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Abstract ─ In this paper, we investigate the 
spectral method that calculates the S-parameters 
for microstrip circuits and antennas. A sampling 
interval selection criterion is proposed. The 
scheme for low-loss cases is specially discussed. 
Several examples are employed to demonstrate the 
engineering applications of the spectral domain 
method and its results are compared with 
previously published and measured results. 

 
Index Terms - Microstrip circuits, sampling 
interval, and spectral domain method.  

 
I. INTRODUCTION 

The time domain Prony’s method [1, 2] and its 
improved version [3] have been proposed to derive 
complex resonant frequencies of a scatterer from 
its transient response. The optimum sampling 
technique for the original time domain Prony’s 
method has been presented in [4] and the issue of 
choosing the sampling interval for the improved 
time domain Prony’s method has been addressed 
in [5]. A combination of FDTD and time domain 
Prony’s methods [6] have been employed for the 
analysis of microwave integrated circuits and to 
obtain their scattering parameters. The concept of 
spectral domain Prony’s method has been 
introduced in [7], and has been applied to the 

problem of analyzing planar microstrip circuits. It 
employs the least squares procedure to estimate 
the complex scattering parameters. It does this by 
extracting the magnitude and phase of the incident 
and reflection waves from the sampled voltage 
data, and it does not require the knowledge of the 
characteristic impedance of the microstrip feed 
line. However, if the dimensions of microstrip 
lines at the feed and load ends are relatively small, 
then the distance between the sampling points to 
which the Prony’s method is applied is small. 
Under these circumstances, the conventional 
spectral domain Prony’s method suffers from the 
problem of ill-conditioned equations whose 
solution has considerable errors, especially at low 
frequency. We have introduced its improved 
version in [8] to circumvent this problem. The 
improved version has higher accuracy and smaller 
computational domain compared with the 
conventional spectral domain Prony’s method, and 
is in good agreement with analytic formula as well 
as measured data. In this work we propose the 
sampling interval selection criterion based on error 
analysis and numerical experiments. Further, this 
method cannot get physical attenuation for low-
loss cases, but it can get good results for S-
parameters. We will demonstrate this point in the 
following sections and propose a special scheme 
for lossy cases.  
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II. SPECTRAL-DOMAIN PRONY METHOD 
The sampled values of the complex voltage at 

the feed end of the microwave circuit can be given 
by [7]  

1 1 2 2 , 0,1, , 1,n n
nV A z A z n N       (1) 

where both A1 and A2 are complex unknowns, as 
yet undetermined, and 

1 2, ,d dz e z e                 (2) 

where γ (γ=α+jβ) is the complex wave number, 
and d is the sampling interval along the microstrip 
transmission line. In equation (1), Vn are obtained 
from the time domain data at N equally spaced 
nodes via Fourier transformation. 

It is assumed that z1 and z2 are the roots of the 
algebraic equation 

2
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From equations (1) and (3), one can obtain 
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Using the least squares procedure, the original 
spectral domain Prony’s method solves equations 
(4), (3) and (1) to get A1 and A2 i.e., the incident 
and reflection voltages, and knowledge of which 
one can calculate all of the entries of the scattering 
matrix. 

An improved method has been presented in [8]. 
From equations (2), (3) and (4), we have 
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 (5) 

Numerical simulations show that solving the 
above matrix cannot get physical attenuation 
constant for small loss cases. Considering that loss 
is generally low and sampling interval is very 
small (generally 0.01 mm ~ 2 mm), even if we set 
α = 0, we can get good results of scattering 
parameters. When it is very lossy, we still use the 
above matrix. 

  For a lossless line, the matrix shown in 
equation (5) reduces to 
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 (6)  

where Re (•) and Im (•) imply the real and the 
imaginary parts, respectively. We derive β from 
these above equations. It is evident that the values 
of thus obtained, have numerical artifacts and, 
hence, we fit the computed values with a straight 
line passing through the origin. This is due to the 
fact that β is proportional to the frequency f   

2
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where εe is the effective dielectric constant and c is 
the speed of light in free space. Then, the 
improved method leads to S-parameters that are 
much more reasonable and physically acceptable 
than the original results. A more accurate approach 
for solving α and β is to introduce analytic solution 
of α and β. For a microstrip line, the phase 
constant can be written as shown in equation (7), 
and the attenuations due to dielectric loss and due 
to conductor loss can be given by [9],  
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where k0 is the free space wave number, tanψ is 
the loss tangent of the dielectric, Rs is the surface 
resistivity of the conductor, W is the width of the 
microstrip line, Z0 is the characteristic impedance 
of the feeding transmission line whose expression 
is also given in [9]. For coplanar waveguides, its 
attenuation has been analyzed in [10-14]. In fact, 
for these cases as well as other complex problems 
[15-17], it is very complicated to calculate their 
phase and attenuation constant. So, we solve 
equation (5) for very lossy cases and equation (6) 
for lossless and low loss cases. We subsequently 
solve equation (1) to get incident and reflection 
voltages and then calculate the S-parameters. 
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III. SAMPLING INTERVAL 
There are several popular excitation 

techniques in FDTD simulations: lumped port, 
wave port, mode port, aperture field, and plane 
wave source [18]. The difference of the wave port 
from the lumped port is that the wave port is used 
to excite a matched port and the lumped port is 
used to excite an open port. Since the feed line is 
terminated at the domain boundary, it is perfectly 
matched at the domain boundary. We then use 
wave port excitation, not lumped port excitation. 
Another suitable excitation source for uniform 
transmission lines is a mode port [18, 19]. For 
solving and storing modal field, it needs more 
memory and computational time than wave port.  

  Theoretically, we choose d to be as large as 
possible to improve the property of equation (1). 
Unfortunately, if d is too large, the computational 
cost will greatly rise. Consequently, there is an 
optimal choice for the sampling interval that 
balances computational cost in the FDTD method 
and numerical error in the spectral domain 
method. To derive the selecting criterion of 
sampling interval, we firstly define a function y = 
f(x) plotted in Fig. 1. As shown in this figure, the 
same error ± ∆y has different confidence intervals, 
and with large gradient comes small interval, in 
which it has higher probability to obtain the exact 
solution. From equation (6), we approximately 
have 

sin( ) ,d d                     (10) 

where δ is the relative numerical error of the 
sample data. The relative error depends on a 
number of factors such as the cell-size in the 
FDTD method, and the structure of microstrip 
circuit. If we want to get a reasonable β, the 
sampling interval d must satisfy 

2( )d   .                      (11) 

Numerical simulations for the band pass filter with 
wave port cases indicate that the suitable sampling 
interval approximately satisfies 

min

0.01
d


  .                       (12) 

One can also get good results if selecting such 
sampling interval for simple microstrip circuits as 
the patch antenna and low pass filter given in [20]. 
Although being an approximation, the above 
expression provides a selecting criterion that has 
not been presented before. Note that the sampling 

interval should be larger than the minimum cell 
size of the FDTD simulation. 

 

 
 
Fig. 1. Relationship between interval and gradient 
with the same error. 
 

IV. EXAMPLE 
We now use the spectral domain method to 

simulate a microstrip patch antenna, whose actual 
dimensions are shown in Fig. 2. The relative 
permittivity of the substrate is 2.2 and the 
conductivity of the patch and feed line is 5.8 × 108 
S/m. We get the conductor loss by the use of 
equation (9), which is plotted in Fig. 3 (a). The 
computational domain for this problem is 25 mm × 
50 mm × 20 mm and the sampling interval d is 
equal to 0.5 mm. Since the conductance of the 
conductor is finite, several cells are needed to 
simulate the conductors in the z-direction. It is 
very important to ensure that the FDTD mesh 
coincides with the edges of the feed line and the 
patch. We take the minimum cell sizes to be 0.05, 
0.05, and 0.01 mm, in the x-, y-, and z-directions, 
respectively. Thus a non uniform mesh of (225 × 
320 × 261 cells) is generated including six-layers 
of PML. A wave port is employed as an excitation 
source. To calculate the S-parameters, we use 
these three approaches as follows: 
i. using equation (5) and set α = 0, then fitting β, 
ii. using equation (6) and fitting β, 
iii. using analytic α and β from equations (8) and 
(9). 

The numerical results of the attenuation 
constant are shown in Fig. 3 (b). We then plot its 
magnitude in Fig. 4. Moreover, the results of the 
phase constants are shown in Fig. 5. From the 
example, we conclude that it is difficult to solve 
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the attenuation constant for the present spectral 
domain, although the method can get good results 
for the scattering parameters. As mentioned above, 
if the sampling distance is large enough, the 
current method can get good result of attenuation 
constant, but it will significantly add 
computational domain and require more memory. 
Using the current method, we can get good results 
for the S-parameters even though we cannot get 
physical attenuation for low-loss cases in the case 
of small sampling interval. 

 
 

Fig. 2. Microstrip patch antenna. 
 

Finally, we study a microstrip branch line 
coupler with four ports. The substrate relative 
permittivity is 2.2.  The dimensions of the branch 
line coupler are given in [19] and repeated here in 
Fig. 6. The computation domain is 50 mm × 20 
mm × 3 mm, in the x-, y-, and z-directions, 
respectively. The minimum spaced steps used are 
∆x = 0.5 mm, ∆y = 0.38675 mm, and ∆z = 0.2 mm 
and the non-uniform mesh is 85 × 47 × 13 cells, 
which is relatively small for a single PC. The 
corresponding time step is approximately 0.532 ps. 
The sampling interval is 0.5 mm and a wave port 
is employed to excite port 1.  The computation 
time for this circuit is approximately only one 
minute on a single PC with two cores and 6 GB 
memory. It is a lossless case, so we use equation 
(6) to get the phase constant and plot it and its 
fitting curve shown in Fig. 7. The scattering 
coefficient results, as shown in Fig. 8, indicate 
good agreement in the location of the response 
nulls and crossover point. The desired branch line 
coupler performance is seen in the sharp S11 and 
S21 nulls, which occur at approximately at the 
same frequency as the crossover in S11 and S21. At 
this point S31 and S41 are both approximately -3 dB, 
indicating that almost all of the power from port 1 
is equally divided and transmitted through the 
device to ports 3 and 4. 
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Fig. 3. Attenuation constant versus frequency for 
(a) analytic solution and (b) using equation (5). 
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Fig. 4. Magnitude of S11 versus frequency. 

88 ACES JOURNAL, VOL. 28, NO. 2, FEBRUARY 2013



0 5 10 15 20
0

100

200

300

400

500

600

Frequency in GHz

  
in

 r
ad

/m

 

 

Formula (5)
Formula (5) and fitting
Formula (6)
Formula (6) and fitting
Analytic

 
 
Fig. 5. Phase constant versus frequency. 
 

  

 

Fig. 6. Dimensions of the microstrip branch line 
coupler. 
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Fig. 7. The computational results of the phase 
constant and its fitting curve. 
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Fig. 8. Scattering parameters of the branch line 
coupler. 
 

V. CONCLUSION 
We have investigated the improved spectral 

domain method for the computation of scattering 
parameters of microstrip circuits. An empirical 
formula has been proposed for selecting a suitable 
sampling distance of the total voltages along the 
feed line. Moreover, we have also presented three 
approaches to analyze the lossy cases in spectral 
domain, and found that lossy problems can be 
processed as lossless cases in the present method. 
Using the current method, we can still get good 
results for S-parameters even though we cannot 
get physical attenuation for low-loss cases in the 
case of small sampling interval. 
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