenna without metamaterial are 
shown in Fig. 3. Return loss measurement is 
realized by using ENA series network analyzer 
(E5071B). While return loss (gain value), S11 
value, of patch antenna is -13.68 dB in HFSS and -
16.64 dB in CST, measured value is only -9.42 
dB. The difference between measured and 
simulated values of antenna results from 
measurement mistakes and fabrication process. 

 

 
 

    S11  HFSS CST Measurement 
Patch 

Antenna 
-13.68dB -16.64 dB -9.42 dB 

 

Fig. 3. Microstrip patch antenna without 
metamaterial and return losses in dB. 

Effect of the metamaterial to return loss of the 
microstrip patch antenna is investigated by placing 
metamaterial on it. The SRR-MS structure is 
fabricated to obtain negative constitutive 
parameters at 2.4 GHz and it is periodically 
mounted on microstrip antenna as shown in Fig. 4. 

 
Fig. 4. Fabrication of patch antenna-metamaterial  
system.  
 

The direction of the metamaterial is important 
to improve gain of the patch antenna, since the 
metamaterial has anisotropic behavior. Therefore, 
they are mounted such that the center of SRR are 
parallel to H field and MT is parallel to E field 
direction of the antenna. The distance between the 
periodically arranged metamaterials is 2 mm. The 
simulated and measured results of microstrip patch 
antenna covered with metamaterial are shown in 
Fig. 5.  

While the return loss decreases down to -20.27 
dB in HFSS simulation and -23.33 dB in CST 
simulation, it is observed -15.1 dB in measurement 
at 2.4 GHz. This means 60.3% enhancement of the 
antenna gain (return loss) with respect to antenna 
without metamaterial. The enhancement results of 
antenna with and without metamaterial is indicated 
in Table II. Good gain improvement (return loss) 
is obtained for all of HFSS-CST and measurement 
results. Although, measured return loss (S11) of the 
patch antenna with metamaterial indicates several 
modes at different frequencies as shown in Fig. 5  
(c), but these modes are not sufficient to mention 
about new extra radiation frequencies. Since the 
return losses of these extra modes are higher than -
10 dB. 
 
Table II: Comparison of simulation and 
measurement results of return loss (S11). 

 HFSS CST Measurement 
W/O MTM -13.6812 dB -16.64 dB -9.42 dB 

with MTM -20.2712 dB -23.33 dB -15.1 dB 

Gain -6.59 dB -6.69 dB -5.68 dB 

μeff 

 

 neff 
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(a) 

(b) 

 
(c) 

 

Fig. 5. (a) HFSS simulation, (b) CST simulation, 
(c) and measurement results of patch antenna with 
metamaterial. 
 

It is well known that the radiation pattern of 
the antenna with and without metamaterial give 
exact idea about the gain of the antenna system, 
since the return loss (S11) is not enough alone to 
decide the antenna performance. The radiation 
patterns of the patch antenna with and without 
metamaterial are evaluated by HFSS as shown in 
Figs. 6 and 7. The radiation patterns of H plane are 
simulated at every 300 between 00/1800. Although, 
the maximum radiation gain of the antenna 
without metamaterial is -8 dB (Fig. 7), it reaches 

up to +20 dB for antenna with metamaterial (Fig. 
6). These exhibits that metamaterial not only 
provide minimization of return loss (S11 value) but 
also give chance to enhancement of the antenna 
gain.  

Fig. 6. HFSS simulation of the radiation pattern for 
the patch antenna with metamaterial.  
 

Fig. 7. HFSS simulation of the radiation pattern for 
the patch antenna without metamaterial.  

 
Beside the simulations of radiation pattern, 

measurement is also realized to observe the effect 
of metamaterial on patch antenna by using 
MATS1000. The HFSS simulation for patch 
antenna without metamaterial and measurement 
result for patch antenna with metamaterial are 
shown in Fig. 8. Two different antennas are used at 
the measurement. One of them is metamaterial 
mounted patch antenna and the other one is ring 
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antenna to observe the radiation pattern of H plane. 
Whereas simulation result of H plane radiation 
gain is around -72 dB, measurement result is much 
better (-47.5 dB). These results indicate the 
enhancement of antenna radiation gain due to the 
metamaterial. 

    

 
 

 
 
 
 
 
 
 

Fig. 8. Simulation and measurement radiation 
pattern results of patch antenna without and with 
metamaterial (H plane). 
 

III. CONCLUSIONS 
In this study, simulation, fabrication, and 

measurement are investigated for microstrip patch 
antenna covered with metamaterial composed of 
SRR and MS. The results show that good 
improvement in the antenna characteristics in 
terms of gain is achieved. The gain of the 
microstrip patch antenna with metamaterial is 
increased by 6.69 dB from simulation and 5.68 dB 
from measurement. It can be concluded that 
microstrip patch antenna based on metamaterial 
exhibits improvement on the antenna gain 
performance. Therefore, metamaterials provide 
potential application areas to antenna researchers, 
such as improvement of the gain or radiation 
properties of any type of antenna. 
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Abstract � A different method to design a novel 
ultra-wideband (UWB) slot antenna with band-
notch performance is presented. In order to 
increase the impedance bandwidth of the slot 
antenna, we use a rectangular slot with a pair of L-
shaped strips protruded inside the rectangular slot 
in the ground plane that with this structure UWB 
frequency range can be achieved. Additionally, by 
using square-ring radiating stub with two �-shaped 
strips protruded inside the square-ring stub, a 
frequency notch band performance has been 
obtained. The designed antenna has a small size of 
20×20 mm 2  while showing the radiation 
performance in the frequency band of 3.07 GHz to 
over 14.67 GHz with a band rejection performance 
in the frequency band of 5.05 GHz to 5.93 GHz. 
Simulated and experimental results obtained for 
this antenna show that it exhibits good radiation 
behavior within the UWB frequency range. 

  
Index Terms � Protruded strips, slot antenna, and 
UWB Systems. 

 
I. INTRODUCTION 

It is a well-known fact that planar microstrip 
antennas present really appealing physical features, 
such as simple structure, small size, and low cost 
[1]. Due to all these interesting characteristics, 
planar antennas are extremely attractive to be used 
in emerging ultra-wideband (UWB) applications. 
[2-5]. In the UWB communication systems, one of 
the key issues is the design of a compact antenna 
while providing wideband characteristic over the 

whole operating band. Consequently, a number of 
planar slot antennas with different geometries have 
been experimentally characterized [6-9]. 

Despite the advantages of UWB, the frequency 
range for UWB systems between 3.1 GHz–10.6 
GHz will cause interference to the existing 
wireless communication systems for example the 
wireless local area network (WLAN) for IEEE 
802.11a operating in 5.15 GHz–5.35 GHz and 
5.725 GHz–5.825 GHz bands, so the UWB 
antenna with a band-notched function is required 
[10-14].  

In this paper, to achieve the above purposes 
such as the frequency range for UWB systems and 
single band-notched characteristic (to avoid the 
interference between UWB and WLAN systems), 
at the first step of the design algorithm, an extra 
rectangular slot with a pair of L-shaped strips 
protruded inside the rectangular slot in the ground 
plane was used to enhance the bandwidth. Also the 
modified square-ring radiating stub with two 
protruded �-shaped strips was applied to generate 
a band-notched performance. 
 

II. ANTENNA DESIGN 
The proposed slot antenna fed by a 50-Ohm 

microstrip line is shown in Fig. 1, which is printed 
on an FR4 substrate of thickness 0.8 mm, and 
permittivity 4.4. The width of the microstrip feed 
line is fixed at 1.5 mm. The basic antenna 
structure consists of a square radiating stub, a feed 
line, and a ground plane with a rectangular slot. 
The square-ring radiating stub with two Γ -shaped 
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strips protruded inside the square-ring stub is 
connected to a feed line, as shown in Fig. 1. On 
the other side of the substrate, a conducting 
ground plane with a rectangular slot with a pair of 
L-shaped strips protruded inside the rectangular 
slot in the ground plane is placed. The proposed 
antenna is connected to a 50� SMA connector for 
signal transmission. 

 

 
(a) 

 
(b) 

 
Fig. 1. Geometry of the proposed slot antenna, (a) 
side view and (b) top view. 

 
In this work, we start by choosing the aperture 

length LS. We have a lot of flexibility in choosing 
this parameter. The length of the aperture mostly 
affects the antenna bandwidth. As LS decreases, so 

does the antenna BW and vice versa. In the next 
step, we have to determine the aperture width WS. 
The aperture width is approximately, where is the 
slot wavelength that depends on a number of 
parameters such as the slot width as well as the 
thickness and dielectric constant of the substrate 
on which the slot is fabricated. The last and final 
step in the design is to choose the width of the 
radiating patch W. This parameter is 
approximately, where is the guided wavelength in 
the microstrip line [3].  

In this study, to design a novel antenna, the 
modified protruded L-shaped and �-shaped strips 
are placed inside rectangular slot in the ground 
plane and square-ring stub, respectively. 
Regarding defected ground structures (DGS) 
theory, the creating slots in the ground plane 
provide additional current paths. Moreover, these 
structures change the inductance and capacitance 
of the input impedance, which in turn leads to 
change the bandwidth [4-6]. Therefore, by cutting 
an extra rectangular slot with a pair of L-shaped 
strips in the ground plane, much enhanced 
impedance bandwidth may be achieved.  

In addition, to create a desired frequency 
band-stop characteristic, a pair of �-shaped strips 
is protruded inside square-ring radiating stub. At 
the notched frequency, the current flows are more 
dominant around the �-shaped strips, and they are 
oppositely directed between the parasitic element 
and the radiating stub. As a result, the desired high 
attenuation near the notch frequency can be 
produced [10-12]. Final values of the presented 
antenna design parameters are specified in Table. 
I. 
 
Table. I. Final dimensions of the antenna. 
Parameter Wsub Lsub hsub Wf Lf W 

(mm) 20 20 0.8 1.5 4 7 
Parameter WS LS WX LX WX1 WP 

(mm) 18 11 6 5.5 5 1 
Parameter LP WP1 LP1 WP2 Wg Lg 

(mm) 3.25 2.5 1.5 4.5 0.5 4 
Parameter Wg1 Lg1 Wg2 Wg3 d Lgnd 

(mm) 3.25 3 1.25 0.5 7 6 
 

III. RESULTS AND DISCUSSIONS 
The proposed microstrip-fed slot antenna with 

various design parameters were constructed, and 
the numerical and experimental results of the input 
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impedance and radiation characteristics are 
presented and discussed. The analysis and 
performance of the proposed antenna is explored 
by using Ansoft simulation software high-
frequency structure simulator (HFSS) [15], for 
better impedance matching. 

 The configuration of the presented slot 
antenna was shown in Fig. 1. Geometry for the 
ordinary square slot antenna (Fig. 2 (a)), with a 
rectangular slot with a pair of L-shaped strips 
protruded inside the rectangular slot in the ground 
plane (Fig. 2 (b)), and the proposed antenna (Fig. 2 
(c)) structures are shown in Fig. 2. Return loss 
characteristics for structures that shown in Fig. 2 
are compared in Fig. 3.  

 

 
          (a)                   (b)                    (c) 
 
Fig. 2. (a) Ordinary square antenna with two L-
shaped slits, (b) with four L-shaped slits, and (c) 
the proposed antenna structure. 
 

 
 
Fig. 3. Simulated return loss characteristics for the 
various structures of the antenna shown in Fig. 2. 
 

As shown in Fig. 3, it is observed that the 
upper frequency bandwidth is affected by using the 
rectangular slot with a pair of L-shaped strips 

protruded inside the rectangular slot in the ground 
plane. In the proposed design, by using the 
modified DGS consist of the extra rectangular slot 
with a pair of L-shaped strips in the ground plane, 
an additional resonance at 9 GHz is excited and 
hence, much wider impedance bandwidth can be 
produced, especially at the higher frequencies. By 
using this modified structure in the ground plane, 
the usable upper frequency of the antenna is 
extended from 8.7 GHz to 14.67 GHz. Also, the 
WLAN band-notched property is sensitive to the 
square-ring radiating stub with two �-shaped strips 
protruded inside the square-ring stub. 

In the proposed antenna configuration, the 
ordinary rectangular slot can provide the 
fundamental and next higher resonant radiation 
band at 4.1 GHz and 8 GHz, respectively, in the 
absence of the modified protruded strips. The 
upper frequency bandwidth is significantly 
affected using the pair of protruded L-shaped 
strips inside the extra rectangular slot in the 
ground plane. This behavior is mainly due to the 
change of surface current path by the dimensions 
of L-shaped strips as shown in Fig. 4 (a). In 
addition, by using these modified DGS on the 
other side of substrate, the impedance bandwidth 
is effectively improved at the upper frequency. As 
shown in Fig. 4 (b), the current is concentrated on 
the edges of the interior and exterior of the 
protruded �-shaped strips inside the square-ring 
radiating stub at the notched frequency (5.5 GHz). 
This figure shows that the electrical current for the 
notched frequency (Fig. 4 (b)) does change 
direction along the bottom and top edge of the 
radiating stub [16-17]. 
 

 
             (a)                          (b) 
 
Fig. 4. Simulated surface current distributions for 
the proposed antenna at, (a) 9 GHz (resonance 
frequency) and (b) 5.5 GHz (notched frequency). 
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Figure 5 shows the simulated VSWR curves 
with different values of Lg. As shown in Fig. 5, 
when the length of the protruded �-shaped strips 
strip increases from 3.25 mm to 4.50 mm, the 
centre of notch frequency is decreases from 5.86 
GHz to 5.11 GHz. From these results, we can 
conclude that the notch frequency is controllable 
by changing the length of the protruded �-shaped 
strips [18-19]. 
 

 
 
Fig. 5. Simulated VSWR for the proposed antenna 
with different values of gL . 

    
The proposed antenna with optimal design as 

shown in Fig. 6 was built and tested. The VSWR 
characteristic was measured using a HP 8720ES 
network analyzer in an anechoic chamber.  The 
radiation patterns have been measured inside an 
anechoic chamber using a double-ridged horn 
antenna as a reference antenna placed at a distance 
of 2 m.  
 

 
           (a) Bottom view          (b) Top view 
 
Fig. 6. Prototype of the realized antenna. 

The measured and simulated VSWR 
characteristics of the proposed antenna were 
shown in Fig .7. The fabricated antenna has the 
frequency band of 3.07 to over 14.67 GHz with a 
rejection band around 5.05 to 5.93 GHz.  
 

 
 

Fig. 7. Measured and simulated VSWR for the 
proposed antenna. 
 
 

Figure 8 depicts the measured radiation 
patterns of the proposed antenna including the co-
polarization and cross-polarization in the H-plane 
(x-z plane) and E-plane (y-z plane). It can be seen 
that quasi-omnidirectional radiation pattern can be 
observed on x-z plane over the whole UWB 
frequency range, especially at the low frequencies. 
The radiation patterns on the y-z plane display a 
typical figure-of-eight, similar to that of a 
conventional dipole antenna. It should be noticed 
that the radiation patterns in E-plane become 
imbalanced as frequency increases because of the 
increasing effects of the cross polarization. The 
patterns indicate at higher frequencies, more 
ripples can be observed in both E- and H-planes 
owing to the generation of higher-order modes 
[20-23].  
 

IV. CONCLUSION 
 In this paper, a novel design of UWB slot 

antenna with variable band-notched function is 
proposed. The presented slot antenna can operate 
from 3.07 GHz to 14.67 GHz for VSWR < 2 with 
a rejection band around 5.05 GHz-5.93 GHz. By 
using a rectangular slot with a pair of protruded L-
shaped strips in the ground plane, an additional 
resonance at higher frequency range is excited and 
much wider impedance bandwidth is produced. In 
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order to generate a frequency band-stop 
performance, we use the square-ring radiating stub 
with two protruded �-shaped strips. The designed 
antenna has a small size. The measured results 
showed good agreement with the simulated 
results. Experimental results show that the 
presented slot antenna can be a good candidate for 
UWB applications. 

 

 
 
Fig. 8. Measured radiation patterns of the 
proposed antenna (a) 4 GHz, (b) 7 GHz, and (c) 10 
GHz. 
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