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Abstract ─ A meshless integration free approach is 
applied to numerical solution of the mixed 
potential integral equation (MPIE) governing 
various microstrip resonators/antennas. The idea 
behind the discrete complex image method 
(DCIM) is exploited to provide closed form 
expressions for all of the integrals, leading to an 
efficient spectral-domain meshless integral 
equation (IE) solver. The proposed meshfree 
method (MFM) is compared with low order 
method of moments (MoM) from the aspects of 
memory usage and simulation time, which shows 
superior performance of the MFM.  

  
Index Terms - Collocation, meshfree, microstrip 
antenna, MoM, RBF, and Shepard.  

 
I.  INTRODUCTION 

Currently, meshfree methods (MFMs) are 
well-known as partial differential equation (PDE) 
solvers and the amount of research devoted to 
meshless solution of integral equations (IEs) is 
negligible [1-7]. Not so far, a study is reported on 
numerical solution of electromagnetic (EM) IEs by 
the meshfree collocation method (MCM) [7]. The 
purpose of this work is applying that method to the 
analysis of microstrip resonators/antennas by 
meshfree (meshless) solution of the mixed 
potential integral equation (MPIE) [8]. This 
equation is the most practical IE in numerical 
solution of microstrip structures due to its weak 
singular kernels, numerical stability, and intense 
capability of handling multilayered media [9].  

At present, the method of moments (MoM) is 
known as the most versatile numerical method for 

such problems. One of the pre-assumptions in 
MoM is partitioning the problem domain by 
meshes. The unknown field variable is then 
expanded over known basis functions with 
unknown weightings on each mesh, leading to 
discretization of the IE. These expansion functions 
most often have simple mathematical form and 
thus, low reconstruction capability. Although it is 
possible to use basis functions with high 
reconstruction ability, currently the most used 
MoM solvers are of low order. Hereafter in this 
paper, by MoM it is meant low order MoM, which 
exploits pulse/roof-top basis functions.  

In contrast to MoM, MFMs discretize operator 
equations by nodes instead of meshes and utilizing 
meshfree shape functions. These functions are 
highly complicated, with excellent fitting 
capability [10]. Thus, it is expected that MFMs be 
able to solve the same problem with less number 
of unknowns compared to MoM, leading to save 
in memory usage. On the other hand, noting that 
evaluation of meshless shape functions often 
requires matrix computations, MFMs are expected 
to be slow solvers. This makes meshless solution 
of IEs a challenging problem.  

For decreasing the simulation time, guidelines 
reported in [7] are followed throughout this paper, 
which has led to less computational cost with 
respect to MoM. Since all numerical integrations 
are effectively carried out in the spectral domain, 
the proposed method can be regarded as the 
meshless counterpart of the spectral domain MoM. 
This study covers different aspects of geometries, 
feeding techniques, nature of structures, and 
number of exciting ports. For decoupling the effect 
of the substrate Green’s functions (GFs) from the 
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method itself, the first four structures are analyzed 
based of air-filled substrate and for completeness, 
the last case is devoted to a realistic antenna.  

All MFM simulations are carried out based on 
regular node arrangements. This restriction is due 
to presently available strategy for bypassing 
numerical integration. By introducing wise 
irregularity in node distribution, the scattered data 
fitting capability of meshless shape functions can 
be exploited which leads to more decrease in the 
number of unknowns. Nevertheless, although the 
present study has led to over sampling of the 
problem domain, both of the number of unknowns 
and simulation time are decreased compared to 
MoM. The main ideas of the method are general 
and can be applied to arbitrary node arrangements. 
Finally, it should be pointed out that by “thick” we 
mean that the variations of EM fields normal to 
the substrate are not neglected in this work. 

 
II. MATHEMATICAL STATEMENT OF 

THE PROBLEM 
Consider a planar microstrip structure of 

domain Ω and boundary ∂Ω, illuminated by an 

incident electric field, iE . The MPIE governing 
this problem can be expressed as 
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where n and m are unit normal vectors to Ω and 
∂Ω, respectively, with 0 n m . In addition 
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where AG  and VG  are dyadic and scalar GFs of 
the substrate medium, respectively [9]. As well, 

s and sJ are related by the continuity equation, 
i.e., 
 

0.s sj   J                                  (3) 
 

In conventional MoM solvers, sJ  is expanded 
over a set of basis functions satisfying boundary 
conditions (BCs) and equation (2) is injected in 
equation (1). Thus, the problem reduces to 
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and is solved by a weighted residual method, 
which is usually of the Galerkin type. This choice 
with applying integration by parts, removes the 
gradient operator [9]. As the MoM enforces the 
basis functions to be only linear independent, it is 
possible to use simple functions such as 
rectangular pulses and roof-tops. These functions 
have low order of continuity, and therefore, 
differentiation is not straightforward, if not 
impossible. On the other hand, this option 
simplifies computing of fourfold integrals 
appearing in solution of 2D problems.  

In contrast to MoM, MFM not only enforces 
the meshless shape functions to be linear 
independent, but also imposes them to be either 
approximants or interpolants. Sample 1D 
approximant and interpolant meshless shape 
functions are depicted in Fig. 1.  

 
Fig. 1. Sample 1D approximant and interpolant 
meshless shape functions. 
 

Clearly, construction of meshless shape 
functions satisfying the BCs of equation (1) is too 
hard, if not impossible. As stated earlier, these 
functions possess high order of continuity and 
their evaluation is computationally expensive. 
Thus, numerical integration over them is time 
consuming, which makes application of the 
Galerkin method computationally inefficient. As a 
conclusion, for meshless solution of the MPIE, we 
suggest the collocation method, without replacing 
equation (2) into equation (1).  
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III. MESHLESS DISCRETIZATION  
The first step for meshless discretization is to 

scatter M nodes in the problem domain and on its 
boundary. This leads to nodal description of the 
problem. Next, the unknown field variable should 
be expanded over meshless shape functions. This 
step is highly problem dependent. An improper 
selection of expansion functions leads to 
inaccuracy and/or computational inefficiency. 
Considering the present formulation, i.e., 
equations (1) and (2), reveals that the problem can 
be regarded as a combination of two parts; the 
differential part, i.e., equation (1), and an integral 
part, i.e., equation (2). Thus, the field variable V 
should be expanded over a set of smooth 
functions; no matter they are localized or 
distributed over the entire problem domain. We 
suggest expanding V over radial basis function 
(RBF) interpolants and not over moving least 
square (MLS) approximants. For detailed 
introduction to meshless shape functions, the 
reader is referred to [10]. The relative 
computational cost of evaluating the differential 
part for a sample 2D problem is reported in Fig. 2, 
wherein conventional MLS and RBF shape 
functions are used.   

 
Fig. 2. Relative computational cost of evaluating 
the differential part for a sample 2D problem. 

 
On the other hand, Js should be expanded over 

functions, which are localized over a small portion 
of the problem domain. If not, integration over 
each of the corresponding shape functions requires 
either huge number of quadrature points or a back 
ground mesh. The computational cost of 
evaluating the integral part for a sample 2D 
problem using conventional MLS, Shepard and 
RBF shape functions is reported in Fig. 3. Thus, 
we suggest expanding Js over Shepard 

approximants [11], which their evaluation does not 
require matrix computations.  

 
Fig. 3. Computational cost of evaluating the 
integral part for a sample 2D problem using 
different meshless shape functions. 
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where hV and hA  are interpolated value of V and 

Aα, respectively, hJ   is the approximated value of 
Jα, and α is either of x or y. Collocating sides of 
equation (5) and the first of equation (1) at the 
nodes yields 

 , L J b                                                              (7) 
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with 
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The unknown field variable J  can now be 
computed by solving the linear system of equation 
(7) after imposition of BCs, which is now 
straightforward.  

 
IV. COMPUTATION OF THE L MATRIX 

This section follows [7]. The computational 
cost of the L matrix is mainly due to matrices 
introduced in equation (10). The key point is 
noting the fact that under the assumption of 
regular node arrangement, Shepard functions 
become bell-shaped and consequently, can be well 
approximated by a single Gaussian function. 
Hereafter, we assume 
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y are constants corresponding 

to the ith approximant and can be simply estimated 
by curve fitting methods. This point, itself, 
simplifies handling the problem and increases 
computational efficiency. The aforementioned 
matrices can be computed in both of space and 
spectral domains. Thus, we split this section to two 
parts and discuss each one separately. 

A. Space domain 
Computation in the space domain requires 

evaluation of space domain GFs of the problem. 
Although the GFs of multi-layered media have 
closed forms in the spectral domain, their 
evaluation in the space domain has a long history 
and still is known as an active research topic. 
Currently, one of the most famous and efficient 
approaches used for this purpose, is the discrete 
complex image method (DCIM) [12, 13]. The 
DCIM is a general idea for computing the inverse 

Fourier-Bessel transform and, itself, can be 
implemented in a variety of ways. In this work, we 
have followed [13] which, for the problem at hand, 
express the space domain GFs as a sum of 
complex-valued spherical wave, i.e., 
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where ,m mc d  and , ,xx yy
A A VG G G G . Details of 

this method are beyond the scope of this work. 
Considering equations (10) to (12), the 
mathematical form of the first integrals in equation 
(10) can be stated as 
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where Ωn is the support of the nth approximant. 
The other integrals can be stated, and consequently 
treated similarly. This integral has a potential first 
order singularity and is classified as a weak 
singular integral. Nevertheless, for fast and 
accurate numerical integration, all sharp 
behaviours and infinite values of the integrand 
should be avoided. Such integrals can be evaluated 
numerically by applying the Duffy transform, 
which is simple to implement and annihilates the 
possible singularity at the expense of triangular 
meshing the integration domain and the 
corresponding increase in computational 
complexity [14].  

B. Spectral domain 

It is well known that all integrals of equation 
(10) are linear convolutions. This fact can be 
exploited to calculate equation (10) by the 
continuous Fourier transform (CFT), e.g., the jth 
column of K1 can be computed as follows 

 

      1
1 , 1,..., ,xx

j Aij
G i M  K F F F      (14) 

 

where F stands for CFT. A situation exists, which 
can decrease the computational cost of the method 
by providing closed form expressions for the 
integrals of equation (10). Suppose, 
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which is met by nodal arrangements with equal 
radial distance. Thus, the mathematical forms of 
the required integrals are 
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where G  stands for the spectral domain 
counterpart of G. The remained step is computing 
the above Sommerfeld-type integrals, which can 
be done by following the strategy introduced in 
[13]. The time gain achieved by computing the 
first integral of equation (16) in space and spectral 
domains for a sample 2D problem is reported in 
Fig. 4. Relaxing the condition of equation (15) 
does not invalidate this approach. Application to 
general case is under study. 

 
Fig. 4. Time gain achieved by computing the first 
integral of equation (16) in space and spectral 
domains. 

 
V. FEED MODELING 

There are varieties of methods for feeding 
microstrip antennas [9, 15]. One of the most 
practical picks is to directly connect a microstrip 
line to the radiating patch. This choice has two 
valuable benefits. First, it preserves the planarity 
of the problem and restricts the discretization to 
the microstrip plane. Second, it allows analysis of 
the problem by the collocation method. This is in 

contrast to feeding by vertical filament acting on 
some point of the upper conductor, which requires 
a distributed weighting function needed for 
absorbing the singularity of the Dirac delta 
function. Another choice is proximity feeding 
technique, in which the feed line truncates at the 
vicinity of the radiating element. Although this 
case preserves benefits of the former one, the 
coupling of EM energy is drastically decreased 
compared to that, making the impedance matching 
difficult. Moreover, the high sensitivity of the 
return loss to the distance between the line and 
patch makes this choice impractical. Nevertheless, 
from numerical stand point and for the purpose of 
validation, both of the aforementioned methods 
are used in this study.  

Another point that should be noted is the 
mathematical form of the excitation function. In 
MoM, it is straightforward to use a half roof-top 
function with acting at the first mesh of the feed 
line. In this case the EM field distribution of the 
exciting function suddenly drops from its 
maximum value to zero. This sharp variation does 
not affect the solution and satisfactory results are 
obtained following this strategy. We have found 
that meshless methods are incapable of handling 
abrupt changes. In fact, we could not get 
satisfactory results from the proposed method 
unless we modeled the excitation by a smooth 
decaying function. In this study, a slowly decaying 
Gaussian function is used. At present, the 
optimum value for the damping factor is unknown 
to us.  

 
VI. NUMERICAL DE-EMBEDDING 
A crucial step in both of the measurement and 

numerical analysis of microwave components is 
extracting the scattering (S) parameters. The 
difficulty of this step arises from the disturbance 
of the EM field at the source/load location. The 
process of extracting the effect of the source/load 
from the intrinsic behavior of the component is 
called de-embedding. In the context of numerical 
solution, this problem resembles itself, specially, 
when dealing with IE solvers and is called 
numerical de-embedding. Number of strategies is 
introduced for this purpose, e.g., [16, 17]. In this 
work, we followed [17]; it is simple and does not 
need knowledge of characteristic impedance of the 
feed line and its guiding wave length. 
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VII. NUMERICAL RESULTS  
In this section, the proposed method is applied 

to five microstrip structures: a linear resonator, a 
proximity-coupled circular resonator, a proximity-
coupled antenna array, a line-fed dual-polarized 
patch antenna, and a line-fed patch antenna. One 
of the vital steps in such analysis is evaluating of 
integrals including GFs of layered media. Any 
error in this step, directly affects the final result. 
Thus, for decoupling the effect of GFs from the 
method, the first four problems are devoted to 
substrates with εr = 1. These problems prove the 
capability of the method in handling various 
geometries and different feeding techniques. The 
final problem is a realistic microstrip antenna with 
εr = 2.2. The MFM analysis is based on the 
proposed spectral domain strategy. Apparently, it 
is also possible to evaluate the coefficient matrix 
by direct numerical integration in the space 
domain.  

Meshless interpolants are constructed by the 
following compactly supported positive definite 
RBF [10], 
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(17) 
where η = ρ/rI, with rI being the interpolant 
support size. For the first four problems rI = 30dr, 
and for the last one rI = 10dr where dr is the radial 
nodal distance. As well, Shepard approximants are 
constructed from the following quadric spline 
function [10], 

 
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ρw
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where η=ρ/rA, with rA being the approximant 
support size and is set to rA=1.2dr for all cases. 
These functions are approximated by Gaussian 
functions with equal amplitude and damping 
factors in x and y directions. Unfortunately, in the 
cases of circular resonator and dual polarized 
antenna, the computed input impedances are not in 
adequate agreement with MoM. This may be 
resulted from unsuccessful numerical de-
embedding. Thus, in these cases, the monostatic 
radar cross section (RCS) computed by the 
proposed MFM and MoM are also provided to 
verify the validity of the method. For this purpose, 
the aforementioned structures are excited by x-

polarized uniform plain wave. MoM results 
corresponding to S-parameter and RCS are 
computed by Agilent Momentum 2009 and FEKO 
suite 5.5, respectively. Finally, the plat form used 
is an Intel (R) Core (TM) 2 CPU with 4 GB RAM. 

A. Linear resonator 
Consider a 50 mm × 2.5 mm rectangular strip 

on a substrate with εr = 1 and h = 0.794 mm. The 
first resonance frequency of this structure can be 
analytically estimated to be 3 GHz. The node 
arrangement, BCs, current density distribution and 
the corresponding input impedance are depicted in 
Fig. 5. The computed results are in agreement with 
theoretical expectations.  

 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Fig. 5. Linear resonator for (a) nodal arrangement 
and BCs, (b) current density distribution, and (c) 
input impedance. 
 
B. Proximity-coupled circular resonator 

For verifying the applicability of the method 
to non rectangular geometries, consider a narrow 
ring, centered at the origin and fed by a 30 mm × 
2.4 mm strip. The inner and outer radii of the ring 
are 7.5 mm and 10 mm, respectively. The ring and 
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the feed line are positioned 2 mm apart and are 
placed on a substrate with εr = 1 and h = 1.6 mm. 
The resonance frequency of the ring can be 
estimated to be 5.46 GHz. The nodal arrangement 
and BCs, current density distribution and the 
corresponding input impedance are depicted in 
Fig. 6. The computed results are in accordance 
with physical sense. Specially, Fig. 6 (b) shows 
how the EM energy is coupled to the ring at the 
resonance. Additionally, the capacitive nature of 
the feeding structure can be concluded from the 
imaginary part of input impedance.  However, 
adequate agreement between MFM and MoM 
cannot be seen, which may be stem from 
unsuccessful numerical de-embedding. Thus, the 
normalized RCS is also computed by both of the 
methods and reported in Fig. 6 (d) for further 
validation of the proposed MFM. 

C. Proximity-coupled antenna array 
As the first radiating structure, consider a two-

element array antenna, excited by proximity 
coupling technique. Each element consists of a 2.5 
mm × 21.5 mm strip, perpendicularly fed by a 
1.5λ0 × 2.5 mm line. The gap between the feed line 
and the strip is 1 mm, and the array elements are 
placed apart 6 mm. The substrate parameters are εr 
= 1 and h = 1.6 mm. The node arrangement and 
BCs for a single element, current density 
distribution at resonance and the corresponding 
|S12| are depicted in Fig. 7. For clearly visualizing 
the coupling of EM energy, the current density 
distribution is depicted in logarithmic scale. 

D. Line-fed dual-polarized patch antenna 
In contrast to previous cases, this case covers 

the microstrip discontinuity effect by connecting 
the feed lines to the radiating patch. For this 
purpose, a 10 mm ×10 mm patch is fed by two 
1.5λ0 × 1.2 mm lines from its perpendicular sides. 
The lines are positioned at the center of each side. 
The substrate parameters are εr = 1 and h = 0.794 
mm. The nodal arrangement and BCs, current 
density distribution at 13.1 GHz and the 
corresponding |S12| are depicted in Fig. 8. As in the 
case of circular resonator, the agreement between 
the MFM and MoM is not satisfactory. Thus, with 
the same reasoning, the RCS of the structure is 
computed by both of the methods and reported in 
Fig. 8 (d). 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 6. Proximity-coupled circular resonator for (a) 
node arrangement and BCs, (b) current density 
distribution, (c) input impedance, and (d) 
normalized RCS. 
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Fig. 7. Proximity-coupled antenna array for (a) 
node arrangement and BCs for a single element, 
(b) current density distribution, and (c) |S12|. 
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(c) 
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(d) 
 
 

Fig. 8. Line-fed dual-polarized patch antenna for 
(a) node arrangement and BCs (the feeding lines 
are truncated for brevity.), (b) current density 
distribution, (c) |S12|, and (d) normalized RCS. 
 
 
 
E. Line-fed patch antenna 

The final structure, is a 16 mm × 12.5 mm 
patch fed by a 1.5λ0 × 2.5 mm line, located on a 
substrate with εr = 2.2 and h = 0.794 mm. The line 
is positioned on the shorter side, 7 mm apart from 
the corner. Computing equation (16) is carried out 
based on [13]. The Sommerfeld integration path 
(SIP) in kz0 and kρ planes and the corresponding 
spectral domain functions at 18.7 GHz are 
depicted in Fig. 9. The matrix-pencil method 
(MPM) is used for expansion over complex 
exponentials [18]. The variables t, kz0, kρ and 
functions RTE and Rq are defined based on [12]. 
The nodal arrangement, BCs and the |S11| 
parameter in a wide frequency range are depicted 
in Fig. 10. The number of unknowns, N = 2M, and 
the simulation time of the proposed MFM and 
MoM are reported in Fig. 11. For this purpose, 
four nodes are used for discretizing the width of 
the feed line in MFM analysis, which makes the 
simulation valid up to about 20 GHz. Similarly, 
the mesh frequency in MoM is set to 20 GHz. The 
current density distributions at deeps of |S11| are 
depicted in Fig. 12.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 9. Spectral domain curves at 18.7 GHz for (a) 
SIP in kz0-plane, (b) SIP in kρ-plane, (c) spectrum 
corresponding to xx

AG , and (d) spectrum 

corresponding to VG . 
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(a) 

 

 
(b) 

 
Fig. 10. Line-fed patch antenna for (a) node 
arrangement and BCs at 20 GHz and (b) |S11|. 
 

 
(a) 

 
(b) 

 
Fig. 11. Usage of computational resources for (a) 
number of unknowns (memory) and (b) time. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Fig. 12. Current density distribution of a line-fed 
patch antenna at (a) 7.5 GHz, (b) 10.1 GHz, (c) 
12.5 GHz, (d) 14.8 GHz, (e) 16.7 GHz, and (f) 
18.7 GHz (legends are scaled for each figure, 
independently.). 
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VIII. CONCLUSION 
In this paper, five microstrip 

resonators/antennas are analyzed by the meshfree 
collocation method.  The MPIE is used as the 
mathematical formulation of the problem. 
Guidelines are supplied for efficient meshless 
discretization leading to fast meshless integration-
free solution. The proposed method is compared 
with MoM from the aspects of memory usage and 
simulation time which shows superior 
performance of the proposed MFM. 
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